

International Centre for Theoretical Physics

2025-25

Satellite Navigation Science and Technology for Africa

23 March - 9 April, 2009

Air Navigation Applications (SBAS, GBAS, RAIM)

Walter Todd Stanford University Department of Applied Physics CA 94305-4090 Stanford U.S.A.

Satellite Navigation for Guidance of Aircraft

http://waas.stanford.edu

Outline

HRAIM Ionospheric Modeling Ionospheric Threats Other Integrity Threats Integrity Methodology Next Generation Satellite Navigation Future Signals Conclusions

Fault Tree and Probability of Hazardously Misleading Information (PHMI)

- For each branch, a monitor mitigates the probability of HMI given the failure
- In ARAIM, the monitors are formed by comparing subset solutions

ARAIM Protection Level

4

Outline

→RAIM Honospheric Modeling Ionospheric Threats Other Integrity Threats Integrity Methodology Next Generation Satellite Navigation Future Signals Conclusions

How Are Measurements Correlated Over Distance?

- Translate Our Measurements of the Ionosphere Into User Corrections
- How Does the Ionosphere Behave Spatially?
 - What is the underlying structure?
 - What does one measurement tell us about the nearby ionosphere?
 - How should we combine multiple samples?
 - What confidence can we have in our prediction?
- We Need to Determine the Ionospheric Decorrelation Function

"Supertruth" Data

Raw Data Collected From Each WRS → 3 independent receivers per WRS Postprocessed to Create "Supertruth" Carrier tracks "leveled" to reduce multipath Interfrequency biases estimated and removed for satellites and receivers Comparisons made between co-located receivers (voting to remove artifacts) Multipath and Bias Residuals are ~50 cm Without Voting, Receiver Artifacts Cloud Results and Make It Impossible to See Tails of the Distribution

Decorrelation Estimation

- Every Supertruth IPP Is Compared to All Others
- The Great Circle Distance Between the IPPs Is Calculated
- The Difference in Vertical Ionosphere Is Calculated
- A Two-dimensional Histogram Is Formed: Each Bin Corresponds to a Distance Range and a Vertical Difference Range

Presented at ICTP Copyright 2009 Todd Walter Histogram Contains the Counts for Each
Time an IPP Pair Fell in a Particular Bin

Ionospheric Decorrelation (0th Order)

Ionospheric Decorrelation Function (0th Order)

Vertical lonosphere Containment σ, 0th Order Correlation (CONUS,2nd July 2000)

Preliminary Decorrelation Findings

- Nominal Ionosphere is Relatively Smooth
 - Nearby IPPs Well Correlated
- Confidence About a Single Measurement Can Be Described As:

 $\sigma^2 = \sigma_m^2 + (0.3 \, m + d * 0.5 \, m / 1000 km)^2$

There Appears to Be a Deterministic Component

Presented at ICTP Copyright 2009 Todd Walter

Next Try Removing a Planar Fit

Ionospheric Decorrelation About a Planar Fit (1st Order)

Ionospheric Decorrelation Function (1st Order)

Vertical lonosphere Containment o, 1st Order Correlation (CONUS, 2nd July 2000

Ionospheric Decorrelation About a Quadratic Fit

Vertical Ionosphere Correlation, 2nd Order (CONUS, 2nd July 2000, R_{max} = 1500km) 5

Ionospheric Decorrelation Function (2nd Order)

Vertical lonosphere Containment σ , 2nd Order Correlation, (CONUS 2nd July 2000

Initial Decorrelation Summary

Planar Fit Appears to Remove Nearly All Deterministic Elements No Decorrelation Variation With Elevation Angle or vs Day/Night Decorrelation appears to result from residual error in supertruth data →35 cm Valid for Mid-Latitude Nominal Decorrelation ($R < \sim 1000 \text{ km}$) Decorrelation at Lower Latitudes Is

Likely Different (larger, more orders?)

