

2025-9

Satellite Navigation Science and Technology for Africa

23 March - 9 April, 2009

Introduction to GPS Receiver Design Principals (Part 6)

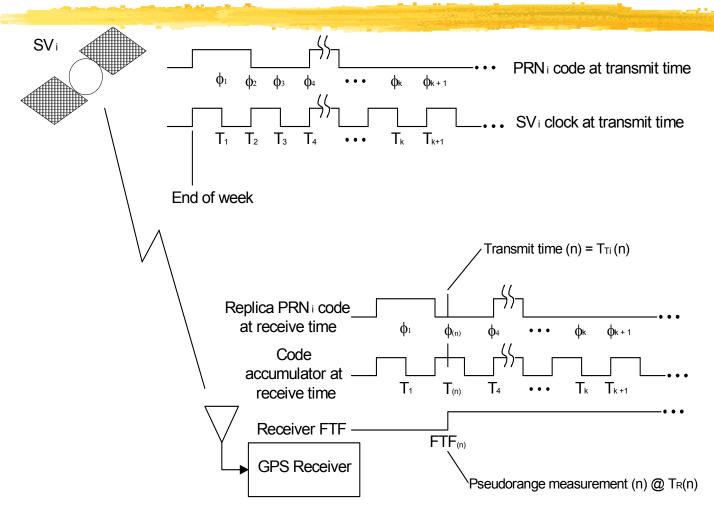
Ward Phillip. W.

Navward

U.S.A.

Session VI - Code Extracting measurements from code and carrier loops

- Extracting measurements from code loop
 - Pseudorange definition
 - Satellite transmit time relationship to code phase
 - Pseudorange measurement
 - Relationship between PRN code generator and code accumulator
 - Measurement time skew
 - Code (time) accumulator
 - Maintaining the code accumulator
 - Obtaining a measurement from the code accumulator
 - Obtaining transmit time from C/A code
 - Synchronizing code accumulator to replica code generator
 - Adding a code setter to code generator
 - C/A-code setup
 - Obtaining transmit time from the C/A-code
 - GPS C/A-code timing relationships
 - GPS navigation message
 - Example of bit sync error in C/A-code

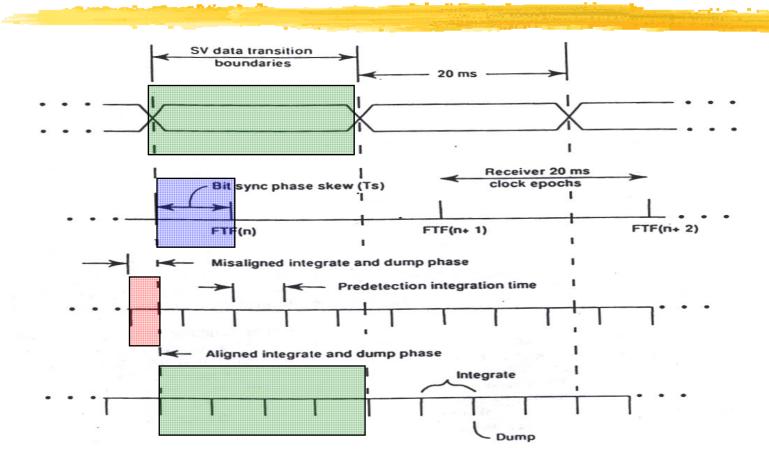

Pseudorange definition

Pseudorange to SV_i where i is PRN number:

```
• PR_i(n) = c [T_R(n) - T_{Ti}(n)](meters)
where: c = GPS propagation constant
= 2.99792458 X 10<sup>8</sup> (m/s)
```

- $T_R(n)$ = receive time at epoch n of the GPS receiver's clock (seconds)
- $T_{Ti}(n)$ = transmit time based on SV_i clock (seconds) of measurement at epoch n

Satellite transmit time relationship to code phase


Pseudorange measurement

- Replica code state corresponds to receiver's best estimate of SV transmit time
 - Receiver knows replica code state because initial states are set during search process and it keeps track of code changes
 - Integer and fraction of chip replica code phase defined as code state
 - Receiver time keeper containing GPS time corresponding to replica code state defined as code accumulator

