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Overview

« GPS Measurements (review)

- Determining the GPS navigation solution using least-
squares

- Kalman filtering overview

- Inertial navigation systems and integration with GPS
- Differential GPS concepts and techniques

« Carrier-phase ambiguity resolution



GPS Receiver Measurements

What does the receiver measure?
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GPS Measurements (Overview)

- Each separate tracking loop typically can give 4
different measurement outputs
— Pseudorange measurement

— Carrier-phase measurement (sometimes called integrated
Doppler)

— Doppler measurement
— Carrier-to-noise density C/N,

 Actual output varies depending upon receiver
— Ashtech Z-surveyor (or Z-12) gives them all
— RCVR-3A gives just C/N,
- Note: We're talking here about raw measurements

— Almost all receivers generate navigation processor outputs
(position, velocity, heading, etc.)



John F. Raquet, 2009

Measurement Rates and Timing

 Most receivers take measurements on all
channels/tracking loops simultaneously

— Measurements time-tagged with the receiver clock (receiver
time)

— The time at which a set of measurements is made is called a
data epoch.
- The data rate varies depending upon
receiver/application. Typical data rates:

— Static surveying: One measurement every 30 seconds (120
measurements per hour)

— Typical air, land, and marine navigation: 0.5-2
measurement per second (most common)

— Specialized high-dynamic applications: Up to 50
measurements per second (recent development)
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GPS Pseudorange Measurement

- Pseudorange is a measure of the difference in time
between signal transmission and reception

Satelli
generated code 19
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Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996
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Effect of Clock Errors on Pseudorange

-« Since pseudorange is based on time difference, any clock
errors will fold directlv into pseudoranae

(Geometric range time equivalent)

I< At >|

I | I |

| o1 ] Oty

B -

I } I } - time
TS TS t é‘l(sv T Tu t é‘l(rcvr

U

|<7 At + ot - 5tsv—>|
(pseudorange time equivalent)

- Small clock errors can result in large pseudorange errors
(since clock errors are multiplied by speed of light)
- Satellite clock errors (ot,,) are very small
— Satellites have atomic time standards
— Satellite clock corrections transmitted in navigation message
« Receiver clock (o7,.,.) is dominant error

rcvr

Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996
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Doppler Shift

- For electromagnetic waves (which travel at the speed of light), the
received frequency f; is approximated using the standard Doppler

equation
e fR:fT(l_(vr.a)j

c

/. =received frequency (Hz)
f, =transmitted frequency (Hz)
v =satellite - to -user relative velocity vector (m/s)
a = unit vector pointing along
line - of - sight from user to SV

¢ = speed of light (m/s)
— Note that v, is the (vector) velocity difference
vV, =v—u
v = velocity vector for satellite (m/s)
u = velocity vector for user (m/s)

- The Doppler shift Afis then
Af = fR - fT (HZ)
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Doppler Measurement

- The GPS receiver locks onto the carrier of the GPS signal and
measures the received signal frequency
— Relationship between true and measured received signal

frequency: £,
| fR - meeaS (1 + 5trcvr)

f. =true received signal frequency (Hz)
/= =measured received signal frequency (Hz)

of . =receiver clock drift rate (sec/sec)

rcvr

— Doppler measurement formed by differencing the measured
received frequency and the transmit frequency:

Afmeas = fR _fT

meas

— Note: transmit frequency is calculated using information about SV
clock drift rate given in navigation message
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Doppler Measurement Sign Convention

« Sign convention based on Doppler definition

— A satellite moving away from the receiver (neglecting clock errors)
will have a negative Doppler shift

T <J1
Af‘meas :meeaS _fT < O

— Sign convention used for NovAtel (and possibly other) receivers

« Sign convention based on relationship between Doppler and
pseudorange
— Doppler is essentially a measurement of the rate of change of the
pseudorange

— A satellite moving away from the receiver (neglecting clock errors)
will have a positive Doppler measurement value

— More common sign convention for GPS receivers (Ashtech,
Trimble, and others)
- Carrier-phase measurement follows same convention as
Doppler measurement (normally)

10
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Carrier-Phase (Integrated Doppler) Measurement

- The carrier-phase measurement ¢, .. (?) is calculated by

iIntegrating the Doppler measurements

range(?) = f Af reas DAL+ O(2)) + 000, () + ClOCK €r1OT +OthET Er1OIS

(I)meas (t) i
(canbe measured by receiver)

« The integer portion of the initial carrier-phase at the start
of the integration (¢,,.,.,(Z,)) Is known as the “carrier-
phase integer ambiguity”

— Because of this ambiguity, the carrier-phase measurement is
not an absolute measurement of position

— Advanced processing techniques can be used to resolve these
carrier-phase ambiguites (carrier-phase ambiguity resolution)
 Alternative way of thinking: carrier-phase measurement
IS the “beat frequency” between the incoming carrier
signal and receiver generated carrier.



John F. Raquet, 2009

Phase Tracking Example
At Start of Phase Lock (Time = 0 seconds)

= .
\ Arbitrary,
% unknown
e point

D0 (0)

(I)integer (tO )

(integer

ambiguity) b
(7)) .

Ilgnoring clock and other errors

12
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Phase Tracking Example
After Movement (for 1 Second)

* .
\ Arbitrary,
/Z/] unknown
e point

(I)integer (tO )

(integer
ambiguity)

D rmeas (1)

()

«
hS

Af meas

Ilgnoring clock and other errors

13
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Phase Tracking Example
After Movement (for 2 Seconds)

* .
\ Arbitrary,
/Z/] unknown
e point

(I)integer (tO )

(integer
ambiguity)

D yreas (2)

()

2 4
| e @

Ilgnoring clock and other errors

14
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Comparison Between Pseudorange and Carrier-

Phase Measurements

Pseudorange

Carrier-Phase

Type of measurement

Range (absolute)

Range (ambiguous)

Measurement precision

~1m

~0.01 m

Robustness

More robust

Less robust
(cycle slips possible)

Necessary for
high precision
GPS

15
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What Does a DGPS Measurement Tell You?

DGPS using
pseudorange
measurements

Receiver 1 Receiver 2

DGPS using N,

r
carrier-phase -
measurements | ll . o7r + No-N,

(7
Receive a .".'

16



Five Satellite Carrier-Phase DGPS Example
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Carrier-to-Noise Density (C/N,)

« The carrier-to-noise density is a measure of signal
strength

— The higher the C/N,, the stronger the signal (and the better
the measurements)

— Units are dB-Hz

— General rules-of-thumb:
C/N, > 40: Very strong signal
« 32 < C/N, < 40: Marginal signal
« C/N, < 32: Probably losing lock

« C/N, tends to be receiver-dependent
— Can be calculated many different ways

— Absolute comparisons between receivers not very
meaningful

— Relative comparisons between measurements in a single
receiver are very meaningful

18
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GPS Navigation Solution

“OK, so | have all of these pseudorange
measurements. Where in the world are we?”
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Pseudorange Equation

- The pseudorange is the sum of the true range plus the receiver
clock error
— We’re assuming (for now) that the receiver clock error is the only
remaining error

« SV clock error has been corrected for
+ All other errors are deemed negligible (or have been corrected)

P :\/(xj_xu)2+(yj _J’u)z +(Zj_Zu)2 +cot,
:f(xu’yu’zu’5tu)

p; =pseudorange measurement from satellite j (m)
x;,y;,z; = ECEF position of satellite j (m)
x,,V,,z, = ECEF position of user (m)

ot =receiver clock error (sec)

- For now, only use one type of pseudorange (L1 C/A, L1 P, or L2 P)

20
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Statement of the Problem

« At a given measurement epoch, the GPS receiver
generates n pseudorange measurements (from »
different satellites)

pl :\/('xl _xu)2 +(y1 _yu)2 +(Zl _Zu)2 +C§tu
102 :\/(‘XZ _‘xu)z +(y2 _yu)2+(22 _Zu)2 +C5tu

p3 :\/(‘X:Z%_‘xu)z-i_(y3_yu)2+(z3_Zu)2 +65tu

pn :\/('xn _‘X’-u)2 +(yn _yu)2 +(Zn _Zu)2 +C5tu

- Goal: Determine user position and clock error,
expressed in state-vector form as
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Solving the Pseudorange Equations

- The n pseudorange equations are non-linear (so no easy
solution)

- Ways to solve

— Closed form solutions
Complicated
May not give as much insight

— lterative techniques based on linearization
Often using least-squares estimation
Arguably the simplest approach
Approach covered in this course

— Kalman filtering

Similar to least-squares approach, except with additional ability to handle
measurements over a period of time

Will discuss briefly
«  What is linearization?
— Pick a nominal (or approximate) solution
— Linearize about that point, resulting in a set of linear equations
— Solve the linear equations
— Will use Taylor series expansion for linearization

22
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Taylor Series Expansion (1/2)

- Taylor series expansion (1 variable)

_ df  (Aa) d’f (8a) d°f
Mlatfa)=Jla)tha + = = ot

« This can be used to linearize about a certain value of the
independent variable a.

— Example: the function f(¢)=2+3¢—6¢> is a non-linear function in ¢
— Suppose we want to linearize about the point 7 =2
— The complete Taylor series expression is

df (A1) d’f

f(+A)=f(t)+At i e

=2+3F -6+ At(3 - 1mq+( 1) (~12)

— To linearize, we set 1 =2 and neglect higher order (non-linear)
terms of Ar
+ Valid for perturbations (i.e., small values of Ar)

23
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Taylor Series Expansion (2/2)

— (Continued example) Linearized form

10

— Actual function
"""" Linearized function

[~
N
~
~
<
S
~

-
o

[+ At)‘f:2 = f({=2)+ Ati (Ar) #F

dil, 2 dr’ -

=2+3(2)-6(2%) + At(3-12(2))

Function Value
RO
(@)

=—16-21As .30 \
=0 1.5 2 2.5 3

t
 First order Taylor series for function in two variables:

f(a+Aa,b+Ab)= f(a,b)+ Aagi
a

+ Abg
: ob

a,b

+h.o.t.
a,b
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Linearization of Pseudorange Equations (1/5)

- First, define a nominal state (position and clock error) as

N

X

u
Yu
z

u

_c5fu_

=nominal (approximate) state

>
Il

« An approximate (or expected) pseudorange can then be
calculated for satellite j

py=fle, =2V + (v, =3, F +(z, -2, ] +eoi,
= f(%,,9,,2,,c0t,)

— This approximate (expected) pseudorange is the pseudorange that
we would expect to have if our position and clock error were
actuallyx, ,y ,z ,and cot,.

