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Overview
2

• GPS Measurements (review)
• Determining the GPS navigation solution using least-

squaressquares
• Kalman filtering overview
• Inertial navigation systems and integration with GPSInertial navigation systems and integration with GPS
• Differential GPS concepts and techniques
• Carrier-phase ambiguity resolutionp g y



GPS Receiver MeasurementsGPS Receiver Measurements

What does the receiver measure?



John F. Raquet, 2009 4

GPS Measurements (Overview)

• Each separate tracking loop typically can give 4 
different measurement outputsdifferent measurement outputs
– Pseudorange measurement
– Carrier-phase measurement (sometimes called integrated 

Doppler)Doppler)
– Doppler measurement
– Carrier-to-noise density C/N0

• Actual output varies depending upon receiver
– Ashtech Z-surveyor (or Z-12) gives them all
– RCVR-3A gives just C/N0RCVR 3A gives just C/N0

• Note: We’re talking here about raw measurements
– Almost all receivers generate navigation processor outputs 

( iti l it h di t )(position, velocity, heading, etc.)
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Measurement Rates and Timing

• Most receivers take measurements on all 
channels/tracking loops simultaneouslychannels/tracking loops simultaneously
– Measurements time-tagged with the receiver clock (receiver 

time)
The time at which a set of measurements is made is called a– The time at which a set of measurements is made is called a
data epoch.

• The data rate varies depending upon 
i / li ti T i l d t treceiver/application. Typical data rates:

– Static surveying: One measurement every 30 seconds (120 
measurements per hour)

– Typical air, land, and marine navigation:   0.5-2 
measurement per second (most common)

– Specialized high-dynamic applications: Up to 50 p g y pp p
measurements per second (recent development) 
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GPS Pseudorange Measurement
• Pseudorange is a measure of the difference in time 

between signal transmission and reception

Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996
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Effect of Clock Errors on Pseudorange
• Since pseudorange is based on time difference, any clock 

errors will fold directly into pseudorange

ttsv

tsv

trcvr

trcvr

• Small clock errors can result in large pseudorange errors 
(since clock errors are multiplied by speed of light)

t + trcvr - tsv

(since clock errors are multiplied by speed of light)
• Satellite clock errors ( tsv) are very small

– Satellites have atomic time standards
S lli l k i i d i i i– Satellite clock corrections transmitted in navigation message

• Receiver clock ( trcvr) is dominant error
Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996
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Doppler Shift

• For electromagnetic waves (which travel at the speed of light), the 
received frequency fR is approximated using the standard Doppler 
equationequation

(Hz)frequencyreceivedf

c
ff

R

r
TR

av )(
1

alongpointingvectorunit
(m/s)vectorvelocityrelativeuser-to-satellite

(Hz)frequencydtransmittef

r

T

a

v

– Note that vr is the (vector) velocity difference
(m/s)lightofspeed

SVtouserfromsight-of-line
c

• The Doppler shift f is then
(m/s)userforvectorvelocity

(m/s)satelliteforvectorvelocity
u

v

uvvr

• The Doppler shift f is then

(Hz)TR fff
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Doppler Measurement

• The GPS receiver locks onto the carrier of the GPS signal and 
measures the received signal frequency 

R l ti hi b t t d d i d i l– Relationship between true and measured received signal
frequency:

measRf

(Hz)frequencysignalreceivedtrue
rcvrRR

f

tff
meas

)1(

(sec/sec)ratedriftclockreceiver
(Hz)frequencysignalreceivedmeasured

(Hz)frequencysignalreceivedtrue

rcvr

R

R

t

f

f

meas

– Doppler measurement formed by differencing the measured 
received frequency and the transmit frequency:

fff

– Note: transmit frequency is calculated using information about SV 
clock drift rate given in navigation message

TRmeas fff
meas

g g g
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Doppler Measurement Sign Convention

• Sign convention based on Doppler definition
– A satellite moving away from the receiver (neglecting clock errors) 

will have a negative Doppler shiftwill have a negative Doppler shift

0TRmeas

TR

fff

ff

meas

meas

– Sign convention used for NovAtel (and possibly other) receivers
• Sign convention based on relationship between Doppler and 

pseudorange

meas

p g
– Doppler is essentially a measurement of the rate of change of the 

pseudorange
– A satellite moving away from the receiver (neglecting clock errors) 

will have a positive Doppler measurement valuewill have a positive Doppler measurement value
– More common sign convention for GPS receivers (Ashtech, 

Trimble, and others)
• Carrier-phase measurement follows same convention as p

Doppler measurement (normally)
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Carrier-Phase (Integrated Doppler) Measurement

• The carrier-phase measurement meas(t) is calculated by 
integrating the Doppler measurements

The integer portion of the initial carrier phase at the start

errorsothererrorclockrange

receiver)bymeasuredbe(can

)()()()( 0

)(

0 ttdttft integer

t

t

t
meas

meas

o

• The integer portion of the initial carrier-phase at the start
of the integration ( integer(t0)) is known as the “carrier-
phase integer ambiguity”
– Because of this ambiguity, the carrier-phase measurement is 

not an absolute measurement of position
– Advanced processing techniques can be used to resolve these 

carrier phase ambiguites (carrier phase ambiguity resolution)carrier-phase ambiguites (carrier-phase ambiguity resolution)
• Alternative way of thinking: carrier-phase measurement 

is the “beat frequency” between the incoming carrier 
i l d i t d isignal and receiver generated carrier.
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Phase Tracking Example
At Start of Phase Lock (Time = 0 seconds)

Arbitrary, 
unknownunknown
point

)0(meas
)( 0tinteger

(integer
ambiguity)

)(meas

)( 0t

Ignoring clock and other errors
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Phase Tracking Example
After Movement (for 1 Second)

Arbitrary, 
unknownunknown
point

)1()( 0tinteger

(integer
ambiguity)

)1(meas

)( 0t

1

)(
ot

meas dttf

Ignoring clock and other errors

ot
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Phase Tracking Example
After Movement (for 2 Seconds)

Arbitrary, 
unknownunknown
point

)( 0tinteger

(integer
ambiguity)

)2(meas

)( 0t

2

Ignoring clock and other errors

2

)(
ot

meas dttf
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Comparison Between Pseudorange and Carrier-
Phase Measurements

Pseudorange Carrier-Phase
Type of measurement Range (absolute) Range (ambiguous)yp g ( ) g ( g )

Measurement precision ~1 m ~0.01 m

R b t M b t Less robustRobustness More robust (cycle slips possible)

Necessary fory
high precision

GPS
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What Does a DGPS Measurement Tell You?

rDGPS using

r1

r2

r2 - r1

DGPS using
pseudorange
measurements

Receiver 1 Receiver 2

r2+N2DGPS using

r1+N1 r2-r1 + N2-N1

DGPS using
carrier-phase
measurements

Receiver 1 Receiver 2
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Five Satellite Carrier-Phase DGPS Example

True Position
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Carrier-to-Noise Density (C/N0)

• The carrier-to-noise density is a measure of signal 
strength
– The higher the C/N0, the stronger the signal (and the better 

the measurements)
– Units are dB-Hz
– General rules-of-thumb:

• C/N0 > 40: Very strong signal 
• 32 < C/N0 < 40: Marginal signal
• C/N < 32: Probably losing lock• C/N0 < 32: Probably losing lock

• C/N0 tends to be receiver-dependent
– Can be calculated many different ways

Ab l t i b t i t– Absolute comparisons between receivers not very 
meaningful

– Relative comparisons between measurements in a single 
receiver are very meaningfulreceiver are very meaningful
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GPS Navigation SolutionGPS Navigation Solution

“OK, so I have all of these pseudorange 
measurements.  Where in the world are we?”
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Pseudorange Equation

• The pseudorange is the sum of the true range plus the receiver 
clock error

W ’ i (f ) th t th i l k i th l– We’re assuming (for now) that the receiver clock error is the only
remaining error

• SV clock error has been corrected for
• All other errors are deemed negligible (or have been corrected)

uuuu

uujujujj

tzyxf

tczzyyxx

),,,(

222

(m)satelliteofpositionECEF
(m)satellitefromtmeasuremenepseudorang

jjj

j

jzyx

j

,,

(sec)errorclockreceiver
(m)userofpositionECEF

( )p

u

uuu

jjj

t

zyx

jy

,,

• For now, only use one type of pseudorange (L1 C/A, L1 P, or L2 P)
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Statement of the Problem

• At a given measurement epoch, the GPS receiver 
generates n pseudorange measurements (from ngenerates n pseudorange measurements (from n
different satellites)

uuuu tczzyyxx
2

1

2

1

2

11

uuuu

uuuu

tczzyyxx

tczzyyxx

2

3

2

3

2

33

2

2

2

2

2

22

• Goal: Determine user position and clock error
uunununn tczzyyxx

222

Goal: Determine user position and clock error,
expressed in state-vector form as

ux

u

u

u

tc

z

y
x
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Solving the Pseudorange Equations 

• The n pseudorange equations are non-linear (so no easy 
solution)
W l• Ways to solve
– Closed form solutions

• Complicated
• May not give as much insighty g g

– Iterative techniques based on linearization
• Often using least-squares estimation
• Arguably the simplest approach
• Approach covered in this courseApproach covered in this course

– Kalman filtering
• Similar to least-squares approach, except with additional ability to handle 

measurements over a period of time
• Will discuss brieflyy

• What is linearization?
– Pick a nominal (or approximate) solution
– Linearize about that point, resulting in a set of linear equations
– Solve the linear equations
– Will use Taylor series expansion for linearization
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Taylor Series Expansion (1/2)

• Taylor series expansion (1 variable)
3322

fdafdadf

• This can be used to linearize about a certain value of the 

32 !3!2
)()(

da

fda

da

fda

da

df
aafaaf

independent variable a.
– Example: the function                             is a non-linear function in t
– Suppose we want to linearize about the point

Th l t T l i i i

2632)( tttf

2t̂
– The complete Taylor series expression is

!2
)ˆ()ˆ(

2

22

dt

fdt

dt

df
ttfttf

– To linearize, we set          and neglect higher order (non-linear)

)12(
2

)ˆ123(ˆ6ˆ32
2

2 t
tttt

2t̂, g g ( )
terms of t

• Valid for perturbations (i.e., small values of t)

t
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Taylor Series Expansion (2/2)

10

– (Continued example) Linearized form

-10

0

al
ue

Actual function
Linearized function

fdtdf
ttfttf )2ˆ()ˆ(

2

22

ˆ

0

-30

-20

Fu
nc

tio
n 

Va

t

t

dtdt
ff

tt
t

2116

))2(123()2(6)2(32

!2
)()(

2

2ˆ

2
2ˆ

2ˆ

1 1 5 2 2 5 3-50

-40

F
1 1.5 2 2.5 3

t

• First order Taylor series for function in two variables:

h.o.t.
baba b

f
b

a

f
abafbbaaf

ˆ,ˆˆ,ˆ

)ˆ,ˆ()ˆ,ˆ(
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Linearization of Pseudorange Equations (1/5)

• First, define a nominal state (position and clock error) as
x̂

statete)(approximanominal
u

u

u

z

y

x

ˆ

ˆ
x̂

• An approximate (or expected) pseudorange can then be 
calculated for satellite j

utc ˆ

calculated for satellite j

)ˆˆˆˆ(

ˆˆˆˆˆ 222

uujujujj

tf

tczzyyxx

– This approximate (expected) pseudorange is the pseudorange that 
we would expect to have if our position and clock error were 

ll

),,,( uuuu tczyxf

d ˆˆˆˆactually .and uuuu tczyx ,ˆ,ˆ,ˆ
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Linearization of Pseudorange Equations (2/5)

• Relationship between true and approximate position and time
uuu xxx ˆ

uuu

uuu

zzz

yyy

ˆ

ˆ

ˆ

– Vector form:
uuu tctctc

xxx ˆ

• Based on these relations, we can write

uuu xxx

• To linearize, right-hand side of equation can be evaluated using 
a first order Taylor series expansion

)ˆ,ˆ,ˆ,ˆ(),,,( uuuuuuuuuuuu tctczzyyxxftczyxf

a first order Taylor series expansion
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Linearization of Pseudorange Equations (3/5)

• First order Taylor series expansion of pseudorange 
function:function:

u
uuuu

u
uuuu

uuuuuuuuuuuu

y
y

tczyxf
x

x

tczyxf

tczyxftctczzyyxxf

ˆ

)ˆ,ˆ,ˆ,ˆ(

ˆ

)ˆ,ˆ,ˆ,ˆ(

)ˆ,ˆ,ˆ,ˆ()ˆ,ˆ,ˆ,ˆ(

h o t

u

u

uuuu
u

u

uuuu

uu

tc
tc

tczyxf
z

z

tczyxf

yx

ˆ

)ˆ,ˆ,ˆ,ˆ(

ˆ

)ˆ,ˆ,ˆ,ˆ(

• The partial derivatives are

h.o.t.