Relationship between PRN code generator and code accumulator

Measurement time skew

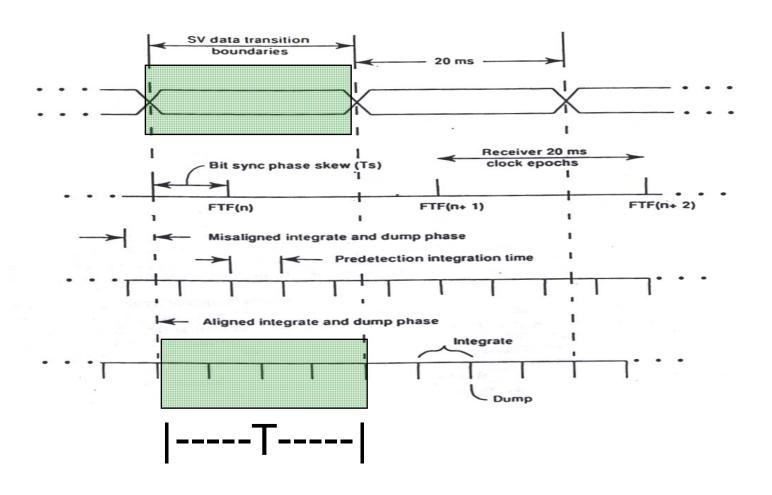
Code (time) accumulator

Z-counter (19 bits)

• Accumulates in GPS time increments of 1.5 s, then resets one count short of 1-week = 403,200. Max = 403,199

■ X1-counter (24 bits)

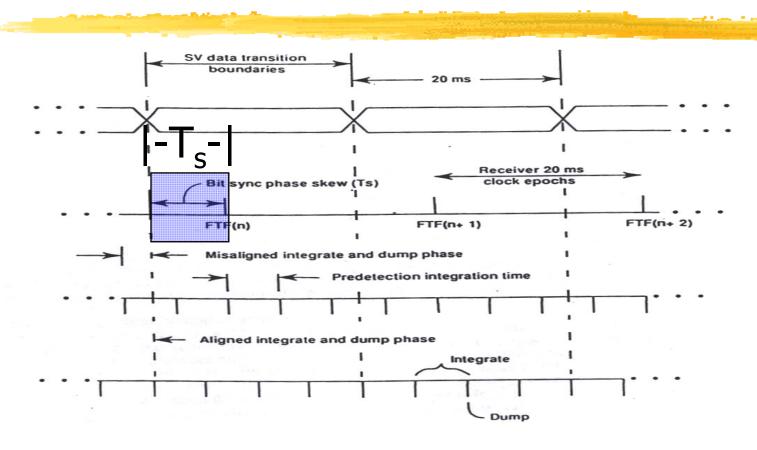
Accumulates in GPS time increments of integer P chips, then resets one count short of 1.5 s = 15,345,000. Max = 15,344,999


P-counter (same as NCO bits)

Accumulates in GPS time increments of fractions of one P-chip

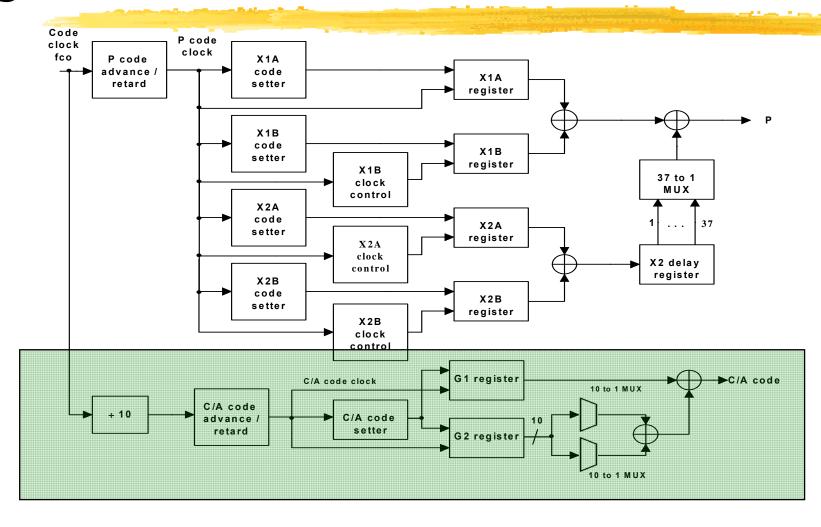
Maintaining the code accumulator

- $P_{\text{temp}} = P + f_c \Delta \phi_{\text{CO}} T$
- \blacksquare P = fractional part of P_{temp} (chips)
- $X_{\text{temp}} = (X1 + \text{whole part of } P_{\text{temp}}) / 15,345,000$
- \blacksquare X1 = remainder of X_{temp} (chips)
- Z = remainder of [(Z + whole part of X_{temp}) / 403,200] (1.5 seconds)
 - where: P_{temp} = temporary P register
 - $f_c = \text{code NCO clock frequency}$ (Hz)
 - $\Delta \phi_{CO}$ = code NCO phase increment per clock cycle
 - = code NCO bias + loop filter Doppler correction, etc.
 - T = time between code NCO updates (seconds)