25



John F. Raquet, 2009 26

Linearization of Pseudorange Equations (2/5)

« Relationship between true and approximate position and time

X, =X, +Ax,
Y, =Y, tAy,
z, =ZU+AZU

cdt, =cot, + Acot,
— Vector form:

X, =X +Ax,

« Based on these relations, we can write

f(x,y,,z,c0t)= f(X, +Ax,, P +Ay 2 +Az ,cOt, +Acot,)

- To linearize, right-hand side of equation can be evaluated using
a first order Taylor series expansion
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Linearization of Pseudorange Equations (3/5)

 First order Taylor series expansion of pseudorange

function:
fQR, +Ax,, P, +Ay, 2 +Az,,cSt, +AcSt) = f(%,,9,,2,,¢0L,)

+6f(xu,yu,zu,05tu)Ax +8f(xu,yuizu,c§u)Ay

o%. ‘ o9, '
RACH yuizu,c&u) Az + of (X,,7, Au,cazu) Acst,
aZu 805tu
+ h.o.t.

- The partial derivatives are
of RroBn2,n08) _ X, =%,  (,.P,.2,.00) ¥, =7,

ox, y oy, 7,
af()eu’j}u72u75l:\u)_ Z]_éu af('i\:u’j}u’éu’gfu)_
0z, 7, dcot,

27



John F. Raquet, 2009

Linearization of Pseudorange Equations (4/5)

- Using above results, linearized pseudorange

equation is
X —X — 7 z —%
P, =p,—— ”Axu—y’Ay”Ayu— LAz +Acot,
r. V. r.
J J J

 This can be simplified to Ap; =a,Ax, +a,Ay, +a Az, —Acdt,
where

Ap;=p; =P,
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Linearization of Pseudorange Equations (5/5)

 Original (nonlinear) equations for » measurements

101 :\/(xl _‘xu)z +(y1 _yu)2+(Zl_Zu)2 +C§tu
/02 :\/(x2_xu)2+(yl _yu)2 +(Zl _Zu)2 +C§tu
p3 :\/(x3_xu)2+(y3 _yu)2+(z3 _Zu)2 +C§tu

 Linearized (error) equations for the same »

measurements
Ap, =a,Ax, +a, Ay, +a Az, —Acot,

Ap, =a,Ax, +a,Ay, +a.,Az, —Acot,
Apy =a Ax, +a Ay, +aAz, —Acot,

Ap,=a,Ax, +a, Ay, +a, Az, —Acot,

29
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Solving the Linearized Pseudorange Equations
Using Least-Squares (1/2)

- We can express the set of pseudorange equations in matrix form

Ap = HAx
[ Ap, | a, a, 4d; -~ ] A ]
Ap, a, a, a, -1 A '
Ap =| Ap, H=la; a; a; -1 AX = AJZ/M
. . . . Acot,
A,O n _axn ayn a, — 1_ - -

- Three possible cases

— n<4: Underdetermined case
Cannot solve for Ax
Is there still useable information?
— n =4: Uniquely determined case
One valid solution for Ax (generally)
Solved by calculating H! (Ax = H-'Ap)
— n>4: Overdetermined case
No solution that perfectly solves equation (generally)
Can use least-squares techniques (which pick solution that minimizes the square of the error)



Solving the Linearized Pseudorange Equations
Using Least-Squares (2/2)

« Basic least-squares solution (no measurement weighting)
Ax=(H"H) 'H' Ap

— Reasonable approach for single-point positioning in presence of SA

- Solution with measurement weighting (weighted least-squares)

— Useful when
 Measurements have different error statistics
« Measurement errors are correlated

— Measurement error covariance matrix C,
+ Diagonal terms are measurement error variances
+ Off-diagonal terms show cross-correlation between measurement errors

Ax=(HCH) 'H'C Ap

— Note that this is identical to unweighted case if C, = I (identity
maitrix)

31
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Measurement Residuals

- For overdetermined system, generally no valid
solution for Ax that solves measurement equation, so

Ap # HAXx

« Measurement residuals (v)

— Corrections that, when applied to measurements, would
result in solution of above equation

— Least-squares minimizes the sum of squares of these
residuals

v =Ap—HAx

Ap =HAXx+vVv

32
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Iterating the Nominal State

- Linearized equations (and resulting H matrix) calculated using
nominal state x,
« Linearization valid when
— Nominal state is close to true state
— Ax s “small”
N f(u is not very accurate (i.e., Ax is large), iteration is required

— For each iteration, a new value of X is calculated based upon the
old value and the corrections Ax

Xunew - Xuold + AX

— This new value of X, is then used to recalculate the corrections Ax
(which should be smaller this time)

- Solution must converge

— For standard GPS positioning, not much of a problem (will generally
converge with an initial guess at the center of the Earth)

— For more non-linear situations (e.g., using pseudolites), this can be
more of a problem

33
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Correcting for Satellite Clock Error

 Single point positioning only estimates receiver clock
error
— Assumes all other errors are negligible
— Requires correction of satellite clock error

. O ~
. Clock correction (from [ Perr =P TEAL,
2
ICD-GPS-200C) At,=a, +a, (t—t))+a, (1—1, )’ +AL,
A7 =F€\/;sinEk )
Pcorr = pseUdOFange corrected for SV clock error

p = original (raw) pseudorange measurement
At,, =SV clock correction
ap.d;,as .ty = SV clock correction parameters from nav message

At, =relativity correction (since not circular orbit)

F =constant = —4.442807633x107'% sec/(meter)'
e = eccentricity from nav message

Ja = square root of semi-major axis from nav message
E, =Eccentric anomaly (from SV position calculation)



John F. Raquet, 2009 35

Determining Signal Transmit Time (1/2)

- For satellite position calculation, need true GPS
transmit time of the signal (T,)

— Receiver provides time of reception according to the receiver
clock (T, + ot

I"CVI")

— From diagram below, if the pseudorange time equivalent is
subtracted from the receive time, then the result is the true
transmit time plus the satellite clock error

PR . . |
_ — (Geometric range time equivalent)
T;t + §trcvr c o T;‘ + §tsv — At -
receive time
PR =pseudorange measurement (m) | I | I
Lot ] ot
PR <—t& Iw
]1u + §trcvr - . - tsv = ]; I i | + - time
receive time 4 T Tt Oty T, Tut Oty

| TR Ay w—
(pseudorange timé'¢quivalent)

same as A¢,, from
the previous slide
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Determining Signal Transmit Time (2/2)

- Effect of neglecting oz, for
SV positioning’

Representative SV Clock Errors

— Satellite clock error can T = (GPS week seconds = 252000, week 993)
grow to up to ~1 msec: £ 1000 i
— Typical satellite velocity is =2 R
3900 m/s 2 gogy i
aye oD
— Worst-case position error 58 lee e 0 .
from neglecting 5l‘sv é% 0 ceegeaeeaees @ @ e B . . . ® ® TS
O3
3900m/s x0.001s=3.9m 52 T57e7q (R W S—— ]
@)
— Effect of neglecting ot,, = 00

- Single point positioning: Can 10 20 30
be significant (but not with SA) FAL
- Differential positioning:
effectively cancelled out (acts
like 3.9 m satellite position
error)

The SV clock error §t,, will have a significant effect on the actual pseudorange measurement. This
page only describes the impact of 6, on determining the position of the satellite.

36
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Correcting for Satellite Group Delay

- Each satellite has a slight time bias between the L1 and
the L2 signals

Not desired, but it’s there nonetheless
Will affect dual-frequency users, unless it’s accounted for
Can be measured and/or calibrated out

This calibration is accounted for when the control segment
generates the satellite clock correction terms from broadcast nav
message: a, ,a,.a,, and ty

However, this is all designed for the dual-frequency user! Single
frequency users need to remove the effect of this dual-frequency
correction on their Az, value

- Single frequency users must apply the group delay term
(TGD) from the nav message to their SV clock correction
term (from p. 90 of ICD-GPS-200C)

(Atsv )Ll = Al‘sv o TGD

77\’
(Atsv )L2 — Atsv o (Ej TGD

37
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Accounting for Signal Travel Time (1/3)

- Signal arrives at receiver after it is transmitted (due to signal
travel time)

— Transmit time: Time the signal was transmitted
— Receive time: Time the signal was received

- Satellite position should be calculated based upon transmit time

— When measuring a signal, we don'’t really care what happened after
that signal was transmitted

— Transmit time should be GPS system time (or as close to it as
possible)

— Very good approximate value of transmit time obtained by
subtracting pseudorange (expressed in seconds) from the receive
time as indicated by the receiver clock

* Why?
- What other considerations do we need to make for signal travel
time?

38
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Accounting for Signal Travel Time (2/3)

- Here’s the situation, looking down at the North Pole

« Methodology:

— Solve for position of SV at
transmit time, in ECEF -

coordinates at transmit time (x, y, || | €7 sm7 O)x
and z,) using ICD-GPS-200 Y, |=|—smy cosy 0|y,
equations z, 0 0 1]z

— Rotate into ECEF reference frame . S
at the time of reception: Y=L oy

! ,rop = Signal propagation time
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Accounting for Signal Travel Time (3/3)

* Neglecting atmospheric delay, the signal propagation
time is calculated by

_ geometric range to satellite
oo speed of light

pSV _pI’CVI"

C
p,, = satellite ECEF position vector

p.... =receiver ECEF position vector

4

* Note that the satellite position is needed to calculate

1,0, (@nd vice-versa)
— Satellite position in ECEF coordinates at transmit time is

sufficiently accurate (x,, y,, and z,)

— Note that receiver position must be known
« Can be approximate

40
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Single Point Positioning Algorithm

A

A 4

Calculate H, Ap

[ Start with }
Initial X,

A 4

Calculate approximate Calcuiate AX
SV clock errors

(no relativity correction)

A 4

* Calculate

Calculate %, =X, +Ax
transmit times Upew Upld

Use

\ 4

>

Calculate SV position Is

and sv clock errors nNo

| Ax | small
<10m)?2

yes

A 4

Correct pseudoranges
for SV clock error*

X, is final solution

[ Stop |
*include group delay correction, if a single-frequency user
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GPS Positioning Example

- We’'ll look at a single case to give an example

« Situation

— Receiver measurement time (GPS week seconds): 220937
— Initial f(u: [506071.529 -4882278.667 4109624.557 15.807 ]
\

J

— Measurements:

Y
Initial guess of position

(in error by ~50 km) Initial clock error

expressed in m

PRN Pseudorange
12 25022759.323
2 22075351.532
26 21929350.580
15 22677087.545
29 21039894.608
21 24757444.127
30 24032696.422

42
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Example: Calculation of Transmit Time

[ Start with } AL

— _ . 2
Initial X, =ap+ag (=t )+a,(1=1,)

approx

Calculate e;'pproximate _ .
SV clock errors (Recelve fime = 220937)

(no relativity correction)

Approx SV Transmit
Y PRN PR/c(s) Clock Error (s) Time (s)

Calculate

o 12 0.083466941 -0.000359172 220936.916892231
transmit times

2 0.073635447 0.000199964 220936.926164589
26 0.073148440 0.000247391 220936.926604169
15 0.075642622 -0.000107130 220936.924464508
29 0.070181534 -0.000043329 220936.929861795
21 0.082581944 0.000065081 220936.917352974
0.080164446 0.000075192 220936.919760362