ˆ)ˆˆˆˆ(ˆ)ˆˆˆˆ( yytfxxtf

1
)ˆ,ˆ,ˆ,ˆ(ˆ)ˆ,ˆ,ˆ,ˆ(

ˆˆ

),,,(

ˆˆ

),,,(

uuuuujuuuu

j

uj

u

uuuu

j

uj

u

uuuu

tzyxfzztzyxf

r

yy

y

tzyxf

r

xx

x

tzyxf

1
ˆˆˆ uju tcrz

222
ˆˆˆˆ

ujujujj zzyyxxr
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Linearization of Pseudorange Equations (4/5)

• Using above results, linearized pseudorange 
equation isequation is

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

j u j u j u

j j u u u u

x x y y z z
x y z c tj j u u u u

j j jr r r

• This can be simplified to
where

uuzjuyjuxjj tczayaxa

ˆ

j

uj

zj

j

uj

yj

j

uj

xj

jjj

r

zz
a

r

yy
a

r

xx
a

ˆ

ˆ
,

ˆ

ˆ
,

ˆ

ˆ

jjj
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Linearization of Pseudorange Equations (5/5)

• Original (nonlinear) equations for n measurements

uuuu

uuuu

tczzyyxx

tczzyyxx

222

2

1

2

1

2

22

2

1

2

1

2

11

uuuu

tczzyyxx

tczzyyxx

222

2

3

2

3

2

33

• Linearized (error) equations for the same n
measurements

uunununn tczzyyxx

measurements

uuzuyux

uuzuyux

t

tczayaxa

tczayaxa

2222

1111

uuznuynuxnn

uuzuyux

tczayaxa

tczayaxa 3333
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Solving the Linearized Pseudorange Equations 
Using Least-Squares (1/2)g

• We can express the set of pseudorange equations in matrix form
xH

u
zyx

zyx

y

x
aaa

aaa

1

1

222

111

2

1

u

u

u

znynxn

zyx

n

tc

z

y

aaa

aaa xH

1

13333

• Three possible cases
– n < 4: Underdetermined case

• Cannot solve for x
I th till bl i f ti ?• Is there still useable information?

– n = 4: Uniquely determined case
• One valid solution for x (generally)

• Solved by calculating H-1 ( x = H-1 )
– n > 4: Overdetermined case

• No solution that perfectly solves equation (generally)
• Can use least-squares techniques (which pick solution that minimizes the square of the error)
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Solving the Linearized Pseudorange Equations 
Using Least-Squares (2/2)g

• Basic least-squares solution (no measurement weighting)
TT HHHx

1

– Reasonable approach for single-point positioning in presence of SA
• Solution with measurement weighting (weighted least-squares)

HHHx

Solution with measurement weighting (weighted least squares)
– Useful when

• Measurements have different error statistics
• Measurement errors are correlated

– Measurement error covariance matrix C
• Diagonal terms are measurement error variances
• Off-diagonal terms show cross-correlation between measurement errors

– Note that this is identical to unweighted case if C = I (identity
i )

111 CHHCHx TT

matrix)
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Measurement Residuals

• For overdetermined system, generally no valid 
solution for x that solves measurement equation, sosolution for x that solves measurement equation, so

xH

• Measurement residuals (v)
– Corrections that, when applied to measurements, would 

result in solution of above equationresult in solution of above equation
– Least-squares minimizes the sum of squares of these 

residuals

xHv

vxH
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Iterating the Nominal State
• Linearized equations (and resulting H matrix) calculated using 

nominal state
• Linearization valid when

ux̂

• Linearization valid when
– Nominal state is close to true state
– x is “small”

• If is not very accurate (i e x is large) iteration is requiredx̂If      is not very accurate (i.e., x is large), iteration is required
– For each iteration, a new value of      is calculated based upon the 

old value and the corrections x

ux

xxx ˆˆ

ux̂

– This new value of       is then used to recalculate the corrections x
(which should be smaller this time)

• Solution must converge

xxx
oldnew uu

ux̂

• Solution must converge
– For standard GPS positioning, not much of a problem (will generally 

converge with an initial guess at the center of the Earth)
– For more non-linear situations (e.g., using pseudolites), this can be ( g , g p ),

more of a problem 
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Correcting for Satellite Clock Error

• Single point positioning only estimates receiver clock 
errorerror
– Assumes all other errors are negligible
– Requires correction of satellite clock error

Cl k ti (f tc• Clock correction (from
ICD-GPS-200C)

kr

rfffsv

svcorr

EaFet

tttattaat

tc

cc

sin

)()( 2
00 210

kr

correctionclockSV
tmeasuremenepseudorang(raw)original

errorclockSVforcorrectedepseudorang

sv

corr

t

constant
orbit)circularnot(sincecorrectionrelativity

messagenavfromparameterscorrectionclockSV

r

fff

F

t

taaa
c

1/210

0

)sec/(meter10442807633.4

,,,
210

n)calculatiopositionSV(fromanomalyEccentric
messagenavfromaxismajor-semiofrootsquare

messagenavfromtyeccentrici

kE

a

e
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Determining Signal Transmit Time (1/2)

• For satellite position calculation, need true GPS 
transmit time of the signal (Ts)transmit time of the signal (Ts)
– Receiver provides time of reception according to the receiver 

clock (Tu + trcvr)
From diagram below if the pseudorange time equivalent is– From diagram below, if the pseudorange time equivalent is
subtracted from the receive time, then the result is the true 
transmit time plus the satellite clock error

svsrcvru tT
c

PR
tT

timereceive
(m)tmeasuremenepseudorangPR

tsv

tsv

trcvr

trcvr

( )p g

ssvrcvru Tt
c

PR
tT

 timereceive

t + trcvr - tsv

slidepreviousthe
fromassame svt
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Determining Signal Transmit Time (2/2)
• Effect of neglecting tsv for

SV positioning1

Satellite clock error can Representative SV Clock Errors– Satellite clock error can
grow to up to ~1 msec:

– Typical satellite velocity is 
3900 m/s 500

1000

(se
c) Po

lyn
om

ia
l)

p
(GPS week seconds = 252000, week 993)

3900 m/s
– Worst-case position error 

from neglecting tsv
0

Cl
oc

k 
Er

ro
r (s

av
 M

es
sa

ge
 

/

– Effect of neglecting tsv

• Single point positioning: Can 0 10 20 30-1000

-500SV
(F

ro
m

 N
a3900 m/s  x 0.001 s = 3.9 m

Single point positioning: Can
be significant (but not with SA)

• Differential positioning: 
effectively cancelled out (acts 
like 3.9 m satellite position

PRN

p
error)

1The SV clock error tsv will have a significant effect on the actual pseudorange measurement.  This 
page only describes the impact of tsv on determining the position of the satellite.
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Correcting for Satellite Group Delay
• Each satellite has a slight time bias between the L1 and 

the L2 signals
N t d i d b t it’ th th l– Not desired, but it’s there nonetheless

– Will affect dual-frequency users, unless it’s accounted for
– Can be measured and/or calibrated out
– This calibration is accounted for when the control segment 

generates the satellite clock correction terms from broadcast nav 
message:
However this is all designed for the dual frequency user! Single

c
taaa fff 0,,,

210
and

– However, this is all designed for the dual-frequency user! Single
frequency users need to remove the effect of this dual-frequency 
correction on their tsv value

• Single frequency users must apply the group delay termSingle frequency users must apply the group delay term
(TGD) from the nav message to their SV clock correction 
term (from p. 90 of ICD-GPS-200C)

Ttt

GDsvLsv

GDsvLsv

Ttt

Ttt

2

2

1

60

77
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Accounting for Signal Travel Time (1/3)

• Signal arrives at receiver after it is transmitted (due to signal 
travel time)
– Transmit time: Time the signal was transmitted
– Receive time: Time the signal was received

• Satellite position should be calculated based upon transmit time
– When measuring a signal, we don’t really care what happened after 

that signal was transmitted
– Transmit time should be GPS system time (or as close to it as 

possible)
– Very good approximate value of transmit time obtained by 

subtracting pseudorange (expressed in seconds) from the receive 
time as indicated by the receiver clocktime as indicated by the receiver clock

• Why?

• What other considerations do we need to make for signal travel 
time?time?
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Accounting for Signal Travel Time (2/3)

• Here’s the situation, looking down at the North Pole

xtt

xrr

yt

yr
• Methodology:

– Solve for position of SV at 
t it ti i ECEFtransmit time, in ECEF
coordinates at transmit time (xt, yt,
and zt) using ICD-GPS-200 
equations

t

t

r

r

z

y

x

z

y

x

100

0cossin

0sincos

equat o s
– Rotate into ECEF reference frame 

at the time of reception:

tr zz 100

timenpropagatioSignalprop

prope

t

t
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Accounting for Signal Travel Time (3/3)

• Neglecting atmospheric delay, the signal propagation 
time is calculated by

lightofspeed
satellitetorangegeometric

propt

vectorpositionECEFsatellitesv

rcvrsv

c

p

pp

• Note that the satellite position is needed to calculate 
t (and vice versa)

vectorpositionECEFreceiverrcvrp

tprop (and vice-versa)
– Satellite position in ECEF coordinates at transmit time is 

sufficiently accurate (xt, yt, and zt)
Note that receiver position must be known– Note that receiver position must be known

• Can be approximate
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Single Point Positioning Algorithm

Calculate H,
Start with
Initial    ux̂

Calculate approximate
SV clock errors 

(no relativity correction)
Calculate x

Calculate
transmit times

Calculate

Use ux̂

xxx
oldnew uu

ˆˆ

Correct pseudoranges

Is
| x | small
(<10m)?