Disturbed Ionosphere

Disturbed Ionosphere

Map of South American Stations

Determination of Quiet Days

- First wish to identify "undisturbed" days to use as basis for "nominal" model
 - Want a day free of depletions and scintillation

Daily Observations of TEC and S4

Two-D Histogram 0th Order

Sigma Estimate 0th Order

Two-D Histogram 1st Order

Sigma Estimate 1st Order

Two-D Histogram 2nd Order

Sigma Estimate 2nd Order

Presented at ICTP Copyright 2009 Todd Walter

30

Vertical TEC

Two-D Histogram 1st Order (Region 1)

Two-D Histogram 1st Order (Region 2)

Two-D Histogram 1st Order (Region 3)

Sigma Estimate 1st Order (Sliced by Time)

Sigma Estimate 1st Order (Sliced by Time)

Correlation Observations

Clear temporal dependencies in the variogram (σ_{decorr} term) +Evening into nighttime is worst Daytime more easily modeled Clear spatial trends in the data → 1st and 2nd order model the trend about equally well, both better than Oth order Random Component significantly larger than mid-latitude Gaussian over short times

Ionospheric Threats

WAAS Was Commissioned on 10 July 2003 →Availability > 99% for first 3 months October 29-31 Two Large **Disturbances Each Cause the Storm Detectors to Trip for Hours** \rightarrow Protection factor set to ~15 m 1-sigma November 20-21 Another Large **Disturbance Limits Vertical Guidance** for Several Hours

Failure of Thin Shell Model

Disturbed Day

Quiet Day

11/20/2004 21:00:00 GMT

Threats at the Edge of Coverage

Edge of Coverage 2

Undersampling Within CONUS

Courtesy:

Seebany

44

Artificial Undersampled Scenario

WAAS Measurements

Artificial WAAS Undersampling Scenario

WAAS Measurements

Solar Max (worst 45 min in 8 days)

Courtesy: Jiwon Seo

Hatch Filter Model

Hatch Filter Model

Contributors to Differential Ionosphere Error

Courtesy: Sam Pullen

Ionosphere Delay Gradients 20 Nov. 2003

Sam Pullen Presented at ICTP Copyright 2009 Todd Walter

Courtesy:

58

Outline

HRAIM Ionospheric Modeling Ionospheric Threats Other Integrity Threats Integrity Methodology Next Generation Satellite Navigation Future Signals Conclusions

Integrity

Monitor network or signal redundancy identifies observable threats Protection against satellite failures → Ephemeris errors Clock errors → Signal errors Protection against ionospheric errors

Presented at ICTP Copyright 2009 Todd Walter Design assumes worst credible values for all unobservable threats

Satellite Signal Anomaly

L1 C/A Lags L1 P Code Falling Edge or Leading Edge

Oct 13, 1993, 23:45

Courtesy: Per Enge

62

ILLINOIS INSTITUTE OF TECHNOLOGY

- Scheduled NANU Outage Time
 - Start: April 10 @ 13:30
 - End: April 11 @ 1:30
- SV Health (based on broadcast ephemerides)
 - Flagged Unhealthy: April 10 @ 17:38
 - Flagged Healthy: April 10 @ 21:24
- Error > 50 meters
 - Start: April 10 @ 16:00 (63.976 meters)

Courtesy: – End: April 10 @ 17:30 (731.1531 meters) Boris Pervan

ILLINOIS INSTITUTE OF TECHNOLOGY

65

Error Distribution

- Distribution of errors may be formed over many conditions
 - → Leads to "fat" tails

- Need to characterize errors for worst allowable condition
 - Not all conditions known or recognized

Focus on the tail behavior as opposed to the core of the distribution

For WAAS, nominal pseudorange errors are ~3 times smaller than implied by bound

✤ Position domain errors are more than 5 time smaller

Overall Integrity Approach

Conventional Differential GPS Systems Rely on Lack of Disproof "I've been using it for N years and I've never had a problem" → 10⁻⁷ Integrity Requires Active Proof Analysis, Simulation, and Data Must Each Support Each Other → None sufficient by themselves Clear Documentation of Safety Rationale is Essential

Interpretation of "Probability of HMI < 10⁻⁷ Per Approach"