\ 4

Calculate SV position
and sv clock errors

A 4

Correct pseudoranges
for SV clock error*

PR
T +ot,  ———

rcvr Z‘SVZY-.'S'
- =

receive time
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Example: SV Position and Clock Error and
Pseudorange Correction

[ Start with }

transmit times

Calculate SV position—"

Orbital calculations

| /" +time-of-transit

Initialf( PRN SVECEFX(m) SVECEFY(m) SVECEFZ(m) SV Clock Err(s)
u 12 -9924909.896 -22418412.217 -10238600.462 -0.000359164
v 2 19519446.654 -12864169.870 12106498.214  0.000199964
Calculate approximate 26 9518973.908 -24465469.002  -347289.566  0.000247426
SV clock errors 15 6420995.137 -25601178.700 -2907089.329 -0.000107131
(no relativity correction) 29 -8265550.815 -16497554.935 19234406.500 -0.000043326
21 -22299549.612 -6458590.524 13615554.839  0.000065090
. 30  -18044425.181 -19566072.431  -289953.964  0.000075168

Calculate \ J

rotation correction

and sv clock errors

A 4

Correct pseudoranges
for SV clock error*

IOcorr :IO+C(Atsv _TGD

)J 15

|

S

2
— At =a, +a (t—1t,)+a, (1—1,) +A1

Group Delay
Tgd (ns)

12
2
26

29
21
30

25022759.323
22075351.532
21929350.580
22677087.545
21039894.608
24757444127
24032696.422

\‘
PRN Original PR (m) Corrected PR (m)

24915088.264
22135304.471
22003529.125
22644973.532
21026908.513
24776961.101
24055233.876

-12.107193470
-17.229467630
-6.519258022
-10.244548320
-8.847564459
-11.641532180
-8.381903172

*include group delay correction, if a single-frequency user
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Example: H Matrix (lteration 1)

Calculate H, Ap

A

y

Calcul

ate Ax

A

y

X

u

Calculate

new

:Xu

old

+ AX

| Ax |

IS

small

is final solution

Stop |

- -0.4182

0.8597
0.4094
0.2610
-0.4179
-0.9212

-0.7709

ECEF Z

ECEFY

-0.7030
-0.3609
-0.8896
-0.9143
-0.5533
-0.0637
-0.6102

-0.5752
0.3616
-0.2025
-0.3096
0.7205
0.3840
-0.1828
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Example: Ap (Iteration 1)

Calculate H, Ap Measured

Calculated

A 4

Calculate Ax

A 4

_ Calculate
X, =X, +Ax

Upew old

Is
| Ax | small

X, is final solution

Stop |

PRN
12
2

26
15
29
21
30

Ap =

\ (corrected)

N

/

P = Peorr

\

Calculated PR

!

Measured PR

24943810.919
22117181.292
22013598.807
22660408.867
20990847.857
24757718.148
24064325.866

24915088.264
22135304.471
22003529.125
22644973.532
21026908.513
24776961.101
24055233.876

Y

Delta-Rho
28722.655
-18123.179
10069.682
15435.335
-36060.657
-19242.953
9091.990
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Example: Solution and Residuals (lteration 1)

Ax=(H"H) H Ap

—>  Calculate H, Ap
v ﬁu — ﬁu + AX
new old
Calculate Ax
v Xunew Xuold AX
Calculate 506068.143 506071.529 -3.386
£ =% 4AX _4882283.665 -4882278.667 -4.998
“new Yold 4059632.252 4109624.557 -49992.305
63.927 15.807 48.120
Is
I Ax | small Residuals: v =Ap—HAX
PRN \% Ap HAX
12 9.162 28722.655 28713.493
5‘( ) f | | t 2 1.699 -18123.179 -18124.878
u,,, 1S TINAl Solution 26 .6.800 10069.682 10076.482
15 -0.178 15435.335 15435.513
Stop | 29 4.853 -36060.657 -36065.510
21 -3.299 -19242.953 -19239.654
30 -5.436 9091.990 9097.426
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Example: H Matrix (lterations 1 and 2)

| .0.4182

0.8597
0.4094
0.2610
-0.4179
-0.9212
-0.7709

ECEF Z

ECEFY

lteration 1
-0.7030 -0.5752
-0.3609 0.3616
-0.8896 -0.2025
-0.9143 -0.3096
-0.5533 0.7205
-0.0637 0.3840
-0.6102 -0.1828

ECEF Z

-0.4187
0.8590
0.4096
0.2612

-0.4172

-0.9204

-0.7712

ECEFY

lteration 2
-0.7038 -0.5739
-0.3606 0.3635
-0.8900 -0.2003
-0.9149 -0.3076
-0.5524 0.7217
-0.0636 0.3857
-0.6104 -0.1808
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Example: Ap (lterations 1 and 2)
lteration 1 lteration 2
Calculated Measured Calculated Measured
(corrected) (corrected)

PRN
12
2

26
15
29
21
30

Y

Ap=p—pP.,.

Calculated PR

/

\ —

Measured PR

24943810.919
22117181.292
22013598.807
22660408.867
20990847.857
24757718.148
24064325.866

24915088.264
22135304.471
22003529.125
22644973.532
21026908.513
24776961.101
24055233.876

Delta-Rho | PRN
28722.655 | 12
-18123.179 | 2
10069.682 | 26
15435.335 | 15
-36060.657 | 29
-19242.953 | 21
9091.990 | 30

\

Ap=p =P,
\

/

Calculated PR

!

Measured PR

24915130.980
22135355.242
22003576.788
22645023.243
21026941.948
24777000.804
24055278.650

24915088.264
22135304.471
22003529.125
22644973.532
21026908.513
24776961.101
24055233.876

Y

Delta-Rho
42.716
50.771
47.662
49.711
33.435
39.703
44.773
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50

Example: Solution and Residuals (lterations 1 and 2)

lteration 1 Ax = (HTH)_IHTAp

N

unew

N

X

u

old

new

506068.143

X, =X +AXx

N

X

Usid

506071.529
-4882283.665 -4882278.667
4059632.252 4109624.557 -49992.305
48.120

AX

-3.386
-4.998

63.927 15.807
Residuals: v =Ap—HAx
PRN \Y Ap HAXx
12 9.162 28722.655 28713.493
2 1.699 -18123.179 -18124.878
26 -6.800 10069.682 10076.482
15 -0.178 15435.335 15435.513
29 4.853 -36060.657 -36065.510
21 -3.299 -19242.953 -19239.654
30 -5.436 9091.990 9097.426

1
lteration 2 AX=(HTH) H' Ap

X, =X, + AX
Xunew Xuold AX
506075.869  506068.143 7.726
-4882274.608 -4882283.665 9.057
4059622.275 4059632.252 -9.977
13.120 63.927  -50.807
Residuals: v =Ap—HAx
PRN \% Ap HAXx
12 -4.208 42.716 46.924
2 0.220 50.771 50.551
26 -0.248 47.662 47.910
15 2.103 49.711 47.609
29 -1.946 33435 35381
21 0.431 39.703 39.272
30 3.648 44.773 41.125
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ECEF Z

Example: H Matrix (lterations 2 and 3)

-0.4187
0.8590
0.4096
0.2612

-0.4172

-0.9204

-0.7712

ECEFY

lteration 2

-0.7038 -0.5739
-0.3606 0.3635
-0.8900 -0.2003
-0.9149 -0.3076
-0.5524 0.7217
-0.0636 0.3857
-0.6104 -0.1808

ECEF Z

-0.4187
0.8590
0.4096
0.2612

-0.4172

-0.9204

-0.7712

ECEFY

lteration 3
-0.7038 -0.5739
-0.3606 0.3635
-0.8900 -0.2003
-0.9149 -0.3076
-0.5524 0.7217
-0.0636 0.3857
-0.6104 -0.1808
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Example: Ap (lterations 2 and 3)
lteration 2 lteration 3
M r
Calculated Measured Calculated easured
\ (corrected) \ (corrected)
Ap=p—o" Ap=p—o"
,O—p pC()rr p_p pcorr
Calculated PR Measured PR Delta-Rho | PRN Calculated PR Measured PR Delta-Rho
24915130.980 24915088.264 42.716 12 24915084.055 24915088.264 -4.208
22135355.242 22135304.471 50.771 2 22135304.691 22135304.471 0.220
22003576.788 22003529.125 47.662 26 22003528.878 22003529.125 -0.248
22645023.243 22644973.532 49.711 15 22644975.634 22644973.532 2.103
21026941.948 21026908.513 33.435 29 21026906.567 21026908.513 -1.946
24777000.804 24776961.101 39.703 21 24776961.532 24776961.101 0.431
24055278.650 24055233.876 44.773 30 24055237.525 24055233.876 3.648
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Example: Solution and Residuals (lterations 2 and 3)

lteration 2 Ax = (HTH)_IHTAp

1
lteration 3 AX=(HTH) H' Ap

X, =X, + AX
Xunew X”ozd AX
506075.869  506068.143 7.726
-4882274.608 -4882283.665 9.057
4059622.275 4059632.252 -9.977
13.120 63.927  -50.807
Residuals: v =Ap - HAx
PRN \% Ap HAXx
12 -4.208 42.716 46.924
2 0.220 50.771 50.551
26 -0.248 47.662 47.910
15 2.103 49.711 47.609
29 -1.946 33.435 35.381
21 0.431 39.703 39.272
30 3.648 44,773 41.125

X, =X, + AX
Xunew X”old AX
506075.869 506075.869 0.000
-4882274.608 -4882274.608 0.000
4059622.275 4059622.275 0.000
13.120 13.120 0.000
0
: . On order
Residuals: v=Ap—HAXx s
PRN \% Ap HAXx
12 -4.208 42.716 46.924
2 0.220 50.771 50.551
26 -0.248 47.662 47.910
15 2.103 49.711 47.609
29 -1.946 33.435 35.381
21 0.431 39.703 39.272
30 3.648 44.773 41.125
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Convergence

« Practically speaking, getting the system to converge
with GNSS is easy

— Example showed case where initial guess was 50 km in
error

— Can start with the center of the Earth as a guess, and it
would only add an iteration or two

— Normally, a receiver will use its last solution as a starting
point, so only a single iteration is necessary
« Nonlinearities (which drive the need for iteration) are
more severe when dealing with pseudolites
— Much closer to receiver than satellite
— H matrix varies more quickly as a function of position
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4-55

Effect of Geometry on Positioning Accuracy
(Foghorn Example)

Consider the foghorn example, except allow for a measurement error

Good Geometry Example

Poor Geometry Example

Variation in range ring
due to range ervors: Shaded region: Locations

from foghorn 1 using data from within
from foghorn 2 T indicated error bounds

User location

Foghom 1

Foghomn 2

Shaded region: Locations using data
from within indicated error bounds

Variation in range rlng due to
range errors:
from foghorn 2

from foghorn 1 \

User location

[ ]
Foghorn 2 L4
Foghorn 1
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Obtaining C, from Least-Squares Analysis (2/2)

4-56

« According to least-squares theory:
T~y |
c, =(H"C'H)

X
— Basic assumptions
Measurement errors are zero-mean
Measurement errors have a Gaussian distribution

« Recall that the least-squares solution with measurement
weighting was

Ax=(H'C;'H) 'H'C;'Ap
T ~—1
=C.H C Ap

— Consider case where the nominal position and clock error (used to
calculate Ap) are actually the true position and clock error
+ The Ap represents the measurement errors
+ The Ax represents the position and clock errors
+ The C, matrix is a multiplier for the measurement errors (Ap)
— “Large” C, values — large position errors
— “Small” C, values — small position errors



John F. Raquet, 2009

Dilution of Precision (DOP)

4-57

« In GPS, the concept of Dilution of Precision (DOP) is used
— Based upon covariance matrix of position and clock errors (C,)

— Additional assumptions

All measurements have the same variance
2 2 2 2
GP] o G,Dz A G,Dn o GP
Measurement errors are uncorrelated (i.e.,covariance values are zero)
= EX
Gpjpk O’ ‘]

— Using these assumptions

and
C, = (HTH)_lo'f)

: -1, :
— The matrix (HTH) is called the DOP matrix
Directly relates measurement errors to position errors
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Use of Local-Level Coordinate Frame (1/2)

«  Normally, DOPs describe errors in geodetic (local-level) coordinate
frame (east, north, up), rather than the ECEF frame.