Use       
newu

no
Calculate SV position
and sv clock errors

Correct pseudoranges
for SV clock error*

is final solution
yes

newux̂

Stop
*include group delay correction, if a single-frequency user
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GPS Positioning Example
42

• We’ll look at a single case to give an example
• Situation• Situation

– Receiver measurement time (GPS week seconds): 220937
– Initial     : [                                                                                ]ux̂ 506071.529 4882278.667 4109624.557 15.807

Initial clock error 
expressed in m

Initial guess of position 
(in error by ~50 km)

– Measurements: PRN Pseudorange

12 25022759.323

2 22075351.532

26 21929350.580

15 22677087.545

29 21039894.60829 21039894.608

21 24757444.127

30 24032696.422
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Example: Calculation of Transmit Time
Start with
Initial    ux̂ 0 1 2

2

0 0( ) ( )
approx c csv f f ft a a t t a t t

Calculate approximate
SV clock errors 

(no relativity correction)
Approx SV Transmit

(Receive time = 220937)

Calculate
transmit times

pp

PRN PR/c (s) Clock Error (s) Time (s)

12 0.083466941 0.000359172 220936.916892231

2 0.073635447 0.000199964 220936.926164589

26 0 073148440 0 000247391 220936 926604169

Correct pseudoranges

Calculate SV position
and sv clock errors

26 0.073148440 0.000247391 220936.926604169

15 0.075642622 0.000107130 220936.924464508

29 0.070181534 0.000043329 220936.929861795

21 0.082581944 0.000065081 220936.917352974

30 0 080164446 0 000075192 220936 919760362Correct pseudoranges
for SV clock error*

30 0.080164446 0.000075192 220936.919760362

Tt
PR

tT ssvrcvru Tt
c

tT

 timereceive
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Example: SV Position and Clock Error and 
Pseudorange Correctiong

Start with
Initial    ux̂ PRN SV ECEF X (m) SV ECEF Y (m) SV ECEF Z (m) SV Clock Err (s)

12 9924909.896 22418412.217 10238600.462 0.000359164

2 19519446 654 12864169 870 12106498 214 0 000199964

Calculate approximate
SV clock errors 

(no relativity correction)

2 19519446.654 12864169.870 12106498.214 0.000199964

26 9518973.908 24465469.002 347289.566 0.000247426

15 6420995.137 25601178.700 2907089.329 0.000107131

29 8265550.815 16497554.935 19234406.500 0.000043326

21 22299549 612 6458590 524 13615554 839 0 000065090

Calculate
transmit times

21 22299549.612 6458590.524 13615554.839 0.000065090

30 18044425.181 19566072.431 289953.964 0.000075168

Orbital calculations 
+ time-of-transit 

Correct pseudoranges

Calculate SV position
and sv clock errors

0 1 2

2

0 0( ) ( )
c csv f f f rt a a t t a t t t

rotation correction

Group Delay

PRN Original PR (m) Corrected PR (m) Tgd (ns)Correct pseudoranges
for SV clock error*

g ( ) ( ) g ( )

12 25022759.323 24915088.264 12.107193470

2 22075351.532 22135304.471 17.229467630

26 21929350.580 22003529.125 6.519258022

15 22677087.545 22644973.532 10.244548320

c t T
29 21039894.608 21026908.513 8.847564459

21 24757444.127 24776961.101 11.641532180

30 24032696.422 24055233.876 8.381903172

*include group delay correction, if a single-frequency user

corr sv GDc t T
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Example: H Matrix (Iteration 1)

Calculate H,
0.4182 0.7030 0.5752 1

Calculate x
0.8597 0.3609 0.3616 1

0.4094 0.8896 0.2025 1

0.2610 0.9143 0.3096 1H =
Calculate

xxx
oldnew uu

ˆˆ
0.4179 0.5533 0.7205 1

0.9212 0.0637 0.3840 1

0.7709 0.6102 0.1828 1

Is
| x | small
(<10m)? 0.6

is final solution
yes

newux̂
0 4

-0.2

0

0.2

0.4

EC
EF

 Z

Stop
-0.5

0

0.5

-0.8
-0.6

-0.4
-0.2

-0.4

ECEF XECEF Y
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Example: (Iteration 1)

Calculate H, Calculated Measured
(corrected)

Calculate x ˆ
corr

(corrected)

Calculate
xxx

oldnew uu
ˆˆ

PRN Calculated PR Measured PR Delta Rho

Is
| x | small
(<10m)?

12 24943810.919 24915088.264 28722.655

2 22117181.292 22135304.471 18123.179

26 22013598.807 22003529.125 10069.682

15 22660408.867 22644973.532 15435.335

is final solution
yes

newux̂

29 20990847.857 21026908.513 36060.657

21 24757718.148 24776961.101 19242.953

30 24064325.866 24055233.876 9091.990

Stop
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Example: Solution and Residuals (Iteration 1)

Calculate H,
TT HHHx

1

ˆˆ
Calculate x

xxx
oldnew uu

506068 143 506071 529 3 386

ˆ
olduxˆ

newux x

Calculate
xxx

oldnew uu
ˆˆ

506068.143 506071.529 3.386

4882283.665 4882278.667 4.998

4059632.252 4109624.557 49992.305

63.927 15.807 48.120

Is
| x | small
(<10m)?

v H x

PRN

Residuals:
v H x

is final solution
yes

newux̂

PRN

12 9.162 28722.655 28713.493

2 1.699 18123.179 18124.878

26 6.800 10069.682 10076.482

v H x

Stop
15 0.178 15435.335 15435.513

29 4.853 36060.657 36065.510

21 3.299 19242.953 19239.654

30 5.436 9091.990 9097.426
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Example: H Matrix (Iterations 1 and 2)

0.4187 0.7038 0.5739 10.4182 0.7030 0.5752 1

0 8597 0 3609 0 3616 1

Iteration 1 Iteration 2

H =

0.8590 0.3606 0.3635 1

0.4096 0.8900 0.2003 1

0.2612 0.9149 0.3076 1

0.4172 0.5524 0.7217 1

0.8597 0.3609 0.3616 1

0.4094 0.8896 0.2025 1

0.2610 0.9143 0.3096 1

0.4179 0.5533 0.7205 1

H =
0.4172 0.5524 0.7217 1

0.9204 0.0636 0.3857 1

0.7712 0.6104 0.1808 1

0.9212 0.0637 0.3840 1

0.7709 0.6102 0.1828 1

0.4

0.6

0.4

0.6

0 5
-0.4

-0.2

0

0.2

EC
EF

 Z
0 5

-0.4

-0.2

0

0.2

EC
EF

 Z

-0.5

0

0.5

-0.8
-0.6

-0.4
-0.2

ECEF XECEF Y

-0.5

0

0.5

-0.8
-0.6

-0.4
-0.2

ECEF XECEF Y
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Example: (Iterations 1 and 2)

Calculated Measured
Iteration 1 Iteration 2

Calculated Measured

ˆ
corr

Calculated
(corrected)

ˆ
corr

Calculated
(corrected)

PRN Calculated PR Measured PR Delta Rho

12 24915130.980 24915088.264 42.716

2 22135355.242 22135304.471 50.771

26 22003576.788 22003529.125 47.662

PRN Calculated PR Measured PR Delta Rho

12 24943810.919 24915088.264 28722.655

2 22117181.292 22135304.471 18123.179

26 22013598.807 22003529.125 10069.682

15 22645023.243 22644973.532 49.711

29 21026941.948 21026908.513 33.435

21 24777000.804 24776961.101 39.703

30 24055278.650 24055233.876 44.773

15 22660408.867 22644973.532 15435.335

29 20990847.857 21026908.513 36060.657

21 24757718.148 24776961.101 19242.953

30 24064325.866 24055233.876 9091.990
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Example: Solution and Residuals (Iterations 1 and 2)

TT HHHx
1

ˆˆ

TT HHHx
1

ˆˆ

Iteration 1 Iteration 2

xxx
oldnew uu

ˆ
olduxˆ

newux x
506075 869 506068 143 7 726

xxx
oldnew uu

506068 143 506071 529 3 386

ˆ
olduxˆ

newux x
506075.869 506068.143 7.726

4882274.608 4882283.665 9.057

4059622.275 4059632.252 9.977

13.120 63.927 50.807

506068.143 506071.529 3.386

4882283.665 4882278.667 4.998

4059632.252 4109624.557 49992.305

63.927 15.807 48.120

v H xResiduals:
v H x

3. 0 63.9 7 50.807

v H x

PRN

Residuals:
v H x v H xPRN

12 4.208 42.716 46.924

2 0.220 50.771 50.551

26 0.248 47.662 47.910

PRN

12 9.162 28722.655 28713.493

2 1.699 18123.179 18124.878

26 6.800 10069.682 10076.482

v H x

15 2.103 49.711 47.609

29 1.946 33.435 35.381

21 0.431 39.703 39.272

30 3.648 44.773 41.125

15 0.178 15435.335 15435.513

29 4.853 36060.657 36065.510

21 3.299 19242.953 19239.654

30 5.436 9091.990 9097.426
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Example: H Matrix (Iterations 2 and 3)

0 4187 0 7038 0 5739 1

Iteration 2 Iteration 3

0 4187 0 7038 0 5739 1

H =

0.4187 0.7038 0.5739 1

0.8590 0.3606 0.3635 1

0.4096 0.8900 0.2003 1

0.2612 0.9149 0.3076 1 H =

0.4187 0.7038 0.5739 1

0.8590 0.3606 0.3635 1

0.4096 0.8900 0.2003 1

0.2612 0.9149 0.3076 1

0.4172 0.5524 0.7217 1

0.9204 0.0636 0.3857 1

0.7712 0.6104 0.1808 1

0.4172 0.5524 0.7217 1

0.9204 0.0636 0.3857 1

0.7712 0.6104 0.1808 1

0.6 0.6

0 4

-0.2

0

0.2

0.4

EC
EF

 Z

0 4

-0.2

0

0.2

0.4

EC
EF

 Z

-0.5

0

0.5

-0.8
-0.6

-0.4
-0.2

-0.4

ECEF XECEF Y

-0.5

0

0.5

-0.8
-0.6

-0.4
-0.2

-0.4

ECEF XECEF Y
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Example: (Iterations 2 and 3)

Calculated Measured
Iteration 2 Iteration 3

Calculated Measured

ˆ
corr

Calculated
(corrected)

ˆ
corr

Calculated
(corrected)

PRN Calculated PR Measured PR Delta Rho

12 24915130.980 24915088.264 42.716

2 22135355.242 22135304.471 50.771

26 22003576 788 22003529 125 47 662

PRN Calculated PR Measured PR Delta Rho

12 24915084.055 24915088.264 4.208

2 22135304.691 22135304.471 0.220

26 22003528 878 22003529 125 0 24826 22003576.788 22003529.125 47.662

15 22645023.243 22644973.532 49.711

29 21026941.948 21026908.513 33.435

21 24777000.804 24776961.101 39.703

30 24055278 650 24055233 876 44 773

26 22003528.878 22003529.125 0.248

15 22644975.634 22644973.532 2.103

29 21026906.567 21026908.513 1.946

21 24776961.532 24776961.101 0.431

30 24055237 525 24055233 876 3 64830 24055278.650 24055233.876 44.773 30 24055237.525 24055233.876 3.648
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Example: Solution and Residuals (Iterations 2 and 3)

