

2023-8

Workshop on Topics in Quantum Turbulence

16 - 20 March 2009

Producing and Probing Quantum Turbulence

G. Ihas University of Florida Dept. of Physics Gainesville U.S.A.

Today's Talk

- Grid turbulence in ⁴He
- High T > 1K
- Low T < 600 mK
 - Vibrating grids
 - Pulled grids-method of motation
- Probes
 - Temperature
 - Pressure

	As T→0
There is I	much interest in quantum turbulence in ⁴ He and ³ He-B
at temp	peratures where the density of normal fluid is negligible.
No viscos	sity so—
Richards decay.	on/Kolmogorov cascade can not account for turbulence

1

Experiments to do

The search for appropriate experimental techniques for this temperature range poses major challenges:

lon trapping

Bubble states formed from triplet state He₂ molecules

Miniature pressure and temperature sensors are being developed.

We want to study turbulence which has been well characterized classically and comparable to theory and simulations **B:** Homogeneous Isotropic Turbulence Pull grid at constant velocity rconducting shield How to make a motor? hollov niobiu car Grid sition nsor liquid helium level light insulated -1-1 (grid

Grid turbulence experiments Apparatus size and mesh Reynolds numbers R_M				
Kistler & Vrebalovich (1966) (air at 4 atmospheres)	2.6 m × 3.5 m	2.3		
Comte-Bellot & Corrsin (1971) (atmospheric air)	1 m × 1.3 m	0.3		
Oregon towed grid (He II)	$1 \text{ cm} \times 1 \text{ cm}$	0.5		
Yale towed grid (He I)	$5 \text{ cm} \times 5 \text{ cm}$	0.8		
UF (He II)	2.8 cm x 28 cm	0.1 or 5		

New	Approved and a second s
Florida	
Birmingha	
mLancaster	Energies works (star)
Motor	Der meinen seinen Aussein Aussein Aufrichen Aussein Aufrichen Aufr
(Details	
Secret!)	Are used we can also any set of the set of

Need Probe of Vorticity-- requirements

□ Length scales: wide range of scales from the size of the flow obstacle or channel giving rise to the turbulence to the (small) scale on which dissipation occurs.

E.g. turbulence in ⁴He above 1K has energy-containing eddies of 1 cm and characteristic velocity 1 cm s⁻¹. Below 1K Kelvin wave cascade (Vinen) to dissipate energy may take smallest scale to 10 nm.

Time scales: ranges from 1 s to a few milliseconds.

□Velocity correlation functions: play an important role in classical turbulence (structure functions). We could derive energy spectra from them and look for deviations from Kolmogorov scaling (higher-order structure functions).

Localized probes

- Want probes (other than PIV and LDV) that measure local properties (such as pressure, velocity). Ideally we need a spatial resolution of at least 30 microns and a frequency response to at least 1 kHz.
- Hot wire anemometers do not work in ⁴He owing to the high thermal conductivity. Could they work in ³He?
- A pressure transducer with a spatial resolution of about 1 mm and good frequency response was used in an important experiment by Maurer and Tabeling.
- We are pursuing smaller pressure transducers based on microfabrication techniques.

Calorimetry Probe Development

Thermistor Characteristics

- Operating temperature: 10 100 mK
- Sensitivity: δT ~ 10⁻⁴ mK
- Short response time: ~ 1 ms
- Small mass & good thermal contact.
- Ease of manufacture

Optical