— Need to modify the H matrix so that the errors refer to the local-level frame

— Original H matrix (used to calculate position) moer ]

HE =

« “a” vectors are unit line-of-sight vectors between user and SV in ECEF frame
+ This will give the C, matrix described previously

— New H matrix for DOP calculations aGT 1
1

HO - a’ 1

1]

-+ “a” vectors are now unit line-of-sight vectors between user and SV in geodetic (ENU) frame
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Use of Local-Level Coordinate Frame (2/2)

4-59

- Local-level “a” vectors can be calculated using direction cosine
matrix (DCM)

G __(~G_E
a’ =C,a

o, o,
. O,

eu Gnu
O.s t, 0,5 t,

Gu5 t,

0-65 t,
Gn ot,
Gué' t,

2
Os t,

C =DCMthat rotates from ECEF to
geodetic (E,N,U) frame
J'=(ct)

T —1
- When HC is used to calculate the covariance C, = (HG HG) o,
then C, is defined as

— This is what we desire to describe using DOPs
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DOP Values

- Desirable to characterize the C, matrix using a single
number
— For DOPs

« Cross-correlation terms ignored
Root-Sum-Square (RSS) value of variables of interest, normalized by 6 xg
Example:

2 2 2 2
CDOP \/O'e +o,+0,+0;,

O-UERE

« GDOP can be calculated directly from DOP matrix

Dll D12 D13 Dl4
, v |D, D, D, D

(HG HG) | e GDOP = /D, + D, + Dy, + D,,

D31 D32 D33 D34

_D41 D,, D, D44_

 Note that GDOP relates UERE with RSS of errors /Key relationship!

2 2 2 2
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Types of DOPs

4-61

« The “Big Three” « Less common (for

— GDOP (Geometric DOP) navigators, at least!)
— VDOP (Vertical DOP)

GDOP = /D, + D,, + D, + D,,

VDOP = /D,

\ O =VDOPX G

2 2 2 2
\/Ge +0,+0,+0; =GDOPX0y,

— PDOP (Position DOP)
— TDOP (Time DOP)

PDOP =,[D,, + D,, + D,

IDOP=,/D,,
2 2 2
o,+o0,+0, =PDOPxc
\/ o 1/Gétu =TDOP X G ppp
— HDOP (Horizontal DOP) * Note: time is in units of meters

HDOP =.[D, +D,,

\/03 + O',f = HDOP X G pp;
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Typical DOP Plot

Dayton Ohio — 24 Apr 2003 — All Visible SVs (above 10° elevation)

B Geometrical
[l Position

Il Verical

I Horizontal
[[]Time

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:.00 24:00
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Kalman Filtering Overview

- Kalman filtering is an estimation approach that can be applied to
the GPS positioning application
— Many other application areas

- Concepts

— Information describing the system
- State vector
« Covariance matrix

— Propagating state and covariance forward in time
— Using measurements to update the state and covariance

- Will be covered at conceptual level
— Very few equations
— Purpose is to describe concept of Kalman filtering as applied to this
problem

— Additional references:
+ Maybeck, Stochastic Models, Estimation, and Control, vols. 1-3, Navtech, 1994.
« Gelb (ed.), Applied Optimal Estimation, M.1.T. Press, 1994.
+ Many others
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Kalman Filtering:
Information Describing the System (1/2)

« State vector

— Set of variables that
+ Describe everything you want to know about the system

+ Include all of the information needed to determine how the system changes over
time

— Example: A reasonable state vector for positioning a hot air balloon
z | x,y,z=ECEF position of balloon

would be (/"7\(
X | x,y,z=ECEF velocity of balloon
Y
| 2] =
— Does this describe what we want to know? f\%

— Does this describe how the system changes over time? =
— Would this be a good state vector for a fighter aircraft?

X

Y
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Kalman Filtering:
Information Describing the System (2/2)

- Covariance matrix
— The covariance matrix basically describes how well the state is

known
If the system only gives a state output, it’s not that useful.
If it outputs the state and tells how accurate it is, then you have information
that you can confidently act upon.
Hot air balloon example: the system state tells me that I'm 300 m above the
ground descending at a rate of 10 m/sec.
— Need to know covariance matrix as well.

» Case 1: Position accuracy = 10 m 1- o, velocity accuracy = 1
m/sec 1-c — probably not in danger until ~30 seconds

» (Case 2: Position accuracy = 400 m 1- o, velocity accuracy = 15
m/sec 1- ¢ — you could hit the ground any second!

— How to interpret covariance matrix
Diagonal terms are the error variances of the estimated states
- Off-diagonal terms are cross-covariances, describing the correlations of the
errors between the states
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Kalman Filtering:

Propagating Covariance and State Forward in Time

- State vector and covariance matrix can be propagated forward
in time

If you know the current state estimate, you can determine the state
estimate at a point in the future

If you know the current covariance matrix, you can determine the
covariance matrix at a point in the future

Information about how the state and covariance changes over time
IS given in
« Dynamics matrix F: x = Fx

+ State transition matrix @: x(t,) =D, —1,)x(¢,)

When propagating covariance forward in time, process noise is
added to account for
+ Unmodeled dynamics
+ Unmodeled system inputs
+ Anything else that decreases the ability to predict the future state using the
current state

Process noise increases uncertainty (i.e., larger covariance values)
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Kalman Filtering:
Measurement Updates

A measurement gives information about the state values

— Examples: GPS pseudorange (for position or clock bias) or Doppler (for
velocity or clock drift)

Effects of a measurement update
— State values are adjusted to reflect the measurement

— Covariance matrix is adjusted to reflect how well the state is known, now
that the measurement is available
+ Measurements always decrease uncertainty (i.e., smaller covariance values)

Measurement noise
— Description of how precise the measurement is

— The effect of measurement on state and covariance determined by
tradeoff between
+ Measurement noise (how good the measurement is)
« Covariance matrix (how well the state is known at this point)
Relationship between measurement and states given by H matrix
(same as least-squares)
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Inertial Navigation Systems

« Sensors

— Accelerometers
« Measure specific forcef=a + g

— @Gyroscopes
« Measure rotation about an inertial frame

— Altitude aiding (required!)
« Normally a barometric altimeter, but can be other things
« Mechanization equations
— Attitude computation
— Resolution of accelerometers into desired frame
— Subtraction of gravity
— Double integration
— Accounting for rotation as vehicle moves around Earth
— Schuler oscillation

68



John F. Raquet, 2009

Error Characteristics of Inertial Systems

- Very good high-frequency characteristics
- Long-term drift (poor low-frequency characteristics)

 Categorization of inertial systems
— Navigation-grade
— Tactical-grade
— Commerical-grade

- All inertial systems have errors that grow unbounded
unless aided by another sensor

« What would be the ideal sensor?

— Good low-frequency characteristics (little long term drift)

— Doesn’t necessarily need to have good high-frequency
characteristics

« Good candidate: GPS!
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Loosely Coupled, Feed-Forward
INS/GPS Integration Approach

AV A Ay A
pos, ,vel . att, N pos,vel,att
A NS

O pos,
ovel,
Satt,

Vv

\

GPS POSqps | Kalman
Receiver Filter
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Tightly Coupled, Feed-Forward
INS/GPS Integration Approach

AV A Ay A
pos, ,vel . att, N pos,vel,att
A NS

O pos,
ovel,
Satt,

Vv

\

GPS pseudorange Kalman
Receiver | (or other meas) Filter
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Loosely Coupled, Feedback
INS/GPS Integration Approach

AV A Ay A
pos, ,vel . att, N pos,vel,att
A0 { ) >
N
O pos,
ovel,
Satt,
GPS POSqps | Kalman

Receiver § Filter
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Tightly Coupled, Feedback
INS/GPS Integration Approach

AV .
os. ,vel. . att. os,vel, att
POSis ins ins >D P 5
AB NC
M
O pos,
ovel,
Satt,
GPS pseudorange Kalman

Receiver | (or other meas) Filter
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GPS and Time

« Four relevant time standards:
— UT1: Based on Earth’s rotation with respect to sun

— TAI (International Atomic Time)
Fundamental Sl unit of time

1 second = duration of 9,192,631,770 periods of the radiation corresponding to the translation
between two hyperfine levels of the ground state of the Cesium 133 atom?