TT HHHx
1

ˆˆ

TT HHHx
1

ˆˆ

Iteration 2 Iteration 3

xxx
oldnew uu

ˆ
olduxˆ

newux x
506075 869 506068 143 7 726

xxx
oldnew uu

ˆ
olduxˆ

newux x
506075 869 506075 869 0 000506075.869 506068.143 7.726

4882274.608 4882283.665 9.057

4059622.275 4059632.252 9.977

13.120 63.927 50.807

506075.869 506075.869 0.000

4882274.608 4882274.608 0.000

4059622.275 4059622.275 0.000

13.120 13.120 0.000

v H xResiduals:
v H xPRN

v H xResiduals:
v H x PRN

On order 
of 10-6

v H xPRN

12 4.208 42.716 46.924

2 0.220 50.771 50.551

26 0.248 47.662 47.910

v H x PRN

12 4.208 42.716 46.924

2 0.220 50.771 50.551

26 0.248 47.662 47.910

15 2.103 49.711 47.609

29 1.946 33.435 35.381

21 0.431 39.703 39.272

30 3.648 44.773 41.125

15 2.103 49.711 47.609

29 1.946 33.435 35.381

21 0.431 39.703 39.272

30 3.648 44.773 41.125
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Convergence
54

• Practically speaking, getting the system to converge 
with GNSS is easywith GNSS is easy
– Example showed case where initial guess was 50 km in 

error
Can start with the center of the Earth as a guess and it– Can start with the center of the Earth as a guess, and it
would only add an iteration or two

– Normally, a receiver will use its last solution as a starting 
point so only a single iteration is necessarypoint, so only a single iteration is necessary

• Nonlinearities (which drive the need for iteration) are 
more severe when dealing with pseudolites
– Much closer to receiver than satellite
– H matrix varies more quickly as a function of position
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Effect of Geometry on Positioning Accuracy 
(Foghorn Example)g

Consider the foghorn example, except allow for a measurement error

Good Geometry Example Poor Geometry Example

g p p
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Obtaining Cx from Least-Squares Analysis (2/2)

• According to least-squares theory:
1

HCHC T

– Basic assumptions
• Measurement errors are zero-mean
• Measurement errors have a Gaussian distribution

HCHCx

Measurement errors have a Gaussian distribution
• Recall that the least-squares solution with measurement 

weighting was
111 CHHCHx TT

– Consider case where the nominal position and clock error (used to 

1CHC

CC

x

T

p (
calculate ) are actually the true position and clock error

• The represents the measurement errors
• The x represents the position and clock errors
• The Cx matrix is a multiplier for the measurement errors ( )x p ( )

– “Large” Cx values large position errors
– “Small” Cx values small position errors
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Dilution of Precision (DOP)

• In GPS, the concept of Dilution of Precision (DOP) is used
– Based upon covariance matrix of position and clock errors (Cx)
– Additional assumptions

• All measurements have the same variance
2222 ...

21 n

• Measurement errors are uncorrelated (i.e.,covariance values are zero) 

U i h i

21 n

kj
kj

,0

– Using these assumptions
2IC

and
21

HHCx

T

1T– The matrix             is called the DOP matrix
• Directly relates measurement errors to position errors 

1
HHT
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Use of Local-Level Coordinate Frame (1/2)

• Normally, DOPs describe errors in geodetic (local-level) coordinate 
frame (east, north, up), rather than the ECEF frame.
– Need to modify the H matrix so that the errors refer to the local-level frame
– Original H matrix (used to calculate position)

1

11
T

T

E

E

a

a

1

12

TE
n

E

a

a
H

• “a” vectors are unit line-of-sight vectors between user and SV in ECEF frame
• This will give the Cx matrix described previously

– New H matrix for DOP calculations 11

TGa

1

12

T

T

G

G
G

a

a
H

• “a” vectors are now unit line-of-sight vectors between user and SV in geodetic (ENU) frame

1na
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Use of Local-Level Coordinate Frame (2/2)

• Local-level “a” vectors can be calculated using direction cosine 
matrix (DCM)

EG
E

G aCa

G
EC

fU)N(Ed ti
toECEFfromrotatesthatDCM

When HG is used to calculate the covariance

TE
G

E
G

G
E CCC

1

frameU)N,(E,geodetic

2
1

GGT

HHC• When HG is used to calculate the covariance                              , 
then Cx is defined as

HHCx

2

uteeuene

2

2

2

u

u

tuunueu

tnnunen

xC

– This is what we desire to describe using DOPs

uuuu ttutnte
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DOP Values

• Desirable to characterize the Cx matrix using a single 
numbernumber
– For DOPs

• Cross-correlation terms ignored
• Root-Sum-Square (RSS) value of variables of interest, normalized by UERERoot Sum Square (RSS) value of variables of interest, normalized by UERE

• Example:

UERE

tune uGDOP

2222

• GDOP can be calculated directly from DOP matrix

14131211 DDDD

44332211

44434241

34333231

24232221
1

DDDDGDOP

DDDD

DDDD

DDDD
GGT

HH

• Note that GDOP relates UERE with RSS of errors

UEREtune GDOP
u

2222

Key relationship!
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Types of DOPs

• The “Big Three”
– GDOP (Geometric DOP)

• Less common (for 
navigators, at least!)
– VDOP (Vertical DOP)

44332211 DDDDGDOP

UEREtune GDOP
u

2222 33DVDOP

– PDOP (Position DOP)
– TDOP (Time DOP)

UEREu VDOP2

– TDOP (Time DOP)
332211 DDDPDOP

UEREune PDOP222

44DTDOP

UEREt TDOP2

– HDOP (Horizontal DOP) • Note: time is in units of meters

2211 DDHDOP

UEREtu

UEREne HDOP22
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Typical DOP Plot

Dayton Ohio – 24 Apr 2003 – All Visible SVs (above 10 elevation)
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Kalman Filtering Overview
• Kalman filtering is an estimation approach that can be applied to 

the GPS positioning application
– Many other application areasMany other application areas

• Concepts
– Information describing the system

• State vector
• Covariance matrix

– Propagating state and covariance forward in time
– Using measurements to update the state and covariance

Will be co ered at concept al le el• Will be covered at conceptual level
– Very few equations
– Purpose is to describe concept of Kalman filtering as applied to this 

problemproblem
– Additional references:

• Maybeck, Stochastic Models, Estimation, and Control, vols. 1-3, Navtech, 1994.
• Gelb (ed.), Applied Optimal Estimation, M.I.T. Press, 1994.
• Many others• Many others
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Kalman Filtering:
Information Describing the System (1/2)g y

• State vector
– Set of variables that

D ib thi t t k b t th t• Describe everything you want to know about the system
• Include all of the information needed to determine how the system changes over 

time
– Example: A reasonable state vector for positioning a hot air balloon 

would bewould be

z

y

x

balloonofpositionECEFzyx

y

x

z
x

balloonofvelocityECEF
balloonofpositionECEF

zyx

zyx

,,

,,

– Does this describe what we want to know?
– Does this describe how the system changes over time?

z

– Would this be a good state vector for a fighter aircraft?
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Kalman Filtering:
Information Describing the System (2/2)g y

• Covariance matrix
– The covariance matrix basically describes how well the state isThe covariance matrix basically describes how well the state is

known
• If the system only gives a state output, it’s not that useful.
• If it outputs the state and tells how accurate it is, then you have information 

that you can confidently act upon.
• Hot air balloon example: the system state tells me that I’m 300 m above the 

ground descending at a rate of 10 m/sec.
– Need to know covariance matrix as wellNeed to know covariance matrix as well.

» Case 1: Position accuracy = 10 m 1- , velocity accuracy = 1 
m/sec 1- probably not in danger until ~30 seconds

» Case 2: Position accuracy = 400 m 1- , velocity accuracy = 15 
/ 1 ld hit th d d!m/sec 1- you could hit the ground any second!

– How to interpret covariance matrix
• Diagonal terms are the error variances of the estimated states

Off diagonal terms are cross covariances describing the correlations of the• Off-diagonal terms are cross-covariances, describing the correlations of the
errors between the states
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Kalman Filtering:
Propagating Covariance and State Forward in Timeg g

• State vector and covariance matrix can be propagated forward 
in time
– If you know the current state estimate, you can determine the state 

i i i h festimate at a point in the future
– If you know the current covariance matrix, you can determine the 

covariance matrix at a point in the future
– Information about how the state and covariance changes over timeInformation about how the state and covariance changes over time

is given in
• Dynamics matrix F:

• State transition matrix :

Fxx

)()()( 0011 tttt xxState transition matrix :

– When propagating covariance forward in time, process noise is
added to account for

U d l d d i

)()()( 0011 tttt xx

• Unmodeled dynamics
• Unmodeled system inputs
• Anything else that decreases the ability to predict the future state using the 

current state
Process noise increases uncertainty (i e larger covariance values)– Process noise increases uncertainty (i.e., larger covariance values)
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Kalman Filtering:
Measurement Updates

• A measurement  gives information about the state values
– Examples: GPS pseudorange (for position or clock bias) or Doppler (for 

velocity or clock drift)velocity or clock drift)
• Effects of a measurement update

– State values are adjusted to reflect the measurement
Covariance matrix is adjusted to reflect how well the state is known now– Covariance matrix is adjusted to reflect how well the state is known, now
that the measurement is available

• Measurements always decrease uncertainty (i.e., smaller covariance values)

• Measurement noiseeasu e e t o se
– Description of how precise the measurement is
– The effect of measurement on state and covariance determined by 

tradeoff between
• Measurement noise (how good the measurement is)
• Covariance matrix (how well the state is known at this point)

• Relationship between measurement and states given by H matrix
( l t )(same as least-squares)
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Inertial Navigation Systems
68

• Sensors
– AccelerometersAccelerometers

• Measure specific force f = a + g
– Gyroscopes

• Measure rotation about an inertial frameMeasure rotation about an inertial frame
– Altitude aiding (required!)

• Normally a barometric altimeter, but can be other things

• Mechanization equations• Mechanization equations
– Attitude computation
– Resolution of accelerometers into desired frame
– Subtraction of gravity
– Double integration
– Accounting for rotation as vehicle moves around Earthg
– Schuler oscillation
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Error Characteristics of Inertial Systems
69

• Very good high-frequency characteristics
• Long-term drift (poor low-frequency characteristics)• Long-term drift (poor low-frequency characteristics)
• Categorization of inertial systems

– Navigation-grade
– Tactical-grade
– Commerical-grade

• All inertial systems have errors that grow unbounded• All inertial systems have errors that grow unbounded
unless aided by another sensor

• What would be the ideal sensor?
– Good low-frequency characteristics (little long term drift)
– Doesn’t necessarily need to have good high-frequency 

characteristics
• Good candidate: GPS!