Possible Interpretations

Ensemble Average of All Approaches

Over Space and Time

Ensemble Average of All Approaches Over Time for the Worst Location

Previous Plus No Discernable Pattern (Rare & No Correlation With User Behavior)

Worst Time and Location

Probability of Integrity Failure

Average Risk

Specific Risk

P(fault | condition)

Probability of Being Struck by Lightning

From the Lightning Safety Institute
USA population = 280,000,000
1000 lightning victims/year/average
Odds = 1 : 280,000 of being struck by lightning

→Not everyone has the same risk

One person struck 7 times

Presented at ICTP Copyright 2009 Todd Walter Naïve calculation: < 1e-38 probability

WAAS Interpretation

Events handled case by case \rightarrow Events that are rare and random may take advantage of an *a priori* Deterministic events must be monitored or treated as worst-case Events that are observable must be detected (if risk > 10^{-7}) Must account for worst-case undetected events

WAAS Vertical Protection Level (VPL) correlation with Vertical Position Error (VPE)

CONUS WAAS VPL vs Vertical Position Error (VPE) correlation 8 **VPE** Mean VPE STD DEV **VPE 95% VPE 99%** VPE 99.9% VPE 99.99% 6 5 **VPE** meters 3 2 0∟ 10 15 20 25 30 35 40 45 50 Vertical Protection Level (VPL) (m)

Courtesy:

FAA Technical Center

3 years 20 WRSs 1 Hz data

Presented at ICTP

Todd Walter

WAAS LPV200 Vertical Position Error (VPE) vs. Vertical Protection Level (VPL) 2D Distribution

CONUS WAAS Vertical Position Error (VPE) vs VPL 2D Distribution 50 45 40 6 35 5 30 VPL 25 20 15 10 10 8 12 2 4 6 10exp(N) Vertical Position Error (m)

Courtesy:

FAA Technical Center

3 years 20 WRSs 1 Hz data

Presented at ICTP

Todd Walter

Outline

HRAIM Ionospheric Modeling → Ionospheric Threats Other Integrity Threats Integrity Methodology Next Generation Satellite Navigation Future Signals Conclusions

Looking Ahead

→Next generation of satellite navigation will exploit new signals and new systems GPS is being modernized Other nations developing SatNav It is time to plan ahead *What new capabilities can we provide?* + Are there more efficient ways to provide them?

76

GPS Signals

New Systems

→Galileo - Europe

30 satellite in 3 planes
2 test satellites in orbit
Full constellation in 2013 (or so)

Compass (Beidou) - China
5 GEOs
3 Inclined geosynchronous
30 MEOs
Planned operation in 2012 (or later)

GNSS Signals

Presented at ICTP Copyright 2009 Todd Walter

78

Today's Receiver Autonomous Integrity Monitoring (RAIM)

Single frequency, single constellation RAIM supports supplemental lateral navigation for en-route, terminal area & NPA

Supports navigation for all phases of flight including vertical guidance for landing

2018: Dual Freq. SBAS & GBAS mitigate ionospheric storms & accidental RFI.

Still requires dense network & expensive broadcast to achieve only regional coverage

2018: SBAS Orange Would Become Green & Iono/RFI Sensitivity Would Disappear

Benefits of Multi-Constellation RAIM

- Combining signals from multiple constellations can provide significantly greater availability and higher performance levels than can be achieved individually
- Potential to provide a safety of life service without requiring the GNSS service provider to certify each system to 10⁻⁷ integrity levels
- Creates a truly international solution
 - All service providers contribute
 - Not dependent on any single entity
 - Coverage is global and seamless

Approved GPS Aviation Operations (as of 2007)

FAA Presented at ICTP

Courtesy:

Copyright 2009 Todd Walter

Conclusions

→GNSS can be used to provide aircraft navigation for all levels of service Integrity is a key concern Important to understand what can go wrong and how to protect users Observation and data collection are key to understanding behavior A long history of careful and consistent data monitoring are required Practical experience leads to trust and acceptance