— UTC: Atomic-based time standard (tracking TAl), artificially adjusted to stay
within 0.9 sec of UTH1

Occasional leap-second

— GPS system time: atomic-based time standard based upon UTC (but without
leap-seconds)
GPS control segment attempts to have GPS system time closely follow UTC

- GPS-UTC time difference is transmitted in navigation message

Alyreiops =tops —ture = Aty + Ay + A (Zps _tOU)
—— - —
S(Ia_ggr?d;\\ T /
From Nav Message
— 1-o accuracy of Aty rccps IS approx. 10 ns

'Seeber, G. Satellite Geodesy: Foundations, Methods, and Applications, Walter De Gruyter, 1993.
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Comparison of UTC and UT1 with TAI

UTC follows TAl (horizontal segments) and approximates UT1 by ohe—second steps
I T T T T | T T T T I T T T T I T T T T I

™
=
o]
=
o
141
=
o
£
'_

http://hpiers.obspm.fr/eop-pc/earthor/utc/leapsecond.html
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History of UTC-GPS Time Differences

O
[\))
ﬂ
®

GPS-UTC Time
(sec)

RRRRPRRPRRRPRRRRERRRRERRO

Jan
Jul
Jul
Jul
Jul
Jan
Jan
Jan
Jul
Jul
Jul
Jan
Jul
Jan
Jan
Jan

1980
1981
1982
1983
1985
1988
1990
1991
1992
1993
1994
1996
1997
1999
2006
2009

RRERRRRR
e WP P9I~ WNEREO

(Start of GPS system time)
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Differential GPS

“What in the world is differential GPS, and
how does it work?”
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Differential GPS Concept

o Satellite “a”

Error Type C&':::E.‘Z‘l’]’é 'Kne;‘;"sein DGPS Effect on Error
1 2
Satellite clock error Same Removed
.&( Receiver clock error | Different (uncorrelated) Added
R _ » Ephemeris error’ Very similar® Reduced”
ecelver SA — dither Same Removed
(Receiver to m SA — epsilon Very similar® Reduced®
o Receiver 1 [lonospheric delay Very similar® Reduced®
Position) Tropospheric delay Very similar® Reduced”
(Reference [muitipath Different (uncorrelated) | Added (and amplified)
Receiver) Measurement noise Different (uncorrelated) | Added (and amplified)

'Effect of ephemeris error on positioning (actually only affects the calculated
range, not the actual measurement)

®Errors grow as the separation distance between receivers 1 and 2 increases.
(The errors are the same and are removed for very short baseline distances).
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DGPS Variations

- DGPS is a broad term, and there are many different ways DGPS can be
applied.

— Measurements used \

+ Code only
« Carrier-smoothed code
+ Carrier-phase

— Application type

+ Positioning

. Attitude
— Position domain vs. measurement domain
— Post-processing vs. real-time 576 possible
— Type of correction combinations!
— Number of reference receivers

— Area of coverage
- LADGPS
- RADGPS
- WADGPS

— Differencing method used
+ Single-differencing /
+ Double-differencing

« Each of these will be covered in the slides that follow.
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DGPS - Measurements Used (1/5)

« The type of measurements is one of the primary distinguishing
factors between different DGPS implementations

— Code only
« Simplest to implement
Based purely on pseudorange measurements
In best case (short baseline), errors include code multipath and noise
Typical accuracy: 2-4 m

— Carrier-smoothed code

Carrier-phase measurement is very precise (~1 cm), but it is not an absolute
measurement (due to unknown integer ambiguity).

Code (pseudorange) measurement is absolute, but it is much less precise (~1-2 m).

A filter can be used to combine the carrier-phase and the code measurements to
take advantage of their respective strengths.

— Filter time constant limited by code-carrier ionospheric divergence (due to
different signs on ionospheric error term)

Carrier-phase smoothing of the code essentially removes most of the code multipath
and noise

Typical carrier-smoothed code DGPS accuracy: 0.1-0.5 m
Relatively easy to implement
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DGPS - Measurements Used (2/5)

- Type of measurements (continued)

— Carrier-phase
+ GPS receiver can track exact phase of incoming GPS carrier
— Can determine “where” in the cycle
— Cannot determine “which” cycle
— Results in an unknown integer ambiguity

+ If carrier-phase integer ambiguities can be determined, then the carrier-phase
measurement will yield the most precise (and accurate) positioning possible

+ Fairly complex to implement

+ Difficult to resolve integer ambiguities over long reference/mobile receiver
baselines

+ Normally requires some period of time to resolve ambiguities
— 1-3 minutes typical
— Depends upon baseline distance, algorithm
+ Extremely sensitive to loss of carrier-lock (or cycle slips)
+ Often, code measurements will be used to initially aid in determining the integer
ambiguities
— Final solution normally based primarily on carrier-phase measurements
+ Typical accuracy: 0.01-0.05 m
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DGPS - Measurements Used (3/5)
Sample Comparison of Horizontal Error

Single Point Code DGPS
2 2
—~ 1 ~ 1
£ £
= 0 = 0
L L
< -1 o > ° < -1
o See o
= -2 . = -2
-3 .\ . -3
6 4 2 0 -6 4 2 0
East Err (m) East Err (m)
Carrier-smoothed Code DGPS Carrier DGPS
2 2
—~ 1 ~ 1
E ° E
= 0 e = 0 ®
LU LU
< -1 < -1
2> -2 S
-3 -3
-6 -4 -2 0 -6 -4 -2 0

East Err (m) East Err (m)
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DGPS - Measurements Used (4/5)
Sample Comparison of Altitude Error

Altitude Error

30 .
— Single-Point
—— Code DGPS
25| —— Carrier-smoothed Code DGPS ]
—— Carrier DGPS
20
E 15
S
10t -
5F _
O |
-5
242600 242720 242840 242960 243080 243200
10:23 10:25 10:27 10:29 10:31 10:33

GPS Week Seconds/Local Time
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107 |

105'

105'

Error (m)

10 -

10 2

-3

10
242600
10:23

DGPS - Measurements Used (5/5)
Sample Comparison of 3-D Error

3-Dimensional Error

Single Point (Non-Differential) :
Code DGPS ;

'Fll' Py MT.AHL.’“ | hm&u MLMIMH

Carrier-smoothe Code DGPS

Carrier-Phase DGPS (Integers Resolved)

242720 242840 242960 243080 243200
10:25 10:27 10:29 10:31 10:33

GPS Week Seconds/Local Time
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DGPS - Application Type (1/2)

- DGPS gives relative position between two receivers
— Can be expressed as a 3-D vector

- This relative positioning information can be used in
two ways

— Positioning (most common)
« Know position of reference receiver
« Can calculate position of “mobile” receiver

« Errors in reference receiver position will result in mobile receiver
positioning errors

Receiver 2
(Receiver to 7|\
Position) Receiver 1

(Reference
Receiver)
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DGPS - Application Type (2/2)

» This relative positioning information can be used in two
ways (continued)

— Attitude determination
« Antennas are in fixed, known configuration relative to defined “body” axes
« Relative position vector between antennas is function of attitude of body
« Can calculate attitude using relative position vector
— Two antennas — two attitude axes (e.g., yaw and pitch)
— Three or more antennas — complete attitude

« Normally based on carrier-phase differential techniques with integer ambiguity
resolution for most precise results

— Relatively easy to resolve integer ambiguities in this case
 Attitude accuracy depends upon

— Accuracy of relative position vector

— Distance between antennas
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DGPS - Position vs. Measurement Domain (1/2)

« Position Domain
— Reference receiver at known point (origin of plot)
— Mobile receiver located to the northeast
— Horizontal position of both receivers plotted on local coordinate

system
80
Note error correlation Mobile
between mobile and 60 /r .
reference receiver Y Q} ~ Receiver
errors 40
Could correct mobile /
receiver using known 20 /J _
reference receiver % p '<\} }‘*\ Mobile
position errors £ 0 N ——=—— Receiver
Requires that both S / / / 7 Acquires
receivers use identical -20 / Additional
satellites for their :
solutions! 40 /7 Satellite
-GO/V /.:
Reference _— [,
Receiver 0 0 20 40 60 80 100 120 140

Easting (m)
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DGPS - Position vs. Measurement Domain (2/2)

*  Measurement domain
— Differential corrections are given for each measurement

— These corrections are then applied to the mobile receiver

measurements
+ Results in corrected measurements
+ Position calculated using corrected measurements

— Advantages
+ Doesn’t require same satellite coverage at mobile and reference receivers
— Reference receiver can only generate corrections for measurements that it
can see
+ Standardized formats are defined
— RTCM SC-104 messages
+ Makes it possible to detect individual measurement errors

— Disadvantages
+ Requires that more data be transmitted to mobile user than position domain
approach
* Not generally a large problem with modern radio data modems

+ Insignificant for non-real-time applications
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DGPS -
Post-Processing vs. Real-Time

* Post-processing
— Data is collected separately by each receiver
— Later, data is combined and processed

— Advantages
+ No data latency (can correlate times exactly)
+ Does not require real-time data link
+ Easier to implement (both hardware and software)

+ Can study and fix anomalies
+ Allows for use of other data and tools that may not be available real-time

— Precise orbits
— lonospheric grid data

« Real-time
— Differential corrections are sent to mobile receiver as soon as possible (i.e.,
near real-time)
« Hard-wire (close applications)

+ Ground radio data link (10s of km)
+ Satellite data link (large areas)

— Advantages
+ Many applications require real-time positioning!
+ Reduces data turn-around time, enables field checking
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DGPS - Type of Correction

- Two ways to give corrections in measurement domain

— Corrections to measurements
+ Actual correction values to be applied to each individual measurement
+ Simple, easy to implement

— Explicit representation of errors
+ DGPS corrections describe all of the errors in a particular measurement
+  Sometimes, error functions or data are transmitted

— Different error sources can then be combined to generate a correction for a single
measurement

— Example
» Precise ephemeris (to remove satellite position error)
» lonospheric grid (to remove ionospheric error)
» Tropospheric model parameters (to improve tropospheric model)
+ Advantages
— Generally valid for wider area of coverage
— More flexible
+ Disadvantages
— More complex
— Requires more differential data to be transmitted



John F. Raquet, 2009

DGPS - Number of Reference Receivers (1/4)

« Single reference receiver is simplest and most common case
— Errors grow as distance between reference and mobile receivers grows
— Motivates need for multiple reference stations for some applications

- Multiple reference receivers using code measurements
— Can involve anywhere from two to hundreds of reference receivers
— Normally, different error sources are explicitly estimated (satellite position,
ionosphere, etc.)
— Alternatively, individual measurement corrections can be generated for each

reference station, and a linear combination of these corrections can be used

to generate corrections for a specific point
Based upon relative positions between specific point and reference receivers

E le: 2.3m 52'6 m Key
Xamp €. o @ 3 = Reference Rcvr
(pseudorange
What should be the error at error given)
- location A? = POS|_t|on of mobile
) receiver A
- location B? - = Position of mobile
15m &11m receiver B
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DGPS - Number of Reference Receivers (2/4)

- Multiple reference receivers using carrier-phase
measurements

— More difficult than code approaches because of integer

a_mbigumes Single Reference Receiver
* Motivation Not Enough Coverage

Desired Coverage Area
100

80
60 |

40}

20}
i
2}

40}

Northing (km)

-60

-80+

-100 . — . : — .
100 80 -60 -40 -20 O 20 40 60 80 100
Easting (km)
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DGPS - Number of Reference Receivers (3/4)

- Motivation (continued)

Independent Ref. Receivers
Not Efficient

Desired Coverage Area

/ Ref Ref Ref Ref\
60

Ref Ref.
40
20 | *

100

80

Northing (km)
oz
?E’

-100  -80 -60 -40 -2o 0O 20 40 60 80 100
Easting (km)
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DGPS - Number of Reference Receivers (4/4)

Motivation (continued)

One method: NetAdjust

Reference Receiver Network

Efficiently Covers Large Area

Northing (km)