Maintaining the code accumulator with 20 ms PIT

Obtaining a measurement from the code accumulator

- $P_{\text{temp}} = P + f_c \Delta \phi_{\text{CO}} T_s$
- $P_i(n) = fractional part of P_{temp}(chips)$
- $X_{\text{temp}} = (X1 + \text{whole part of } P_{\text{temp}}) / 15,345,000$
- $X1_i(n) = remainder of X_{temp}$ (chips)
- $Z_i(n)$ = remainder of [(Z + whole part of X_{temp}) / 403,200] (1.5 seconds)
- $T_{T_i}(n) = [P_i(n) + X1_i(n)] / (10.23 X 10^6) + Z_i(n) * 1.5$ (seconds)
- Note: code accumulator NOT changed


Obtaining a measurement from the code accumulator

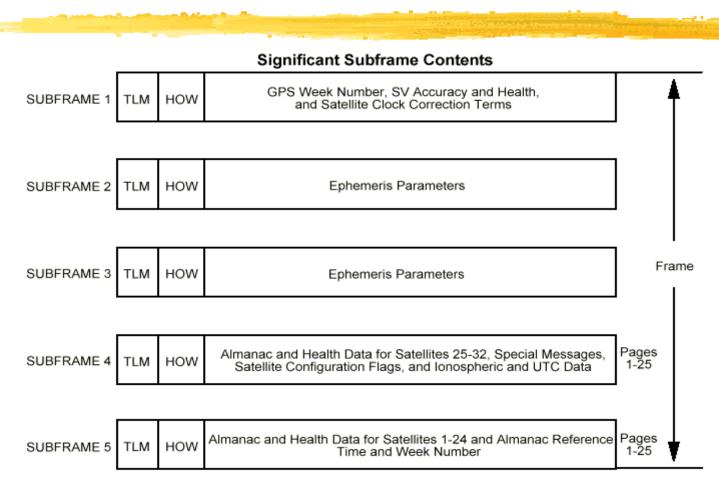
Synchronizing code accumulator to replica code generator

- Most complicated part of process: Synchronizing code accumulator to C/Acode generator
 - Count sequences in code generator shift registers are pseudo random
 - Count sequences taking place in code accumulator are linear
- Reset timing events in PN shift registers are predictable

Adding a code setter to code generator

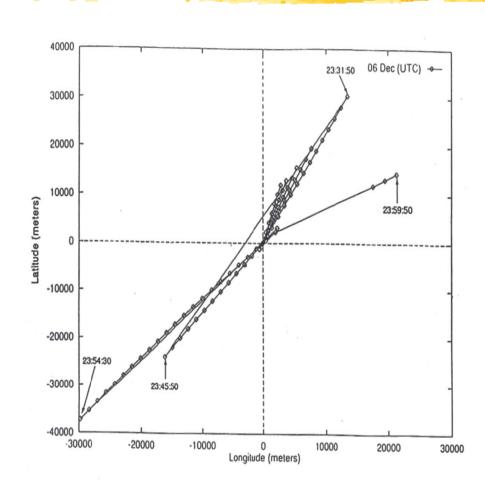
C/A-code setup

- Algorithm for code accumulator output to C/Acode setter:
 - G = remainder of [(whole part of {X1/10})/1023] where:
 - G = future scheduled C/A-code time value sent to the code setter
 - X1 = future scheduled GPS time of week in P chips($0 \le X1 \le 15,344,999$)


Obtaining transmit time from the C/A-code

- C/A-code obtains transmit time from code accumulator in same manner as P(Y)-code
 - Difference is initialization of accumulator
 - Receiver reads Handover Word (HOW) after bit synchronization
 - Sets its code accumulator to correct Z-count at exactly right C/A-code epoch

GPS C/A-code timing relationships



GPS navigation message format

Each subframe is 300 bits (6 s @ 50 bps). Entire message repeats every 12.5 min (5 subframes \times 300 bits/subframe \times 25 pages = 37500 bits/message)