John F. Raquet, 2009

Loosely Coupled, Feed-Forward 
INS/GPS Integration Approach

70

g pp

V
pos vel att ˆˆ ˆl ttINS

Mechanization
, ,ins ins inspos vel att , ,pos vel att

+ -

ˆ

ˆ

ins

ins

pos

vel

ˆ
insatt

pos Kalman
Filter

GPS
Receiver

GPSpos
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Tightly Coupled, Feed-Forward 
INS/GPS Integration Approach

71

g pp

V
pos vel att ˆˆ ˆl ttINS

Mechanization
, ,ins ins inspos vel att , ,pos vel att

+ -

ˆ

ˆ

ins

ins

pos

vel

ˆ
insatt

Kalman
Filter

GPS
Receiver

pseudorange
(or other meas)



John F. Raquet, 2009

Loosely Coupled, Feedback 
INS/GPS Integration Approach

72

g pp

V
pos vel att ˆˆ ˆl ttINS

Mechanization
, ,ins ins inspos vel att , ,pos vel att

+ -

ˆ

ˆ

ins

ins

pos

vel

ˆ
insatt

pos Kalman
Filter

GPS
Receiver

GPSpos
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Tightly Coupled, Feedback 
INS/GPS Integration Approach

73

g pp

V
pos vel att ˆˆ ˆl ttINS

Mechanization
, ,ins ins inspos vel att , ,pos vel att

+ -

ˆ

ˆ

ins

ins

pos

vel

ˆ
insatt

Kalman
Filter

GPS
Receiver

pseudorange
(or other meas)
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GPS and Time

• Four relevant time standards:
– UT1: Based on Earth’s rotation with respect to sun
– TAI (International Atomic Time)

• Fundamental SI unit of time
• 1 second = duration of 9,192,631,770 periods of the radiation corresponding to the translation 

between two hyperfine levels of the ground state of the Cesium 133 atom1between two hyperfine levels of the ground state of the Cesium 133 atom
– UTC: Atomic-based time standard (tracking TAI), artificially adjusted to stay 

within 0.9 sec of UT1
• Occasional leap-second

– GPS system time: atomic-based time standard based upon UTC (but without 
leap-seconds)

• GPS control segment attempts to have GPS system time closely follow UTC

GPS UTC time difference is transmitted in navigation message• GPS-UTC time difference is transmitted in navigation message
)( 010/ UGPSLSUTCGPSGPSUTC ttAAtttt

Seconds
Leap

– 1- accuracy of tUTC/GPS is approx. 10 ns
1Seeber, G.  Satellite Geodesy: Foundations, Methods, and Applications, Walter De Gruyter, 1993.

Seconds
From Nav Message
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Comparison of UTC and UT1 with TAI

http://hpiers.obspm.fr/eop-pc/earthor/utc/leapsecond.html
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History of UTC-GPS Time Differences

Date

GPS-UTC Time 

(sec)

6 Jan 1980 0 (Start of GPS system time)6 Jan 1980 0

1 Jul 1981 1 

1 Jul 1982 2

1 Jul 1983 3

(Start of GPS system time)

1 Jul 1983 3

1 Jul 1985 4 

1 Jan 1988 5

1 Jan 1990 61 Jan 1990 6

1 Jan 1991 7 

1 Jul 1992 8

1 Jul 1993 91 Jul 1993 9

1 Jul 1994 10 

1 Jan 1996 11 

1 Jul 1997 12Ju 99

1 Jan 1999

1 Jan 2006

13

14

1 Jan 2009 15
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Differential GPSDifferential GPS

“What in the world is differential GPS, and 
how does it work?”
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Differential GPS Concept

Satellite “a”

Error Type Comparison between
Meas1

a and Meas2
a DGPS Effect on Error

Satellite clock error Same Removed
Receiver clock error Different (uncorrelated) Added

Receiver 1

Receiver 2
(Receiver to 

Position)

Receiver clock error Different (uncorrelated) Added
Ephemeris error1 Very similar2 Reduced2

SA – dither Same Removed
SA – epsilon Very similar2 Reduced2

Ionospheric delay Very similar2 Reduced2

Tropospheric delay Very similar2 Reduced2

(Reference
Receiver)

Position) Tropospheric delay Very similar2 Reduced2

Multipath Different (uncorrelated) Added (and amplified)
Measurement noise Different (uncorrelated) Added (and amplified)

1Effect of ephemeris error on positioning (actually only affects the calculated
range, not the actual measurement)
2Errors grow as the separation distance between receivers 1 and 2 increases.
(The errors are the same and are removed for very short baseline distances).
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DGPS Variations
• DGPS is a broad term, and there are many different ways DGPS can be 

applied.
– Measurements usedMeasurements used

• Code only
• Carrier-smoothed code
• Carrier-phase

Application type– Application type
• Positioning
• Attitude

– Position domain vs. measurement domain
ibl– Post-processing vs. real-time

– Type of correction
– Number of reference receivers

Area of coverage

576 possible
combinations!

– Area of coverage
• LADGPS
• RADGPS
• WADGPS

Diff i th d d– Differencing method used
• Single-differencing
• Double-differencing

• Each of these will be covered in the slides that follow.
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DGPS - Measurements Used (1/5)
• The type of measurements is one of the primary distinguishing 

factors between different DGPS implementations
C d l– Code only

• Simplest to implement
• Based purely on pseudorange measurements
• In best case (short baseline), errors include code multipath and noise
• Typical accuracy: 2-4 m

– Carrier-smoothed code
• Carrier-phase measurement is very precise (~1 cm), but it is not an absolute 

measurement (due to unknown integer ambiguity).measurement (due to unknown integer ambiguity).
• Code (pseudorange) measurement is absolute, but it is much less precise (~1-2 m).
• A filter can be used to combine the carrier-phase and the code measurements to 

take advantage of their respective strengths.
– Filter time constant limited by code-carrier ionospheric divergence (due toFilter time constant limited by code carrier ionospheric divergence (due to

different signs on ionospheric error term)
• Carrier-phase smoothing of the code essentially removes most of the code multipath 

and noise
• Typical carrier-smoothed code DGPS accuracy: 0.1-0.5 myp y
• Relatively easy to implement
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DGPS - Measurements Used (2/5)

• Type of measurements (continued)
– Carrier-phase

• GPS receiver can track exact phase of incoming GPS carrier
– Can determine “where” in the cycle
– Cannot determine “which” cycle
– Results in an unknown integer ambiguityg g y

• If carrier-phase integer ambiguities can be determined, then the carrier-phase 
measurement will yield the most precise (and accurate) positioning possible

• Fairly complex to implement
• Difficult to resolve integer ambiguities over long reference/mobile receiver g g g

baselines
• Normally requires some period of time to resolve ambiguities

– 1-3 minutes typical
– Depends upon baseline distance, algorithmp p , g

• Extremely sensitive to loss of carrier-lock (or cycle slips)
• Often, code measurements will be used to initially aid in determining the integer 

ambiguities
– Final solution normally based primarily on carrier-phase measurementsy p y p

• Typical accuracy: 0.01-0.05 m
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DGPS - Measurements Used (3/5)
Sample Comparison of Horizontal Error
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DGPS - Measurements Used (4/5)
Sample Comparison of Altitude Error

30
Altitude Error

Single-Point
Code DGPS

20

25
Code DGPS
Carrier-smoothed Code DGPS
Carrier DGPS

15

rro
r (

m
)

5

10Er
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0

242600 242720 242840 242960 243080 243200
-5

10:23 10:25 10:27 10:29 10:31 10:33
GPS Week Seconds/Local Time
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DGPS - Measurements Used (5/5)
Sample Comparison of 3-D Error

102
3-Dimensional Error

Single Point (Non-Differential)

101

Single Point (Non Differential)

Code DGPS

100

ro
r (

m
)

Carrier-smoothed Code DGPS
10-1Er

r

Carrier-Phase DGPS (Integers Resolved)

Carrier smoothed Code DGPS

10-2

242600 242720 242840 242960 243080 243200
10-3

10:23 10:25 10:27 10:29 10:31 10:33
GPS Week Seconds/Local Time
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DGPS - Application Type (1/2)

• DGPS gives relative position between two receivers
– Can be expressed as a 3-D vectorCan be expressed as a 3 D vector

• This relative positioning information can be used in 
two ways
– Positioning (most common)

• Know position of reference receiver
• Can calculate position of “mobile” receiver

E i f i iti ill lt i bil i• Errors in reference receiver position will result in mobile receiver
positioning errors

Receiver 2
(Receiver to 

Receiver 1
(Reference
Receiver)

(
Position)
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DGPS - Application Type (2/2)
• This relative positioning information can be used in two 

ways (continued)
Attitude determination– Attitude determination

• Antennas are in fixed, known configuration relative to defined “body” axes
• Relative position vector between antennas is function of attitude of body
• Can calculate attitude using relative position vector

– Two antennas two attitude axes (e.g., yaw and pitch)
– Three or more antennas complete attitude

• Normally based on carrier-phase differential techniques with integer ambiguity 
resolution for most precise resultsp

– Relatively easy to resolve integer ambiguities in this case
• Attitude accuracy depends upon

– Accuracy of relative position vector
Distance between antennas– Distance between antennas

r2

r1 r2 - r1
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DGPS - Position vs. Measurement Domain (1/2)

• Position Domain
– Reference receiver at known point (origin of plot)
– Mobile receiver located to the northeast
– Horizontal position of both receivers plotted on local coordinate 

system
80

40

60
Mobile

Receiver
• Note error correlation 

between mobile and 
reference receiver 
errors

• Could correct mobile 

-20
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20
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rth
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receiver using known 
reference receiver 
position errors

• Requires that both 
receivers use identical

-60

-40
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Additional
Satellite

receivers use identical
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solutions!

-20 0 20 40 60 80 100 120 140
-80

Easting (m)

Reference
Receiver



John F. Raquet, 2009 88

DGPS - Position vs. Measurement Domain (2/2)

• Measurement domain
– Differential corrections are given for each measurement
– These corrections are then applied to the mobile receiver 

measurements
• Results in corrected measurements
• Position calculated using corrected measurements• Position calculated using corrected measurements

– Advantages
• Doesn’t require same satellite coverage at mobile and reference receivers

– Reference receiver can only generate corrections for measurements that it 
can see

• Standardized formats are defined
– RTCM SC-104 messages

• Makes it possible to detect individual measurement errors
– Disadvantages

• Requires that more data be transmitted to mobile user than position domain 
approach

• Not generally a large problem with modern radio data modemsNot generally a large problem with modern radio data modems
• Insignificant for non-real-time applications
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DGPS -
Post-Processing vs. Real-Timeg

• Post-processing
– Data is collected separately by each receiver
– Later, data is combined and processed
– Advantages

• No data latency (can correlate times exactly)
• Does not require real-time data linkq
• Easier to implement (both hardware and software)
• Can study and fix anomalies
• Allows for use of other data and tools that may not be available real-time

– Precise orbits
– Ionospheric grid data

• Real-time
– Differential corrections are sent to mobile receiver as soon as possible (i.e., 

near real-time)near real-time)
• Hard-wire (close applications)
• Ground radio data link (10s of km)
• Satellite data link (large areas)

Advantages– Advantages
• Many applications require real-time positioning!
• Reduces data turn-around time, enables field checking
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DGPS - Type of Correction

• Two ways to give corrections in measurement domain
– Corrections to measurements

• Actual correction values to be applied to each individual measurement
• Simple, easy to implement

– Explicit representation of errors
• DGPS corrections describe all of the errors in a particular measurement• DGPS corrections describe all of the errors in a particular measurement
• Sometimes, error functions or data are transmitted

– Different error sources can then be combined to generate a correction for a single 
measurement
Example– Example

» Precise ephemeris (to remove satellite position error)
» Ionospheric grid (to remove ionospheric error)
» Tropospheric model parameters (to improve tropospheric model)

Ad t• Advantages
– Generally valid for wider area of coverage
– More flexible

• Disadvantages
– More complex
– Requires more differential data to be transmitted
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DGPS - Number of Reference Receivers (1/4)

• Single reference receiver is simplest and most common case
– Errors grow as distance between reference and mobile receivers grows
– Motivates need for multiple reference stations for some applications

• Multiple reference receivers using code measurements
– Can involve anywhere from two to hundreds of reference receiversy
– Normally, different error sources are explicitly estimated (satellite position, 

ionosphere, etc.)
– Alternatively, individual measurement corrections can be generated for each 

reference station, and a linear combination of these corrections can be used 
to generate corrections for a specific point

• Based upon relative positions between specific point and reference receivers

2.3 m 2.6 m

A

B

Key
= Reference Rcvr

(pseudorange
error given)

= Position of mobileA

Example:

What should be the error at   
l ti A?