-100

Desired Coverage Area

100

80

60

40

20

-20

-40

-60

-80

-100 -80 -60 -40 -20 0 20 40 60 80 100
Easting (km)
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DGPS - Area of Coverage

- DGPS is deployed on three different scales

ayton o

— Local Area Differential GPS (LADGPS) B P2
« Covers tens of km o m
+ Typically involves single reference station LAY P

« Accuracy varies between ~ 0.01-2 m
« Example: aircraft landing, surveying

— Regional Area Differential GPS (RADGPS)
« Covers hundreds of km
Involves multiple reference receivers

- Can achieve decimeter (or sometimes centimeter)
level accuracy

Example: Norwegian reference receiver network

— Wide Area Differential GPS (WADGPS)

Covers thousands of km
Involves multiple reference receivers

Not as accurate as RADGPS or LADGPS (typically 1-2 m
accuracy)

Example: Wide Area Augmentation System (WAAS) for
non-precision (and Cat ) approach

........
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RADGPS Coverage Example
L1 vs. WL - Conditions of Test

L1 - 30.4% Coverage

300

200

—
o
o

o

Northing (km)

/”
4
7’
K4
e cann .
O N /

el
o
<

-3
\\

0

Easting (km)

o ) ;
\\\ ( ',/" f_’/ B/
(] 0 :
-100 0 100 200

Northing (km)

'200 A ) AN

WL - 99.1% Coverage

300

200

—
o
o

o

-200 -10 1 00 200
Eastlng (km)
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RADGPS Coverage Example
L1 vs. WL - Increased lonosphere

Increased lonosphere - L1 Increased lonosphere — WL
4.1% Coverage 49.4% Coverage
i 7 O& é
300 i 2 l {“l) \,, X 300 > s e { ............ J o
WP 7 P\ g / ST
200 ::j ) ?@ /\ 200 - ,'4 .................... A " ..... o
A | N e o
—_ ."' \ @ /)r/ (D Q ’g ] - — : /'01\
€ 100 N2 g T
N
g 0 \\__//\; ( (D }\5/,' § \> L_/'—‘O g /
> (W) )4 el e
-100 (,ﬁj/ @ 0 \gf{) //9 -100 ;i._ ....... Q@ /\ﬂ 1-‘7// 7'.\
@ () // ; .\ //
-200 ’\, < "'///0//;@/ _200 \\\U\ ...... \ ’// // /
\\ \\v@';}/ / //Q / )« AN \\\—!"f?)'( D ) 2

-200 -100 0 100 200 -200 -100 0 100 200
Easting (km) Easting (km)
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DGPS - Differencing Methods -
Pseudorange Measurement Errors

- Two types of differencing methods are common
— Single differencing
— Double differencing

- Choice of method depends upon application. Typically
— Code differential — single differencing
— Carrier-phase differential - double differencing

- Pseudorange errors
— Original representation
p=r+c(ot,—ot, +0t,)
5t, =61, +6t,  +5t

trop iono noise&res

neglect

+ 5z‘mp +0t, +0t,,

— Simplification

p=r+cot,—cot, +cot,,, +cot,, +COl, i g +COL, +COtg,

D]

p=r+cot,—cot,+ T + | + v + m + S4
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DGPS - Differencing Methods (1/2)

- Single differencing
— Difference measurements between one satellite and two receivers

o®
Satellite a
e Api, = pi —p;
o ? =n" +cot, —cot, +T\" + 1] +u +my +S4°
1

—r, —cot, +coty, =T, =1, —vy; —m, —SA"
App, = Ar5 + Ac5tu12 + AT+ AlL + Avp, + Amy,

— SV clock error and SA cancelled
— Tropospheric, ionospheric errors reduced
— Multipath and noise amplified (by factor of\/§ )

1Assuming that only the dither portion of SA is utilized (if SA is on at all!)
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DGPS - Differencing Methods (2/2)

- Double differencing
— Difference between two single difference measurements

Satellite a Satellite b

b VAplazb =Ap;, _Aplbz =P =P _(plb —,05)
= An, +Acot, +AT, + Al +Avp, + Amy,

_A”lg —Acé'tulz _ATS _Allbz _Aulbz _Amlbz

VApY =VArY +VATY + VALY + VALY +VAm?

N R

Receiver 1 Receiver 2

— SV clock error, rcvr clock error, and SA cancelled’
— Tropospheric, ionospheric errors reduced

— Multipath and noise amplified (by factor of 2)
1Assuming that only the dither portion of SA is utilized (if SA is on at all!)
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Implementation of LADGPS Using Code
Measurements

“OK, so now | know what DGPS is in all of its
variations. How do | actually implement it?”
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DGPS Implementation

- Will cover the simplest DGPS case (for positioning)
— Code measurements
— Measurement domain
— Post-processing
— Corrections to measurements
— Single reference receiver
— LADGPS
— Single-differencing
« While the simplest, this is also the most common

— Understanding this case will give insight into most other
cases

— Algorithmically very similar to single-point positioning
algorithm
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Single Differencing vs. Measurement Corrections

- Two ways to approach the problem using single differencing

— Use of single difference observables
« Generate the single difference observables

Re-derive the positioning algorithms in a manner parallel to what was shown for
single-point positioning

Use the single difference observables to estimate position (using the newly
derived algorithm)
— Use of measurement corrections

Use the reference receiver measurements and known position to calculate
measurement corrections for each satellite

— Calculation of measurement corrections does not require knowledge of
mobile receiver measurements or position

«  Apply measurement corrections to mobile receiver measurements, effectively
reducing the errors in those measurements

Perform single-point positioning using the corrected pseudorange measurements
(rather than the original, uncorrected measurements)

— Both methods are completely identical!
« Will yield same results
Differ only in conceptual approach
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Generating (and Interpreting)
M remen rrection

Denote reference receiver as receiver 1
Reference receiver position is known

Can calculate satellite position for each measurement

— Important note: This position will be generally different from the
position calculated for the mobile receiver, even though it’s the
same satellite at the same time epoch. Why?

Measurement correction for satellite a (dp;") calculated by

a __ .a da
5pl _pl _rcalcl
a

F calcl

a

:]/‘1—

=or

eph

a a
+cot, —cot,, +T" + 1] +v] +m| +SA
a a a a a a a a
oot —cot, +T" + 1] +u) +my + 84,

— This measurement-minus-range value is essentially a
measurement of the errors that should be removed from the
mobile receiver!
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Applying Measurement Corrections (1/2)

- Denote mobile receiver as receiver 2
- Pseudorange measurement from satellite a is represented by

Py =1 +cot,—cot  + T, + 15 +v) +m; +SA4;

«  Apply measurement correction:
P o = P2 —OP;
=1, +cot,, —cot, ,+T, +15 +v) +m; +SA;

—or,, —cot +cot, =T =1 —v' —m;' —SA

ephy sv1

a a a a a a a a
=7, =0, +(c5tu2 —cot,, )+ AT, + AL, + Avy, + Am,

— Receiver clock error is now the difference between the reference and
mobile receiver clock errors
— SV clock and SA completely removed

— lonospheric and tropospheric errors reduced (removed for short
baselines)

— Multipath and noise are now difference between reference and mobile
receiver multipath and noise
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Applying Measurement Corrections (2/2)

106

« Corrected measurement (from last slide)

P5 o = P> —OPY

__..a a a a a a a a
=7, — O, +(c5tu2 —cot,, )+ AT, + AL, + Avy, + Amyj),

— This is very similar to single difference measurement!
* Note that this corrected measurement includes the difference

between the actual and calculated ranges between the satellite
and the reference receiver

a

o =1 -
rephl =n rcalcl

— In the process of generating position solution using least-squares
(or any other method), the calculated range between mobile
receiver and satellite will be subtracted from the measurement

— Ephemeris prediction errors will nearly cancel as well.
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DGPS Errors

“So now | know what DGPS is and how it is

applied. What kinds of errors can | expect,

and how do those errors grow with baseline
distance?”
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DGPS Errors

108

- Errors completely cancelled by DGPS
— Receiver clock error
— Satellite clock error
— SA1
- DGPS errors can be grouped into two classes

— Uncorrelated errors
+ Errors that are not spatially related
Do not increase with reference/mobile baseline distance
Include multipath and measurement noise
DGPS actually increases these errors

Typical Multipath + Noise Error Standard Deviation Values

Single Meas Single Double

(non-DGPS) Difference  Difference
Code 0.5-1.5m 0.7-2.1m 1-3m
Carrier-Phase 0.2-1cm 0.3-14cm 04-2cm

— Correlated errors
Are spatially related
Increase with baseline distance
Include satellite position (ephemeris), ionospheric, and tropospheric errors

TAssuming that only the dither portion of SA is utilized (if SA is on at all!)
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Differential Satellite Position Errors

109

- Satellite position errors are errors in ephemeris that cause
calculated SV position to differ from true SV position

— Absolute (non-DGPS) error
Zenith: ~1 m (1-c)
Non-zenith axes: ~3 m (1-o)
— For a given measurement, it is the projection of the 3-D SV position
error onto the measurement line-of-sight vector that counts

With DGPS, line-of-sight vectors converge as reference/mobile baseline distance
goes to zero

— Satellite position error can be determined using precise ephemeris
as truth
Precise ephemeris accurate to ~10 cm
— Differential satellite position errors typically less than 5 cm (1-o),

except for very long baselines (> 500 km)

« True as long as same set of ephemeris is used for both reference and mobile
receivers



John F. Raquet, 2009 110

Sample SV Position DGPS Error (Double Difference)

Data collected in Norway on Sep 30th, 1998

(.01 km baseline 67 .46 km baseline 0 01 km baseline 67 46 km baseline
ol ] ol ] 00 mean=0.0Tm 08T T meani=0.0%n]
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Differential lonospheric Errors

111

+ lonospheric errors are spatially correlated

— Signal from same satellite to two nearby receivers passes
through approximately same ionosphere
Exception: scintillation
— Highly local effects
— Can affect one receiver but not another (unless receivers are
collocated)
— DGPS ionospheric error follows same general trends as
overall (non-DGPS) ionospheric error
« Maximum at ~14:00 local time
«  Minimum at night
« Varies with solar cycle

— lonospheric delay (or phase advance) can be precisely
measured using linear combination of phase measurements
Requires successful resolution of L1 and L2 carrier-phase ambiguities

« Accurate to ~1 cm (includes effects of carrier-phase multipath and
noise)



L1 DD lonag Delay {cm)

L1 DD lano Delay {cmm)
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Sample Afternoon lonospheric DGPS Errors
(Double Difference)
Data collected in Norway on Sep 30th, 1998
(between minimum and mid-point of solar cycle)
g0 0.01 km baseline c0 . B7.46 km baseline 0.01 km baseline 0.0—87.46 km baseline
: : —_ : : mean = 0:0 cn : mean = 0:4 cnj
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Sample Nighttime lonospheric DGPS Errors
(Double Difference)

Data collected in Norway on Sep 30th, 1998
(between minimum and mid-point of solar cycle)
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Differential Tropospheric Errors

114

- Tropospheric errors highly sensitive to altitude of receiver and
elevation of satellite
— Most of the error can be effectively modeled

— Important to always apply tropospheric model for DGPS

+ If don’t apply, then can introduce differential errors on order of meters for receivers at
different altitudes

+ Should use same tropospheric model (if possible)

- With a good model, differential tropospheric errors are relatively
small

— Under normal conditions don’t exceed ~3 cm (1-o) for baselines < 500
km

— Can be worse under extreme conditions (e.g., high humidity)

- Differential tropospheric error can be calculated from carrier-phase
measurements

— Use ionospheric-free combination with precise orbits to remove other
errors

— All that remains is tropospheric error (plus multipath and noise)
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L1 DD Tropa Delay (em)

L1 DD Tropa Delay (cm)

Sample Tropospheric DGPS Errors
(Double Difference)
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DGPS - Practical Considerations

116

« Reference/remote receiver baseline distance
— Code DGPS
Multipath and Noise Dominates

Under normal conditions, other errors don’t become significant until baseline reaches
100-200 km.