Example of bit sync error in C/A-code

Session VI - Carrier

Session VI - Carrier Extracting measurements from code and carrier loops

- Extracting measurements from carrier loop
 - Maintaining the carrier accumulator
 - Obtaining a measurement from the carrier accumulator
 - Delta pseudorange measurement
 - Data demodulation
 - Bit error performance

Maintaining the carrier accumulator

- Carrier accumulator updated as follows:
 - $\Phi_{\text{temp}} = \Phi_{\text{CA}} + f_{\text{c}} \Delta \phi_{\text{CA}} T$
 - Φ_{CA} = fractional part of Φ_{temp} (cycles)
 - N_{CA} = N_{CA} + whole part of Φ_{temp} (cycles) where:
 - Φ_{temp} = temporary Φ_{CA} register
 - f_c = carrier NCO clock frequency (Hz)
 - Δφ_{CA} = carrier NCO carrier Doppler phase increment per clock epoch = carrier loop filter velocity correction + carrier loop velocity aiding (if any)
 - T = time between carrier NCO updates (seconds)
 - N_{CA} = integer number of carrier Doppler phase cycles since some arbitrary starting point

Obtaining a measurement from the carrier accumulator

- The natural measurement obtained from the carrier accumulator associated with SVi is an ambiguous integer number of cycles, N_{CAi} , and an unambiguous fraction of a cycle (phase), Φ_{CAi} , defined at some epoch time
- Called an integrated carrier Doppler phase measurement
- To obtain integrated carrier Doppler phase measurement, N_{CAi} (n), Φ_{CAi} (n), for SV_i corresponding to carrier accumulator, propagate forward to nearest FTF(n) by skew time, T_s :
 - $\Phi_{\text{temp}} = \Phi_{\text{CA}} + f_{\text{c}} \Delta \phi_{\text{CA}} T_{\text{s}}$
 - $\Phi_{CAi}(n) = \text{fractional part of } \Phi_{\text{temp}}$ (cycles)
 - N_{CAi} (n) = N_{CA} + whole part of Φ_{temp} (cycles)

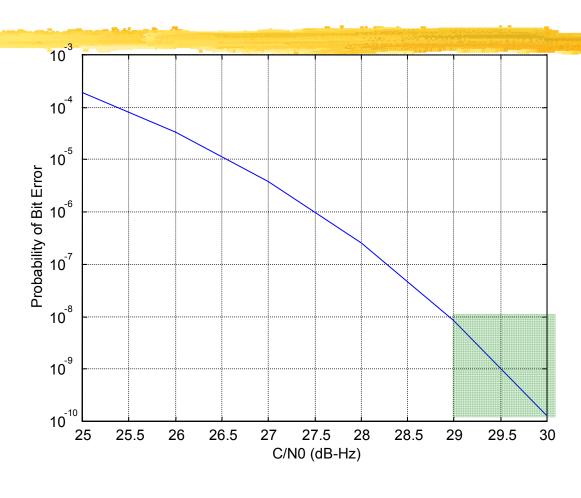
Delta pseudorange measurement

- Define delta pseudorange measurement, DPR_i (n), two integrated carrier Doppler measurements, ICD_i (n-K) and ICD_i (n), taken at FTF (n-K) and FTF (n)
 - FTF (n- K) occurs some integer number of FTFs earlier than FTF (n), ideally at PR measurements
 - $ICD_i(n K) = N_{CAi}(n K), \Phi_{CAi}(n K)$
 - $ICD_i(n) = N_{CAi}(n), \Phi_{CAi}(n)$
 - DPR_i (n) = [ICD (n) ICD (n-K)] λ (meters)
 - $\Lambda = 0.1903$ m/cycle at L1 (and 0.2442 m/cycle at L2)

Data demodulation

Data bits are estimated from 20 ms correlator outputs as:

$$\hat{\mathbf{b}}_{\mathbf{k}} = \mathbf{sign}(\mathbf{I}_{\mathbf{Pk}})$$


This is ordinary BPSK data demodulation. The well-known expression for BPSK bit error rate is:

$$P_b = \frac{1}{2} erfc \left(\frac{E_b}{N_0} \right)$$

The ratio of bit energy E_b to noise power density N_0 may be related to P/N_0 using:

$$E_b = P/R_b$$
data rate (50 Hz for GPS)

Bit error performance