1.1 m1.5 m

Position of mobile
receiver A

= Position of mobile
receiver B

A

B

- location A?
- location B?
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DGPS - Number of Reference Receivers (2/4)

• Multiple reference receivers using carrier-phase 
measurementsmeasurements
– More difficult than code approaches because of integer 

ambiguities
• Motivation

Single Reference Receiver
• Motivation

100
Desired Coverage Area

Not Enough Coverage

20
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DGPS - Number of Reference Receivers (3/4)

• Motivation (continued)
Independent Ref Receivers

Desired Coverage Area
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Not Efficient
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DGPS - Number of Reference Receivers (4/4)

• Motivation (continued) Reference Receiver Network
Efficiently Covers Large Area
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DGPS - Area of Coverage

• DGPS is deployed on three different scales
– Local Area Differential GPS (LADGPS)

• Covers tens of km
• Typically involves single reference station
• Accuracy varies between ~ 0.01-2 m
• Example: aircraft landing, surveying

– Regional Area Differential GPS (RADGPS)
• Covers hundreds of km
• Involves multiple reference receivers

p g, y g

– Wide Area Differential GPS (WADGPS)

Region of Interest• Can achieve decimeter (or sometimes centimeter) 
level accuracy

• Example: Norwegian reference receiver network

– Wide Area Differential GPS (WADGPS)
• Covers thousands of km
• Involves multiple reference receivers
• Not as accurate as RADGPS or LADGPS (typically 1-2 m ( yp y

accuracy)
• Example: Wide Area Augmentation System (WAAS) for 

non-precision (and Cat I) approach
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RADGPS Coverage Example
L1 vs. WL - Conditions of Test

L1 - 30.4% Coverage WL 99 1% Coverage
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RADGPS Coverage Example
L1 vs. WL - Increased Ionospherep

Increased Ionosphere - L1 
4 1% Coverage

Increased Ionosphere – WL
49.4% Coverage
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DGPS - Differencing Methods -
Pseudorange Measurement Errorsg

• Two types of differencing methods are common
– Single differencingSingle differencing
– Double differencing

• Choice of method depends upon application.  Typically
– Code differential single differencing
– Carrier-phase differential double differencing

• Pseudorange errorsPseudorange errors
– Original representation

)( Dsvu tttcr

ttttttt

neglect

– Simplification
SAhwmpresnoiseionotropD ttttttt &

tctctctctctctcr SAmpresnoiseionotropsvu &

SAmITtctcr svu
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DGPS - Differencing Methods (1/2)
• Single differencing

– Difference measurements between one satellite and two receivers

aaa
2112a

2

Satellite a

aaaaaa
svu

a

aaaaaa
svu

a

SAmITtctcr

SAmITtctcr

22222

11111

2

1
a
1

2

aaaa
u

aa mITtcr 121212121212 12

– SV clock error and SA cancelled1

– Tropospheric ionospheric errors reduced

Receiver 2Receiver 1

– Tropospheric, ionospheric errors reduced
– Multipath and noise amplified (by factor of      )

1Assuming that only the dither portion of SA is utilized (if SA is on at all!)

2
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DGPS - Differencing Methods (2/2)

• Double differencing
– Difference between two single difference measurementsg

Satellite bSatellite a

b
1

b
2

a
1

a
2

aaaaa

bbaabaab

mITtcr

2121121212 )(

abababababab

bbbb
u

b

u

mITr

mITtcr

mITtcr

121212121212

1212121212

1212121212

12

12

– SV clock error, rcvr clock error, and SA cancelled1

Receiver 2Receiver 1

mITr 121212121212

, ,
– Tropospheric, ionospheric errors reduced
– Multipath and noise amplified (by factor of 2)

1Assuming that only the dither portion of SA is utilized (if SA is on at all!)
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Implementation of LADGPS Using Code 
Measurements

“OK, so now I know what DGPS is in all of its 
variations.  How do I actually implement it?”
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DGPS Implementation

• Will cover the simplest DGPS case (for positioning)
– Code measurementsCode measurements
– Measurement domain
– Post-processing

C ti t t– Corrections to measurements
– Single reference receiver
– LADGPS
– Single-differencing

• While the simplest, this is also the most common
Understanding this case will give insight into most other– Understanding this case will give insight into most other
cases

– Algorithmically very similar to single-point positioning 
algorithmalgorithm
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Single Differencing vs. Measurement Corrections

• Two ways to approach the problem using single differencing
– Use of single difference observables

• Generate the single difference observables
• Re-derive the positioning algorithms in a manner parallel to what was shown for 

single-point positioning
• Use the single difference observables to estimate position (using the newly• Use the single difference observables to estimate position (using the newly

derived algorithm)
– Use of measurement corrections

• Use the reference receiver measurements and known position to calculate p
measurement corrections for each satellite

– Calculation of measurement corrections does not require knowledge of 
mobile receiver measurements or position

• Apply measurement corrections to mobile receiver measurements effectively• Apply measurement corrections to mobile receiver measurements, effectively
reducing the errors in those measurements

• Perform single-point positioning using the corrected pseudorange measurements 
(rather than the original, uncorrected measurements)

– Both methods are completely identical!
• Will yield same results
• Differ only in conceptual approach
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Generating (and Interpreting) 

Measurement CorrectionsMeasurement Corrections
• Denote reference receiver as receiver 1
• Reference receiver position is knownReference receiver position is known
• Can calculate satellite position for each measurement

– Important note: This position will be generally different from the 
position calculated for the mobile receiver even though it’s theposition calculated for the mobile receiver, even though it s the
same satellite at the same time epoch.  Why?

• Measurement correction for satellite a (     ) calculated by
a

a
1

aaaaaa

sv

a

u

a

calc
a

a

calc
aa

SAmITtctcrr

r

111111111

111

– This measurement-minus-range value is essentially a 
measurement of the errors that should be removed from the

aaaaaa

sv

a

u

a

eph SAmITtctcr 11111111

measurement of the errors that should be removed from the
mobile receiver! 
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Applying Measurement Corrections (1/2)
• Denote mobile receiver as receiver 2
• Pseudorange measurement from satellite a is represented by

• Apply measurement correction:

aaaaaa

sv

a

u
aa SAmITtctcr 222222222

aaa

aaaaaaaa

aaaaaa

sv

a

u
a

corr

SAmITtctcr

SAmITtctcr 22222222

122

– Receiver clock error is now the difference between the reference and

aaaaa

u

a

u

a

eph
a

svueph

mITtctcrr

SAmITtctcr

212121211212

11111111

Receiver clock error is now the difference between the reference and
mobile receiver clock errors

– SV clock and SA completely removed
– Ionospheric and tropospheric errors reduced (removed for short 

baselines)
– Multipath and noise are now difference between reference and mobile 

receiver multipath and noise
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Applying Measurement Corrections (2/2)

• Corrected measurement (from last slide)
aaa

– This is very similar to single difference measurement!

aaaaa

u

a

u

a

eph
a

corr

mITtctcrr 212121211212

122

This is very similar to single difference measurement!
• Note that this corrected measurement includes the difference 

between the actual and calculated ranges between the satellite 
and the reference receiverand the reference receiver

In the process of generating position solution using least squares

a

calc
aa

eph rrr
111

– In the process of generating position solution using least-squares
(or any other method), the calculated range between mobile 
receiver and satellite will be subtracted from the measurement

– Ephemeris prediction errors will nearly cancel as well.p p y
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DGPS ErrorsDGPS Errors

“So now I know what DGPS is and how it is 
applied.  What kinds of errors can I expect, 
and how do those errors grow with baselineand how do those errors grow with baseline

distance?”
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DGPS Errors

• Errors completely cancelled by DGPS
– Receiver clock error
– Satellite clock error
– SA1

• DGPS errors can be grouped into two classes
U l t d– Uncorrelated errors

• Errors that are not spatially related
• Do not increase with reference/mobile baseline distance
• Include multipath and measurement noise

DGPS t ll i th• DGPS actually increases these errors
Typical Multipath + Noise Error Standard Deviation Values

Single Meas Single Double
(non-DGPS) Difference Difference

– Correlated errors
• Are spatially related

Increase with baseline distance

Code 0.5-1.5 m 0.7-2.1 m 1-3 m
Carrier-Phase 0.2 - 1 cm 0.3 - 1.4 cm 0.4 - 2 cm

• Increase with baseline distance
• Include satellite position (ephemeris), ionospheric, and tropospheric errors

1Assuming that only the dither portion of SA is utilized (if SA is on at all!)
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Differential Satellite Position Errors

• Satellite position errors are errors in ephemeris that cause 
calculated SV position to differ from true SV position
– Absolute (non-DGPS) error

• Zenith: ~1 m (1- )
• Non-zenith axes: ~3 m (1- )

For a given measurement it is the projection of the 3 D SV position– For a given measurement, it is the projection of the 3-D SV position
error onto the measurement line-of-sight vector that counts

• With DGPS, line-of-sight vectors converge as reference/mobile baseline distance 
goes to zero

– Satellite position error can be determined using precise ephemeris 
as truth

• Precise ephemeris accurate to ~10 cm
Differential satellite position errors typically less than 5 cm (1- )– Differential satellite position errors typically less than 5 cm (1- ),
except for very long baselines (> 500 km)

• True as long as same set of ephemeris is used for both reference and mobile 
receivers
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Sample SV Position DGPS Error (Double Difference)

Data collected in Norway on Sep 30th, 1998
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Differential Ionospheric Errors

• Ionospheric errors are spatially correlated
– Signal from same satellite to two nearby receivers passesg y p

through approximately same ionosphere
• Exception: scintillation

– Highly local effects
Can affect one receiver but not another (unless receivers are– Can affect one receiver but not another (unless receivers are
collocated)

– DGPS ionospheric error follows same general trends as 
overall (non-DGPS) ionospheric error

• Maximum at ~14:00 local time
• Minimum at night
• Varies with solar cycle

– Ionospheric delay (or phase advance) can be precisely– Ionospheric delay (or phase advance) can be precisely
measured using linear combination of phase measurements

• Requires successful resolution of L1 and L2 carrier-phase ambiguities
• Accurate to ~1 cm (includes effects of carrier-phase multipath and 

i )noise)
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Sample Afternoon Ionospheric DGPS Errors 
(Double Difference)

Data collected in Norway on Sep 30th, 1998
(between minimum and mid-point of solar cycle)(between minimum and mid-point of solar cycle)
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Sample Nighttime Ionospheric DGPS Errors 
(Double Difference)

Data collected in Norway on Sep 30th, 1998
(between minimum and mid-point of solar cycle)(between minimum and mid-point of solar cycle)
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Differential Tropospheric Errors
• Tropospheric errors highly sensitive to altitude of receiver and 

elevation of satellite
– Most of the error can be effectively modeledy
– Important to always apply tropospheric model for DGPS

• If don’t apply, then can introduce differential errors on order of meters for receivers at 
different altitudes

• Should use same tropospheric model (if possible)p p ( p )
• With a good model, differential tropospheric errors are relatively 

small
– Under normal conditions don’t exceed ~3 cm (1- ) for baselines < 500 

kkm
– Can be worse under extreme conditions (e.g., high humidity)