— Carrier-phase DGPS (ambiguity resolution)

Ambiguity resolution process is based upon tests of measurement residuals

Errors (especially biases) in measurements cause significant problems for ambiguity
resolution

Typical max baseline length to resolve ambiguities effectively (kinematic mode):
— L1 only: 15-25 km

— L1 and L2 (widelane): 40-60 km
- Data latency

— Takes some amount of time for corrections to arrive at mobile receiver
for real-time DGPS

— SA was “fastest-moving” error (when it existed)
Max of 19 mm/s? acceleration and 2 m/s range rate
Data latency of 1 second could cause up to 2 m of DGPS error

— Sometimes, corrections and time derivatives are transmitted



Taking the Mystery out of
Resolving Ambiguities
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 History and terminology
— Field started with surveyors (static)
— Stop-and-go
— Kinematic
— On-the-fly
- Ambiguity resolution baseline lengths

— Static, 12+ hours of dual-frequency data,
top-notch software: over 1000 km (with
accuracies of a few mm!)

— Kinematic, 10+ minutes of dual frequency
data, widelane ambiguities: ~60 km

— Kinematic, 10+ minutes of single frequency
data, L1 ambiguities: ~20 km

 Reader/listener beware!

— Algorithms are notoriously data-set
dependent

+ Easy to tweak the algorithm to work very well on
a particular data set

« Much more difficult to get it to work well on just
about any data set

+ Results, especially those that show surprising
improvement, should be taken with a grain of salt
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* Double-difference phase measurement
error equation:

VA =%[VAr+VAT+%VAm+VAU)+VAN
— If we have a “short” baseline (e.g., less
than 15 km), then the atmospheric terms

can be neglected:

1
VA= (VAF + VAm +VAL)+ VAN

- |[f we can determine VAN, then the
double difference phase measurement
(VA¢) is a very precise measurement
of position

— What happens to the precision as the
baseline length increases?
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- There are many different algorithms
used to determine integer ambiguities
— Can be intimidating to study
— Everyone brings their own slant to the
problem
- Most algorithms perform two primary
operations

— Determine the ambiguity search space

« Come up with the sets of ambiguities that might
be correct

— Selection of correct ambiguity set

 Pick the correct set of ambiguities out from your
search space

- WEe’ll cover basic approaches for both
of these operations
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* Definition of ambiguity set

— At any given measurement epoch, there
are a set of double difference ambiguities

— We know they are all integers
— Example of three ambiguity sets

SV Pair | Amb Set1 | Amb Set2 | Amb Set 3
23-3 142093 142092 142093
23-6 -872329 -872329 -872329
23-18 3209874 3209875 3209873

23-27 -243098 -243097 -243098
23-29 49879087 | 49879087 | 49879088

- How might we arrive at these different
sets of ambiguities?
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- Position-based approaches

— Ambiguity function method
« Search purely over position domain
« Will not cover in detail
— Use of knowledge of position to define
candidate ambiguity sets
+ Often generates too many candidate ambiguities
« Will not cover in detail

-  Ambiguity-centered approaches (using
primarily ambiguity estimates and
covariance)

— Simple rounding

« Only works when errors are very low and you
have very good estimates of ambiguities

— Least squares AMbiguity Decorrelation
Algorithm (LAMBDA)

« Will cover in following slides

— Fast Ambiguity Search Filter (FASF)

« Will cover in following slides
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- Developed by Teunissen in 1993
- Often, ambiguity estimates can be

highly correlated

— Low correlation example

: [ 0.0109
VAN, | |10615431.981 P —0.0056
VAN, | |10791937.073 VAN T 0.0011
VAN,, | [10921812.941 0.0012
| VAN,5 | |10176265.986 | -

— High correlation example

[6.2901

VAN, | [10193431.428 p 2.1378
VAN 1 11.744 =

13 || 108600117 A 10.5454
VAN, | |10853654.623

| VAN,s | [10593562.704 | 10.9417

—0.0056
0.0159
—0.0068
0.0059

2.1378
4.2692
1.3040
0.2931

0.0011
—0.0068
0.0188
0.0037

0.5454
1.3040
3.2627
1.1254

0.0012 |
0.0059
0.0037
0.0164 |

0.9417]
0.2931
1.1254
2.9983 |

1Slides on LAMBDA method adapted from presentation by Capt Paul Henderson at AFIT, Summer 1999



John F. Raquet, 2009

- Basic idea

— Decorrelate highly correlated phase
ambiguities from float carrier phase
solution by applying an ambiguity
transformation (Z-transformation)

* Not the z-transform used in signal processing
- Find floating point ambiguities and
corresponding variance matrix (a, Q,)

— These results are highly correlated,
especially for short observation periods

— Causes problems in finding integer
solutions
+ Transform floating point
solution/variance to decorrelated
ambiguities/variance
— Use “Z-transformation”
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« Z-Transformation
:=7"%, z=7"x, 0.=72"'07

- Transformation must meet certain
conditions to preserve the integer
nature of ambiguities

— Must be volume preserving (one-to-one
relation)

— Must reduce the product of ambiguity
variances

— Must have integer elements
- For a two dimensional example

1 O 1 z
Z, = Z = -
Zy 1 0 1

_ 2
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2-D Example (before)

(a;,2y)

26
10
10 20 30 40 50 60 70 80
4
2-D Example (after)
9
8
7 /
6 /
5 (31,32
A +
1
N
2
1
1 2 3 5 6 8§ 9 1011

10
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« |nitial covariance:

(6.290 5.978 0.544 ]
P, =5978 6.292 2.340
10.544 2340 6.288

« Z-transform matrix:

 Transformed covariance:

0.626 0.230 0.082
P, =10230 4476 0.334
10.082 0.334 1.146
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* The search space still may not contain
the solution (correct gridpoint)

— Scale the search space to guarantee that it
contains at least one gridpoint

— For best results scale the search space to
contain at least two gridpoints (for
validation) but not many more than two

(2-2) 0:'(2-2)< 1’
* Results
— Graphs based on 10.4 km Baseline

— 7 satellites using dual frequency phase
data

— Run on 486-66MHz PC

CPU time

Zh4 40
1 i 0
100 =

10 2
IR

0.1 s

10 ms -

0 -

B before after

ﬁIIIIII
tlme span [s]

12
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- Developed by Chen and Lachapelle in
1993

* Principle:

— Determine search range for best known
single ambiguity

x, —ko, < VAN,

ot <X, +ko,
— For each possible integer value:
« Assume that the integer is correct

« (Calculate new conditional covariance and
ambiguity estimate, conditioned on the fact that
the first ambiguity is known

— Will shrink covariance terms
* Now, select the best known integer value from the
remaining ambiguities, and repeat the process
— Recursive

«  Will either result in valid ambiguity set, or will be
“pruned”, if the conditional covariance doesn’t
allow for a valid integer somewhere along the
process

« Very efficient

13



John F. Raquet, 2009 14

- (Conditional state estimate and
covariance efficiently calculated as
follows:

~~

Xx=x-p,(x,—VAN;,
P-=P,—(p,p))/c:

x = Estimated parameter vector conditionedupon x, = VAN, ,

)/,

P: = Covariance matrix conditioned upon x, = VAN,
p, =n" column of the covariance matrix P;

o2 = scalar variance of the n” parameter (taken from diagonal of P;)
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Initial state

2434912 3.145 3.140 2.552

X =|—24987.144 P.=13.140 3.146 2.487

and covariance

Determine search
range of ambiguity
with lowest variance

Select ambiguity

Conditional state
and covariance

Determine search
range of ambiguity
with lowest variance

Select ambiguity

23421.980 2.552 2487 2.644

C; =+/2.644 =1.626
3

X3 =303 < N3 <x3+30;

23417.102 < N5 <23426.858

N, = 23418
2431.071 0.682 0.740 O

X =|—24990.888 P.=10.740 0.807 O

23418 0 0 0
o, =+.682 =0.826
X, —30;, <N, < X, +30;
2428.593 < N, £2433.548

N, =2429
2429 0 0 0

Conditional state =~ _| 54993 133 P.=|0 0.0045 0

and covariance

Determine search
range of final ambiguity

Select ambiguity

Valid ambiguity set

23418 0 0 0
G; =4.0045 =0.067
X, =30, <N,<X,+3c,
—24993.335 < N, <-24992.932
N, =-24993

2429
x=|—24993
23418

15
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initial stat 2434.912 3.145 3.140 2552
nitial state $=|-24987.144| P.=[3.140 3.146 2.487
and covariance 23421.980 2552 2487 2.644
Determine search o;, =+/2.644 =1.626
range of ambiguity % -30; <Ny<3;+30;
with lowest variance 23417.102 < N, < 23426.858
Select ambiguity Ny = 23418
Conditional stat 2431.071 0.682 0.740 0
ndition N

onditional Stale - _1_ 14990 388 P.=[0.740 0.807 0

and covariance
23418 0 0 0

Determine search G, =+.682 =0.826
range of ambiguity X, —30; <N, <X +30;
with lowest variance 2428.593 < N, < 2433.548
Select ambiguity Ny =2433
Condit 2433 0 0 0

ond|t|onql state ¥=[-24988.795| P.=[0 0.0045 0
and covariance 23418 o o0 o
Determine search G, =V-.0045 =0.067

range of final ambiguity ¥ 739, SN2 <% +30;,
—24988.997 < N, <-24988.593
No valid N, ambiguity, so
this combination is not a
valid ambiguity set!

