

The Abdus Salam International Centre for Theoretical Physics

2023-19

Workshop on Topics in Quantum Turbulence

16 - 20 March 2009

Decay at Low Temperatures in 3He

BRADLEY David Ian

University of Lancaster Department of Physics LA1 4YB Lancaster UNITED KINGDOM

Decay of Quantum Turbulence in superfluid ³He-B at *T*~0

Ian Bradley

Lancaster ULT group

Shaun Fisher Richard Haley Carolyn Matthews David Potts Sam O'Sullivan Rebecca Whitehead Tony Guénault Martin Jackson George Pickett John Roberts Viktor Tsepelin Kathryn Zaki

Low temperature phase diagram of ³He

The B-phase of superfluid ³He

- Equal mixtures of S_z = +1, 0, -1 pairs
- Isotropic energy gap in low magnetic fields

At low temperatures, quasiparticle excitation number falls rapidly

 $n_{ex} \propto \exp(-\Delta/k_B T)$

Mean free path virtually infinite (ballistic quasiparticles)

The normal fluid viscosity so large turbulence in the normal fluid impossible

pure superfluid turbulence

Vortices in the B-phase

Usual 2π phase change in the wavefunction around the core

vortices singly quantised with circulation :

 $\kappa = h/2m_3$

superfluid flows around core with velocity,

 $V_{\rm S} = \kappa/2\pi r$

Energy per unit length of a vortex

$$\varepsilon \approx \frac{\rho}{4\pi} \kappa^2 \ln\left(\frac{b}{\xi_0}\right)$$

Pressure dependent coherence length $\xi_0 \sim 65 - 15$ nm *b* ~ intervortex spacing

Vibrating wire resonator (Ballistic regime)

Turbulence Detection В Fraction of incident quasiparticle flux Andreev-reflected V_o $I_{\theta}e^{i\omega t}$ V₀ e^{iwt} f_{i} Frequency \implies

Andreev's Reflection

turbulence casts a quasiparticle shadow

Oscillating the grid has a large warming effect on the cell.

Giving the damping suppression by vortices.

Conclusion from these observations:

two different processes

- grid velocity < 3 mm/s produces small individual vortex rings
- fast recovery means vorticity must disperse from the grid at speeds ~10mm/s
- implies rings $< 5\mu$ m in size

• grid velocity > 3 mm/s produces static long-lived turbulent tangle

Look in more detail at the decay of the 'long-lived' tangle

Determine the vortex line length

- deduce the fractional screening f by the turbulence on the detector wires
- measure the damping $\Delta f_2(0,T)$ in the absence of turbulence
- measure the $\Delta f_2(v, T)$ when the grid is driven at velocity v
- define $\Delta f_2(v,T) = (1-f) \Delta f_2(0,T)$
- to determine *L* use a simple idea...
- more sophisticated calculation recently published Barenghi et al PRB 77, 104512, 2008

Take a thin slab of homogeneous vortex tangle of unit area, line density *L* and thickness δx

Mean quasiparticle energy = $k_B T$

Gap distortion by flow speed v is $p_t v$

Quasiparticle Andreev scattered if $k_B T < p_F v(r)$

As $v(r) = \kappa / 2\pi r$, quasiparticles scattered if approaches within a distance

$$r = \frac{h}{2m_3} \frac{p_F}{2\pi k_B T}$$

effective diameter $2r \sim 8 \mu m$ at 150 μK

Fraction quasiparticle flux reflected by thickness δx is $f \sim r L \delta x$

Hence

$$L = f \frac{2m_3 k_B T}{p_F \hbar \, \delta x}$$

previously measured vortex extent to be ~ 2 mm

Bradley et al, *Physica* B 329, 104, 2003

Expect for Kolmogorov decay on basis of classical turbulence of combined normal/superfluid components

$$L(t) = \frac{d}{2\pi\kappa} \sqrt{\frac{27C^3}{v'}} t^{-3/2}$$

d – characteristic size v' -kinematic viscosity

Expect for Kolmogorov decay on basis of classical turbulence of combined normal/superfluid components

$$L(t) = \frac{d}{2\pi\kappa} \sqrt{\frac{27C^3}{v'}} t^{-3/2}$$

d – characteristic size v' -kinematic viscosity

³He normal fluid viscosity much higher

If use Vinen's suggestion of replacing the kinematic viscosity by the circulation quantum κ

Turbulent fluctuations on detector wire from grid, 5.8 mm/s

Power spectrum of fluctuations on detector wire 1mm from grid

Next experiment

- Detect the heat released as turbulence decays
- Energy per unit length of a vortex

$$\varepsilon \approx \frac{\rho}{4\pi} \kappa^2 \ln\left(\frac{b}{\xi_0}\right)$$
 ~ 3 x 10⁻¹³ J/m initial

only logarithmically dependent on the intervortex spacing

• Expect decay to produce quasiparticles

previously measured grid produced turbulence density

 $L \sim 2 \times 10^8 t^{-3/2} \text{ m}^{-2} \Rightarrow \text{decay rate} \sim -3 \times 10^8 t^{-5/2}$

dissipation ~ 6 x 10⁻¹¹ $t^{-5/2}$ W per cm³

can be detected using a ³He quasiparticle black body radiator as a calorimeter – these can have 10⁻¹⁵ W resolution

New grid type:

- Precision E-forming LLC
- very smooth
- 34 μ m hole
- 17 μm 'wires'

Summary

Turbulence in ³He-B at low Temperatures:

- Grid produces line densities are ${\sim}10^8 m^{-2},$ corresponding to a line spacing ${\sim}~100 \mu m$
- Spatial extent of turbulence ~ mm
- For a grid, ballistic vortex rings generated above a velocity ~ 1mm/s, becoming turbulent above ~ 3mm/s
- Grid Turbulence decays similar to He II (suggests Kolmogorov spectrum with $v' \sim 0.2\kappa$).
- Noise analysis give a Kolmogorov $k^{-5/3}$ decay law
- New experiment just starting to detect energy release from decaying turbulence