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Why the international community cares about
scintillation

Of relevance to
satellite navigation

Turbulence and irregularities in the ionosphere
give rise to scintillations in the satellite to ground
signal

The Total Electron Content (TEC) along the path of
a GPS signal can introduce a positioning error ( up
to 100 m)

More severe in the arctic regions

o . The effects on GPS could be one of the most
# S e significant space weather effects due to the

I planned reliance of this system in the future.
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Where in frequency: dependence of
scintillation, stronger at lower frequencies

Solar Maximum Conditions at
Ascension Island: UHF and L-Band
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When in minutes: can we anticipate when to move from one look
direction to another for continuous signal? We can track
equatorial scintillation

Equatorial lonosphere Plasma Depletions
Scintillation of GPS Signals
TEC Variations

Equatorial lonosphere Scintillation Effects on GPS
Chile: 1 October 1994
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(Weber et al., JGR, 1996)



When in the 11 year solar cycle: the solar cycle
dependence of scintillation, high at SSmax low at
SSmin
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So where in space at both Sun Spot max and
Sun Spot min, on a global scale
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A closer look at where it matters most

SOLAR MAXIMUM

L- BAND
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Why at the equator, lower look angles have
more scintillation than higher look angles
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Figure 7. Trus-scale geometry of trans-ionospheric raypaths, showing east-west cross-secton of large-scale
oquatonial depletion structizres and “venetian blind™ affect [14),



At high latitudes scintillation matters too, especially to sea going
vessel navigation and communication

Coast and Sea




We've more recently studied high latitude
scintillation to learn its solar cycle variation
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We've looked in the polar cap too, the main driver for polar
scintillation is dayside plasma entering the polar cap
through the noon auroral region
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Two physical conditions contribute to polar cap
scintillation: Patches and Arcs

POLAR CAP F-REGION STRUCTURES

IMF NORTHWARD IMF SOUTHWARD

SUNALIGNED ARCS POLAR CAP PATCHES
DAWN-DUSK DRIFT (PREDOMINANT ) ANTI-SUNWARD DRIFT
SHEAR-DRIVEN INSTABILITY GRADIENT-DRIFT INSTABILITY
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We can now track polar cap scintillation regions too

Occurrence rate of polar
cap patches

»Eight winters {(1997-2005) of
MSP data from Ny-Alesund
have been analyzed

»43 nights, 333 events

»About 60% of the patches
exit the polar cap from 22-01
MLT, but patches was
observed in the entire MLT
range from 18:00-05:00.
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We have learned the physical process for how midlatitude plasma enters
the polar cap, to help prediction
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Studying this has let us prove that for the last 20 years
everyone has used wrong physics to try to predict the
polar onset of scintillation
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This new understanding of the basic physics has also
given us a new too to use to aid now-cast and forecast
of scintillation
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So where is basic research now in driving
progress towards better physical
understanding for future progress?

Where Do We Stand?
How Well Can We Mitigate Scintillation?

“Night-side” hemisphere could be mitigated with focused
research program.

Difference between African and South American
Longitude not adequately understood. Experiment will
drive theory.

Untested Theory of last 20 years said till ‘07 “Dayside”
should be likewise (slow turn on).

Recent Discovery of patch creation process (new
experimental tests) proved that theory wrong. Dayside
challenge needs reassessment.



What are recent milestones leading to where
basic research should go next?

What is New as of 20097
Found Patch Creation Process (2004)
— Injection of “midlatitude” plasma
— Injection speed ~2km/s
Learned Patch Creation Involves Shear (2006)
— Process is magnetic reconnection
— Transient plasma-surge onset in ~2 minutes
Shears => Scintillation in Minutes (2007)
— Shear theory predicts irreg. onset in minutes

— Observations confirr_ned meso-scale areas of
scintillation within minutes (new data)

— onset in ~2 minutes

— minutes
Equatorial Focus with CNOFS and Africa (2009)



THANK YOU
FOR YOUR ATTENTION

ARE THERE ANY QUESTIONS?