16
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 Recall the basic measurement

equation

1
wpT[VA,,+VAT+E_VAm+mU]MN

f2
— Rearrange to get

VA(])—VAN—lVAr :l VA T+H—VAm+VAU
A A 72
measurement residuals \ differentiaI?VA) errors

— Four different cases:

Low VA Errors | High VA Errors

, Generally High

Correct VAN | Low Residuals Residuals
Generally High | Generally High

Wrong VAN Residuals Residuals

— Can use ratio test
vR™WT (2nd best)

vR™WT (best)
v =measurement residuals

ratio =

R = measurement covariance matrix

« Correct ambiguity if ratio > constant (typically, 2
or greater)



“OK, so | have an idea of how to
use a few measurements
(individually) to do something. s
there a way that | can do more by
combining measurements?”
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- Pseudorange
— Normally expressed in meters
— Sometimes expressed in seconds (can be
converted to meters by multiplying by
speed of light)
- Doppler
— Hertz (cycles per second)
— Sign convention can vary

 Carrier-phase
— Cycles (for particular frequency)

— Sometimes output as integer portion and
fractional portion
+ Both are added together to get full cycles

+ This “integer” portion has nothing to do with
integer carrier-phase ambiguities

19
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- Relationships below are approximate,
due to errors and dynamics

- Doppler gives information about rate of
change of code

N p(t)— p(t,)
()2 2
or
p(t) = p(ty) + (8 —1,)Af (1,)A

Af =Doppler measurement (Hz)
A = Carrier wavelength (m)
o =Code measurement (m)
t,,t, = Two (nearby) time epochs

- This relationship not normally used
explicitly
— Can be used to determine Doppler sign
convention/units on Doppler

20



John F. Raquet, 2009

- Carrier-phase is integration of Doppler
measurement

- Can be expressed between epochs as

¢(t1)_¢(to)
t, =1,
or

o(1) = g(1y) + (1, = 1) A (1)

Af () ~

Af =Doppler measurement (Hz)
¢ = Carrier - phase measurement (cycles)
t,,t, = TWo (nearby) time epochs

- Relationship is very useful for
detecting phase cycle slips

21



John F. Raquet, 2009 22

- Note that both pseudorange and catrrier-
phase measurements have similar
relationship with Doppler

— Difference is wavelength scaling factor (1)

- Implies that pseudorange and carrier-
phase measure essentially the same thing

— Difference is carrier-phase integer ambiguity
(starting point of integration)

p(;j()) ~o(t) - N

A = Carrier wavelength (m)

o =Code measurement (m)

¢ = Carrier -phase measurement (cycles)
t, = Particular time epoch

N = Carrier -phase integer ambiguity

— Very useful relationship

 If can determine N, can use carrier-phase for
positioning

« Implies that code and phase can be combined (filtered)
to remove some errors



John F. Raquet, 2009

&

151268
151270
151272
151274
151276
151278
151280
151282
151292
151294
151296

PRN 17

Doppler Phase Prediction Error (L1 Cycles)

Cycle slip

1-5'30600 150720 150840 150960 151080 151200 151320

17:50

Oy

20520314.15
20529877.89
20539442.61
20549008.30
20558575.16
20568143.04
20577711.80
20587281.83
20596853.07
20485242.47
20494819.72

17:52

17:54

bt Afy

—
MNDONDNMNDMPDMPDMNODMNDNDN

*Cycle slip is indicated here

4781.74
4782.02
4782.65
4783.03
4783.73
4784.20
4784.69
4785.25
4785.77
4788.44
4788.80

17:56
GPS Week Seconds/HH:MM

17:58

Predicted
(Dk+1

20529877.62
20539441.92
20549007.91
20558574.36
20568142.62
20577711.44
20587281.17
20596852.34
20644710.77
20494819.35
20504397.33

18:00

18:02

Actual
(Dk+1

20529877.89
20539442.61
20549008.30
20558575.16
20568143.04
20577711.80
20587281.83
20596853.07
20485242.47
20494819.72
20504397.88

23

Prediction
Error

-0.26
-0.69
-0.39
-0.80
-0.42
-0.36
-0.66
-0.73
159468.30"
-0.38
-0.55
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Estimate of Carrier-Phase Ambiguity N

Estimate of Carrier-Phase Ambiguity N
from Code Minus Phase (L1 Cycles)

from Code Minus Phase (L1 Cycles)

PRN 17 - Close to Cycle Slip

133360000
133340000 1
133320000 1
133300000 1
133280000+ Cycle Slip (~159495 cycles) i
133260000 1
133240000 1
133220000 \

133200000 1

1331 8009%0600 150720 150840 150960 151080 151200 151320
1750 17:52 1754 17:56 1758 18:00 18:02

GPS Week Seconds/HH:MM
PBN 17 - Entire Satel[ite Pass

133184540
Cycle Slip —*

133184530 N

133184520 |

133184510

133184500

133184490 |

133184480 ' ' ' '
144000 145800 147600 149400 151200

16:00 16:30 17:00 17:30 18:00
GPS Week Seconds/HH:MM

24
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- Generation of new observable by
combining measurements from two
different frequencies

- Generation of new observable by
combining code and carrier-phase
measurements

- Using various measurements within an
estimation algorithm (e.g., a Kalman
filter)

25
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- Code measurement (p):
p=r+cot,—cot ,+T+—+v+m+S84 | (8.1)

r = true range to satellite (m)
cot, =receiver clock error (m)
cot,, = satellite clock error (m)
T =tropospheric delay (m)
[ =ionospheric delay factor (= 40.30 TEC) (Hz°m)
f =carrier frequency (Hz)
v =measurement noise (M)
m =multipath (m)
SA = selective availability (m)
- Phase measurement (¢):

¢:%£r+65tu —c5tSV+T—%+u+m+SAJ+N (8.2)

A = carrier wavelength (m)
N =carrier -phase integer ambiguity (cycles)
— Note 1: Sign change on ionospheric term

— Note 2: lonospheric error is frequency
dependent

— Note 3: Multipath and noise are different for
every measurment
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- Will analyze phase measurements

— More useful for precise positioning
applications

— Same principles apply to code
measurements
- Create a dual frequency observable as
a linear combination of the L1 and L2
phase measurements (¢,, and ¢, ,,
respectively)

¢j,k — j¢L1 + k¢L2

» Applying to equation 8.2 yields

b, 2%(r+05tu —cOt, +T +SA)

ik

/ k

"'L(mu +UL1)+7(mL2 +UL2)
2

_{[jfz%ﬁ

c\ N

A4,
A, =
where 4, (Mﬁkﬂq

]+jN1 + kN,

27
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- Widelane (WL) (j=1, k=-1)

¢WL — ¢1,—1 — ¢L1 - ¢L2

— Maintains integer nature of carrier-phase
ambiguity

— Has longer wavelength (86 cm) than L1 or
L2 (19 cm or 24 cm, respectively)

+ Makes it easier to resolve carrier-phase
ambiguities

» lonospheric free (IF) (j=1, k=-f/f,)
— Eliminates ionospheric error

— Ambiguity is not an integer

« Can still be used if L1 and L2 (or L1 and WL)
ambiguities are known

* lonospheric (j=4,, k=-1,)

— Cancels out everything except multipath,
noise, and ionospheric error

— Ambiguity not an integer (similar to IF case)

— Commonly used for precise (differential)
lonospheric measurements

28
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29

Name Jj k Wavelength Ambiguity
(%)

Widelane (WL) 1 -1 ~0.86 m N;—N, =Ny,

lonospheric Free (IF) 1 -H/f1 ~0.48 m N;— (>/f))N, = Njp

lonospheric A A, 00 AN; — LN,

L1 Only 1 0 ~0.19 m N;

L2 Only 0 1 ~0.24 m N,
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« We noted previously

p (f) ~ §(ty) - N

« We need to examine this more closely
* Recall:

I
p=r+cot,—cot,+T+—+v+m+S54

¢=%(F+c5tu—c§tSV+T—%+U+m+SAJ+N

- From this, we can analyze the code-
minus-carrier observable

1/
p—Ap=2—+v,+m,—v,—m;— AN

v, =code measurement noise (m)

m , = code measurement multipath (m)
v, =phase measurement noise (M)

m, = phase measurement multipath (m)

30
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Ashtech Z-12 Receiver, Dorne-Margolin Groundplane Antenna
€ o 2 r ! T T T
GEJ K L1 CA-Code
o> E, U R e L1 P-Code (semicodeless)
= ;/1.5 Sy —— L2 P-Code (semicodeless){]
Bco - -
=Rl
=230 1
g3
© o5
10

So 15 ’
E.2~ N L1 Phase
02 = —— L2 Phase
Rl T
o f_=l 2 5

()
83
o H H H H 1

10 20 30 40 50 60 70

Elevation (deg)
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Trimble 4000ssi Receiver, Dorne-Margolin Groundplane Antenna

e 1.5 :
s i P
€5~ L1 CA-Code
o=z é . L2 P-Code (semicodeless)
=) + o | — T
>S5 e
% % n \"(-—-N ______
Q= —
© 0
10 20 30 40 50 60 70
E 8 : T T
) ;
ESE e N L1 Phase
S92 Es L2 Phase |
S5ZE°| 7 :
B+ = :
SE&4
2£3, ?
=) H
£= X
0 1 (4
10 20 70

Elevation (deg)
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- We can neglect the phase noise and
multipath, yielding

—Ap = 2f—+u +m, — AN
Combined Code errors Phase “error

code/phase
error

 Time correlation of error sources
— lonospheric error:

— Code measurement noise:

— Code multipath:

— Carrier-phase ambiguity:

32
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Phase
Meas __ |

(9)

High-Pass
Filter

33

Code
Meas ——

(0)

Low-Pass
Filter

' Carrier-
>—> smoothed
\ Code Meas
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» Concept of code/carrier smoothing for
GPS first proposed by Hatch’

* Progressive weighting algorithm proposed
by Lachapelle et al.:?

* Recursive filter to progressively increase
weight on ¢ while decreasing weight on p

e = Wope + W, [pk—l + Mo i )]
Computed Measured Previously Range difference
smoothed pseudorange smoothed from measured
pseudorange pseudorange carrier-phase

— Weights are incremented over time (within
bounds)

w, =W, -0.01 (0.0l<W, <1.00)
k Pr-1 Pk
W, =W, +0.01 (0.00<W, <0.99)

— Initialization (at £=0)
W =1.0

Po

W¢o

"Hatch, R., “The Synergism of Code and Carrier Measurements,” Proceeding of the Third International Geodetic
Symposium on Satellite Doppler Positioning, DMA/NGS, pp. 1213-1232, Washington, D.C., 1982.

resultsin p, = p,

2Lachapelle, Hagglund, Falkenberg, Bellemare, Casey, and Eaton, “GPS Land Kinematic Experiments”, Proceedings
of the Fourth International Geodetic Symposium on Satellite Positioning, Austin, Texas, 1986.
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# epochs since initialization

Code/carrier ionospheric divergence
causes a drift in the smoothed code
measurement over time

— A short time constant on the smoothing
algorithm can help reduce this

— If the time constant is too short, then carrier
smoothing is less effective

One approach is to calculate smoothed
values starting at two different times

— After a ramp has been used for a specified
maximum time, then you switch to a newer
ramp and restart the old ramp

time