• Differential tropospheric error can be calculated from carrier-phase 
measurementsmeasurements
– Use ionospheric-free combination with precise orbits to remove other 

errors
– All that remains is tropospheric error (plus multipath and noise)
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Sample Tropospheric DGPS Errors 
(Double Difference)

Data collected in Norway on Sep 30th, 1998
Modified Hopfield Tropospheric Error Model AppliedModified Hopfield Tropospheric Error Model Applied
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DGPS - Practical Considerations
• Reference/remote receiver baseline distance

– Code DGPS
• Multipath and Noise DominatesMultipath and Noise Dominates
• Under normal conditions, other errors don’t become significant until baseline reaches 

100-200 km.
– Carrier-phase DGPS (ambiguity resolution)

• Ambiguity resolution process is based upon tests of measurement residualsAmbiguity resolution process is based upon tests of measurement residuals
• Errors (especially biases) in measurements cause significant problems for ambiguity 

resolution
• Typical max baseline length to resolve ambiguities effectively (kinematic mode):

– L1 only: 15-25 km
– L1 and L2 (widelane): 40-60 km

• Data latency
– Takes some amount of time for corrections to arrive at mobile receiver 

for real-time DGPSfor real-time DGPS
– SA was “fastest-moving” error (when it existed)

• Max of 19 mm/s2 acceleration and 2 m/s range rate
• Data latency of 1 second could cause up to 2 m of DGPS error

S ti ti d ti d i ti t itt d– Sometimes, corrections and time derivatives are transmitted



Carrier-Phase Integer 
Ambiguity Resolution

Taking the Mystery out of 
R l i A bi itiResolving Ambiguities
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Ambiguity Resolution 
BackgroundBackground

• History and terminology
Field started with surveyors (static)– Field started with surveyors (static)

– Stop-and-go
– Kinematic
– On-the-fly– On-the-fly

• Ambiguity resolution baseline lengths
– Static, 12+ hours of dual-frequency data, 

top-notch software: over 1000 km (withtop notch software: over 1000 km (with
accuracies of a few mm!)

– Kinematic, 10+ minutes of dual frequency 
data, widelane ambiguities: ~60 km

– Kinematic, 10+ minutes of single frequency 
data, L1 ambiguities: ~20 km

• Reader/listener beware!
– Algorithms are notoriously data-set 

dependent
• Easy to tweak the algorithm to work very well on 

a particular data set
• Much more difficult to get it to work well on just 

about any data set
• Results, especially those that show surprising 

improvement, should be taken with a grain of salt
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Why We Want to Resolve the Carrier-
Phase Integer Ambiguitiesg g

• Double-difference phase measurement 
error equation:error equation:

If h “ h t” b li ( l

Nm
f

I
Tr

2

1

– If we have a “short” baseline (e.g., less
than 15 km), then the atmospheric terms 
can be neglected:

N
1

• If we can determine N, then the 
double difference phase measurement 

Nmr

p
( ) is a very precise measurement 
of position
– What happens to the precision as the pp p

baseline length increases?



John F. Raquet, 2009 4

Basic Components of All Ambiguity 
Resolution Algorithmsg

• There are many different algorithms 
used to determine integer ambiguitiesused to determine integer ambiguities
– Can be intimidating to study
– Everyone brings their own slant to the 

problemproblem
• Most algorithms perform two primary 

operations
– Determine the ambiguity search spaceDetermine the ambiguity search space

• Come up with the sets of ambiguities that might 
be correct

– Selection of correct ambiguity set
• Pick the correct set of ambiguities out from your• Pick the correct set of ambiguities out from your

search space

• We’ll cover basic approaches for both 
of these operationsp
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Ambiguity Search Space

• Definition of ambiguity set
At any given measurement epoch there– At any given measurement epoch, there
are a set of double difference ambiguities

– We know they are all integers
– Example of three ambiguity setsExample of three ambiguity sets

SV Pair Amb Set 1 Amb Set 2 Amb Set 3
23-3 142093 142092 142093
23-6 -872329 -872329 -872329
23-18 3209874 3209875 3209873
23-27 -243098 -243097 -243098
23-29 49879087 49879087 49879088

• How might we arrive at these different 
sets of ambiguities?sets of ambiguities?
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Determining Ambiguity Search 
SpaceSpace

• Position-based approaches
Ambiguity function method– Ambiguity function method

• Search purely over position domain
• Will not cover in detail

– Use of knowledge of position to define 
candidate ambiguity sets

• Often generates too many candidate ambiguities
• Will not cover in detail

• Ambiguity-centered approaches (using• Ambiguity-centered approaches (using
primarily ambiguity estimates and 
covariance)
– Simple roundingSimple rounding

• Only works when errors are very low and you 
have very good estimates of ambiguities

– Least squares AMbiguity Decorrelation 
Algorithm (LAMBDA)Algorithm (LAMBDA)

• Will cover in following slides
– Fast Ambiguity Search Filter (FASF)

• Will cover in following slides
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Least squares AMbiguity 
Decorrelation Algorithm 

(LAMBDA)1(LAMBDA)1

• Developed by Teunissen in 1993
Oft bi it ti t b• Often, ambiguity estimates can be
highly correlated

– Low correlation example

98110615431N 00590006800159000560

0012.00011.00056.00109.0

986.10176265

941.10921812

073.10791937

981.10615431ˆ

15

14

13

12

N

N

N

N
X

0164.00037.00059.00012.0

0037.00188.00068.00011.0

0059.00068.00159.00056.0
NP

– High correlation example

744.10860011

428.10193431ˆ

13

12

N

N
X

12541262733040154540

2931.03040.12692.41378.2

9417.05454.01378.22901.6

NP

704.10593562

623.10853654

15

14

N

N
9983.21254.12931.09417.0

1254.12627.33040.15454.0

1Slides on LAMBDA method adapted from presentation by Capt Paul Henderson at AFIT, Summer 1999
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LAMBDA

• Basic idea
Decorrelate highly correlated phase– Decorrelate highly correlated phase
ambiguities from float carrier phase 
solution by applying an ambiguity 
transformation (Z-transformation)

• Not the z-transform used in signal processing

• Find floating point ambiguities and 
corresponding variance matrix (a, Qa)
– These results are highly correlated, 

especially for short observation periods
– Causes problems in finding integer 

solutionssolutions
• Transform floating point 

solution/variance to decorrelated 
ambiguities/varianceambiguities/variance
– Use “Z-transformation”
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LAMBDA Z-transform

• Z-Transformation

• Transformation must meet certain 

,ˆˆ xZz T ZQZQ z
T

z,xZz T

conditions to preserve the integer 
nature of ambiguities
– Must be volume preserving (one-to-one 

l i )relation)
– Must reduce the product of ambiguity 

variances
– Must have integer elements– Must have integer elements

• For a two dimensional example
01

T

2Z 10

1 12

1

z
TZ

121z
2 10

1

2
21212 intz

2
12121 intz
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LAMBDA Graphical Depiction

2-D Example (before)
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a1

2 D E l ( f )2-D Example (after)

7

9

8

a2
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1
76543 821 9 10 11
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LAMBDA Example

• Initial covariance:

340.2292.6978.5

544.0978.5290.6

NP

• Z-transform matrix:

288.6340.2544.0

• Z-transform matrix:

132

011

Z

• Transformed covariance:

133

334.0476.4230.0

082.0230.0626.0

NP

146.1334.0082.0

334.0476.4230.0NP
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LAMBDA (continued)

• The search space still may not contain 
the solution (correct gridpoint)the solution (correct gridpoint)
– Scale the search space to guarantee that it 

contains at least one gridpoint
– For best results scale the search space toFor best results scale the search space to

contain at least two gridpoints (for 
validation) but not many more than two

21
ˆ ˆˆ zzQzz z

T

• Results
– Graphs based on 10.4 km Baseline
– 7 satellites using dual frequency phase 

Qz

data
– Run on 486-66MHz PC
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Fast Ambiguity Search Filter 
(FASF)(FASF)

• Developed by Chen and Lachapelle in 
19931993

• Principle:
– Determine search range for best known 

single ambiguitysingle ambiguity

– For each possible integer value:

nnnn kxNkx ˆˆ int

For each possible integer value:
• Assume that the integer is correct
• Calculate new conditional covariance and 

ambiguity estimate, conditioned on the fact that 
the first ambiguity is knowng y

– Will shrink covariance terms
• Now, select the best known integer value from the 

remaining ambiguities, and repeat the process
– RecursiveRecursive

• Will either result in valid ambiguity set, or will be 
“pruned”, if the conditional covariance doesn’t 
allow for a valid integer somewhere along the 
process

• Very efficient
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Calculation of Conditional 
State and CovarianceState and Covariance

• Conditional state estimate and 
covariance efficiently calculated ascovariance efficiently calculated as
follows:

2
int /)ˆ(ˆ~

nnn Nxx px

2
ˆ~ /)( n

T
nnxx PP pp

upondconditionevectorparameterEstimated n Nxx int

ˆ

ˆ~

)ofdiagonalfrom(takenparametertheofvariancescalar
matrixcovariancetheofcolumn

upondconditionematrixCovariance

x
th

n

x
th

n

nx

Pn

Pn

NxP

ˆ
2

ˆ

int~ ˆ

p
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FASF Example - Valid 
Ambiguity SetAmbiguity Set

644.2487.2552.2

487.2146.3140.3

552.2140.3145.3

980.23421

144.24987

912.2434

ˆ x̂Px
Initial state
and covariance

858.23426102.23417

3ˆ3ˆ

626.1644.2

3

ˆ33ˆ3

ˆ

33

3

N

xNx xx

x
Determine search
range of ambiguity
with lowest variance

000

0807.0740.0

0740.0682.0

23418

888.24990

071.2431
~

~xPx

Select ambiguity 234183N

Conditional state
and covariance

548.2433593.2428

3~3~

826.0682.

1

ˆ11ˆ1

ˆ

11

1

N

xNx xx

xDetermine search
range of ambiguity
with lowest variance

000

00045.00

000

23418

133.24993

2429
~

~xPx

24291NSelect ambiguity

Conditional state
and covariance

00023418

932.24992335.24993

3~3~

067.00045.

2

ˆ22ˆ2

ˆ

22

2

N

xNx xx

xDetermine search
range of final ambiguity

249932NSelect ambiguity

Valid ambiguity set
23418

24993

2429

x̂
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FASF Example - Invalid 
Ambiguity Set (Pruning)Ambiguity Set (Pruning)

644.2487.2552.2

487.2146.3140.3

552.2140.3145.3

980.23421

144.24987

912.2434

ˆ x̂Px
Initial state
and covariance

858.23426102.23417

3ˆ3ˆ

626.1644.2

3

ˆ33ˆ3

ˆ

33

3

N

xNx xx

x
Determine search
range of ambiguity
with lowest variance

Select ambiguity 234183N

Conditional state
and covariance

000

0807.0740.0

0740.0682.0

23418

888.24990

071.2431
~

~xPx

Determine search
range of ambiguity
with lowest variance 548.2433593.2428

3~3~

826.0682.

1

ˆ11ˆ1

ˆ

11

1

N

xNx xx

x

000

00045.00

000

23418

795.24988

2433
~

~xPx

24331NSelect ambiguity

Conditional state
and covariance

593.24988997.24988

3ˆ3ˆ

067.00045.

2

ˆ22ˆ2

ˆ

22

2

N

xNx xx

xDetermine search
range of final ambiguity

No valid N2 ambiguity, so 
this combination is not a 

valid ambiguity set!
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Selection of Correct 
Ambiguity SetAmbiguity Set

• Recall the basic measurement 
equationequation

Nm
f

I
Tr

2

1

– Rearrange to get

residualstmeasuremen

m
f

I
TrN

2

11

– Four different cases:
errors)(aldifferentiresidualstmeasuremen

Low  Errors High  Errors

Correct N Low Residuals Generally High
Residuals

Wrong N Generally High
Residuals

Generally High
Residuals

– Can use ratio test

id lt
(best)

best)(2ndratio
vvR

vvR
T

T

1

1

• Correct ambiguity if ratio > constant (typically, 2 
or greater)

matrixcovariancetmeasuremen
residualstmeasuremen

R

v



GPS Measurement 
Combinations

“OK, so I have an idea of how to 
use a few measurements 

(individually) to do something.  Is 
there a way that I can do more by 

combining measurements?”
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Typical Units for GPS 
MeasurementsMeasurements

• Pseudorange
Normally expressed in meters– Normally expressed in meters

– Sometimes expressed in seconds (can be 
converted to meters by multiplying by 
speed of light)

• Doppler
– Hertz (cycles per second)
– Sign convention can varyg y

• Carrier-phase
– Cycles (for particular frequency)
– Sometimes output as integer portion and S p g p

fractional portion
• Both are added together to get full cycles
• This “integer” portion has nothing to do with 

integer carrier-phase ambiguitiestege ca e p ase a b gu t es
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Relationship Between Pseudorange 
and Doppler Measurementspp

• Relationships below are approximate, 
due to errors and dynamicsdue to errors and dynamics

• Doppler gives information about rate of 
change of code

)()(
)(

01

01
0

tt

tt
tf

or
)()()()( 00101 tftttt

(Hz)tmeasuremenDopplerf

epochstime(nearby)Two
(m)tmeasuremenCode

(m)h wavelengtCarrier
( )pp

tt

f

• This relationship not normally used 
explicitly

epochstime(nearby)Two10 , tt

p y
– Can be used to determine Doppler sign 

convention/units on Doppler
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Relationship Between Carrier-Phase 
and Doppler Measurementspp

• Carrier-phase is integration of Doppler 
measurementmeasurement

• Can be expressed between epochs as

)()( )()(
)(

01

01
0

tt

tt
tf

or
)()()()( 00101 tftttt

(Hz)tmeasuremenDopplerf

epochstime(nearby)Two
(cycles)tmeasuremenphase-Carrier

10 , tt

• Relationship is very useful for 
detecting phase cycle slips
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Relationship Between Pseudorange 
and Carrier-Phase Measurements

• Note that both pseudorange and carrier-
phase measurements have similarphase measurements have similar
relationship with Doppler
– Difference is wavelength scaling factor ( )

• Implies that pseudorange and carrier• Implies that pseudorange and carrier-
phase measure essentially the same thing
– Difference is carrier-phase integer ambiguity 

(starting point of integration)(starting point of integration)

Nt
t

)(
)(

0
0

(m)hwavelengtCarrier

epochtimeParticular
(cycles)tmeasuremenphase-Carrier

(m)tmeasuremenCode
(m)hwavelengtCarrier

t

– Very useful relationship

ambiguityintegerphase-Carrier
epochtimeParticular

N

t0

• If can determine N, can use carrier-phase for 
positioning

• Implies that code and phase can be combined (filtered) 
to remove some errors



John F. Raquet, 2009 23

Example: Using Doppler to Predict 
New Carrier-Phase Measurement

2

3
PRN 17

Cy
cle

s)

0

1

2

ed
ict

io
n 

Er
ro

r (
L1

 

Cycle slip 

-2

-1

op
pl

er
 P

ha
se

 P
re

150600 150720 150840 150960 151080 151200 151320
-3
17:50 17:52 17:54 17:56 17:58 18:00 18:02

GPS Week Seconds/HH:MM

Do

ktk tk+1-tk fk
151268    20520314.15          2      4781.74    20529877.62    20529877.89    -0.26
151270    20529877.89          2      4782.02    20539441.92    20539442.61    -0.69
151272 20539442 61 2 4782 65 20549007 91 20549008 30 0 39

Predicted
k+1

Actual
k+1

Prediction
Error

151272    20539442.61          2 4782.65    20549007.91    20549008.30    -0.39
151274    20549008.30          2      4783.03    20558574.36    20558575.16    -0.80
151276    20558575.16          2      4783.73    20568142.62    20568143.04    -0.42
151278    20568143.04          2      4784.20    20577711.44    20577711.80    -0.36
151280    20577711.80          2      4784.69    20587281.17    20587281.83    -0.66
151282 20587281.83 2 4785.25 20596852.34 20596853.07 -0.73151282    20587281.83          2 4785.25    20596852.34    20596853.07    0.73
151292    20596853.07        10      4785.77    20644710.77    20485242.47   159468.30*
151294    20485242.47          2      4788.44    20494819.35    20494819.72    -0.38
151296    20494819.72          2      4788.80    20504397.33    20504397.88    -0.55

*Cycle slip is indicated here
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Example: Code Minus Phase 
Measurements to Estimate 
Carrier Phase AmbiguityCarrier-Phase Ambiguity
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Measurement Combinations

• Generation of new observable byy
combining measurements from two 
different frequencies

• Generation of new observable byGe e at o o e obse ab e by
combining code and carrier-phase 
measurements

• Using various measurements within anUsing various measurements within an
estimation algorithm (e.g., a Kalman 
filter)
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GPS Code and Phase 
Measurement RepresentationsMeasurement Representations
• Code measurement ( ):

SAm
f

I
Ttctcr svu 2 (8.1)

f

(m)errorclocksatellite
(m)errorclockreceiver

(m)satellitetorangetrue

tc

tc

r

sv

u

( )

( )it
(Hz)frequencycarrier

m)(HzTEC)40.30(factordelaycionospheri
(m)delayictropospher

2

f

I

T

• Phase measurement ( ):
(m)tyavailabiliselective

(m)multipath
(m)noisetmeasuremen

SA

m

Phase measurement ( ):
NSAm

f

I
Ttctcr svu 2

1

(m)h wavelengtcarrier

(8.2)

– Note 1: Sign change on ionospheric term
– Note 2: Ionospheric error is frequency 

(cycles)ambiguityintegerphase-carrierN

dependent
– Note 3: Multipath and noise are different for 

every measurment
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Use of Dual Frequency Phase 
MeasurementsMeasurements

• Will analyze phase measurements
More useful for precise positioning– More useful for precise positioning
applications

– Same principles apply to code 
measurements

• Create a dual frequency observable as 
a linear combination of the L1 and L2 
phase measurements ( L1 and L2,p ( L1 L2

respectively)

• Applying to equation 8 2 yields
21, LLkj kj

Applying to equation 8.2 yields

,

,

1

kj

SATtctcr svu

kj

kj

21

21

12

22

2

11

1

kNjN
ff

kfjf

c

I

mm
j

LLLL

12

21
,

kj
kjwhere
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Typical Carrier-Phase 
Measurement CombinationsMeasurement Combinations

• Widelane (WL) (j=1, k=-1)

– Maintains integer nature of carrier-phase 
bi it

211,1 LLWL

ambiguity
– Has longer wavelength (86 cm) than L1 or 

L2 (19 cm or 24 cm, respectively)
• Makes it easier to resolve carrier-phasep

ambiguities

• Ionospheric free (IF) (j=1, k=-f2/f1)
– Eliminates ionospheric error
– Ambiguity is not an integer

• Can still be used if L1 and L2 (or L1 and WL) 
ambiguities are known

• Ionospheric (j= 1 k=- 2)Ionospheric (j 1, k - 2)
– Cancels out everything except multipath, 

noise, and ionospheric error
– Ambiguity not an integer (similar to IF case)g y g ( )
– Commonly used for precise (differential) 

ionospheric measurements
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Summary of Carrier-Phase 
Measurement CombinationsMeasurement Combinations

Name j k
Wavelength

( ) AmbiguityName j k ( j,k)
Ambiguity

Widelane (WL) 1 -1 ~0.86 m N1 – N2 = NWL

Ionospheric Free (IF) 1 -f2/f1 ~0.48 m N1 – (f2/f1)N2 = NIF

Ionospheric 1 2 1N1 – 2N2

L1 Only 1 0 ~0.19 m N1

L2 Only 0 1 ~0 24 m N2L2 Only 0 1 ~0.24 m N2
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Combining Code and Carrier-
Phase MeasurementsPhase Measurements

• We noted previously
t )(

• We need to examine this more closely

Nt
t

)(
)(

0
0

• Recall:
SAm

f

I
Ttctcr svu 2

• From this, we can analyze the code-
i i b bl

NSAm
f

I
Ttctcr svu 2

1

minus-carrier observable

Nmm
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I
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2

(m)noisetmeasuremenphase
(m)multipathtmeasuremencode

(m)noisetmeasuremencode
m

(m)multipathtmeasuremenphase
(m)noisetmeasuremenphase

m
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Examples of Multipath (plus 
Noise) vs Satellite ElevationNoise) vs. Satellite Elevation
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Errors in Combined 
Code/Carrier MeasurementsCode/Carrier Measurements

• We can neglect the phase noise and 
multipath yieldingmultipath, yielding

Nm
f

I
2

2

Code errors Phase “error”Combined
code/phase
error

• Time correlation of error sources
– Ionospheric error:

– Code measurement noise:

– Code multipath:Code u t pat

– Carrier-phase ambiguity:
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Conceptual Diagram of 
Code/Carrier SmoothingCode/Carrier Smoothing

Phase
Meas High-PassMeas
( )

High Pass
Filter

C iCarrier-
smoothed
Code Meas

Code
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( )

Low-Pass
Filter
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Algorithm for Code/Carrier 
SmoothingSmoothing

• Concept of code/carrier smoothing for 
GPS first proposed by Hatch1GPS first proposed by Hatch1

• Progressive weighting algorithm proposed 
by Lachapelle et al.:2
R i filt t i l i• Recursive filter to progressively increase
weight on while decreasing weight on 

11ˆˆ kkkkk kk
WW

kk

Computed
smoothed
pseudorange

Measured
pseudorange

Previously
smoothed
pseudorange

Range difference
from measured
carrier-phase

– Weights are incremented over time (within 
bounds)

pseudorange pseudorange carrier phase

)00.101.0(01.0
1 kkk

WWW

– Initialization (at k=0)
)99.000.0(01.0

1 kkk
WWW

ˆ
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0 inresults
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1Hatch, R., “The Synergism of Code and Carrier Measurements,” Proceeding of the Third International Geodetic 
Symposium on Satellite Doppler Positioning, DMA/NGS, pp. 1213-1232, Washington, D.C., 1982. 

2Lachapelle, Hagglund, Falkenberg, Bellemare, Casey, and Eaton, “GPS Land Kinematic Experiments”, Proceedings 
of the Fourth International Geodetic Symposium on Satellite Positioning, Austin, Texas, 1986. 
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Dual Ramp Code/Carrier 
Smoothing TechniqueSmoothing Technique

• Code/carrier ionospheric divergence 
causes a drift in the smoothed codecauses a drift in the smoothed code
measurement over time
– A short time constant on the smoothing 

algorithm can help reduce thisalgorithm can help reduce this
– If the time constant is too short, then carrier 

smoothing is less effective
• One approach is to calculate smoothed pp

values starting at two different times
– After a ramp has been used for a specified 

maximum time, then you switch to a newer 
d t t th ldramp and restart the old ramp
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