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A “climate” description of the
African lonosphere
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Defining an important parameter:
foF2
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The ionogram
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The frequency at which a wave just penetrates the
ionospheric F2 layer is known as the critical frequency of that
layer. The critical frequency is related to the electron density
by the simple relation:

N =0.124 x 10" (f)°

N [m2] F[MH]



How to define a “climate”
description of the ionosphere

Two basic parameters of the lonosphere are the NmF2 and the
hmF2.

ITU-R (formerly CCIR) coefficients are used to compute foF2 and
M(3000)F2 over the entire globe.

They have been derived from monthly medians of foF2 and
M(3000)F2 obtained by the worldwide network of ionosondes
(about 150 stations) during the years 1954 to 1958

This technique was first developed by Jones and Gallet using
only a dependence on latitude and longitude, but soon a
dependence on modip was introduced.

These coefficients are given for low (R12=0) and high (R12=100)
solar activity conditions. For other solar activities conditions
simple interpolation is used.
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Introducing “modip” - )

A geomagnetic coordinate introduced by Rawer [1963] to be
applied in ionospheric studies particularly related to low

latitudes: 1

\/cosqo

Where [is magnetic inclination or dip at 300 km and ¢ is the
latitude of the considered location.

Modip is near magnetic dip at low latitudes and gets closer to
geodetic latitudes at higher latitudes.

tan u =



Modip over Africa
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The process that dominates the
African lonosphere

The physical process that dominates the behavior of the
lonosphere over Africa is the Equatorial Anomaly.
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A meridional cross section o
continental Africa
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The dominant process as seen by <
the ionospheric “climate”
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The dominant process as seen by <
P

the ionospheric “cl
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The dominant process as seen by

i
C
T

the ionospheric climate (cont.) ©
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Introducing TEC and its variability over Africa:

A measure of “ionospheric weather”
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Another ionospheric parameter:
TEC

The total electron content (TEC) is the number of electrons
in a column of one metre-squared cross-section along a
trans-ionospheric path.
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Day to day variation of the equatorial
anomaly development over Africa
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Vertical TEC over Africa and its
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Vertical TEC over Africa and |ts_<::.
variability (cont) N

TEC(10%*16) nkig Lat=00.4N Lon=9.7E MMSN = 99 TEC(10**16) nkig Lal=00.4N Lon=9.7E MMSN =48

130 - — - - > 130
120 LAt e ARt IEEEELLEL SEERERLLLE
110 TR 7Y S S O Ot MO0 SO SOBMMUUN SO SRS S
100 11 S SPRPRNN USRS RPN SOJURPRE SOJURPRU: SOJUIORE SORURPIE SOOI OPRURSRS SURRN: RSN
90 90 | iz e
80 80 ____Quartiles 77777777777777777777777777777
70 1) TSRS SRR SNSRI SRR SV SOPSOSSPS SIS SRt SOSSISN SOTS SORRS S
60 60—
50 50
40} 40y
30 : sop

20

year 2004\Days 275-305, Hour, UTC

year 2000iDays 275-305, Hour, UTC

GPS derived vertical TEC at 5 min interval for Libreville (Lat.
0.4° N, Long. 9.7° E, modip — 24.6°), October 2000 and October
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Quiet and disturbed conditions
slant and vertical TEC variations over Africa



Slant and Vertical TEC over
Africa and its variability
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Introducing geomagnetic
activity index DST



Dst Index

The hourly Dst index is obtained from four

=0

magnetic observatories, Hermanus, Kakioka, w i,
Honolulu, and San Juan. Z T 09400 2 02 ~
These observatories were chosen on the basis ) %
the quality of observation and for the reason t w(.

their locations are sufficiently distant from the « N ¢

auroral and equatorial electrojets and that the _,

are distributed in longitude as evenly as possik .. . b—#%
At such latitudes the H (northward) componen= 7 ) 'r&’] N
of the magnetic perturbation is dominated by ' .. U

intensity of the magnetospheric ring current.

The Dst variation provides a quantitative meas

of geomagnetic disturbance that can be

correlated with other solar and geophysical - Dst NETWORK
parameters.

This variation clearly indicates the occurrences of
magnetic storms and their severity when they
occur.



Dst Index and Sunspot number&
for the periods analyzed: HSA
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Dst Index and Sunspot numberé ;
for the periods analyzed § 9
(LSA and minimum SA)
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Middle latitudes conditions



Slant and Vertical TEC over
Africa and its varlablllty (cont)
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Six days of slant and vertical GPS derived TEC over
Pretoria during quiet geomagnetic conditions and high solar activity
(5-10 October 2001)



Slant and Vertical TEC over
Africa and its variability (cont)
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17001 ASHTECHUZ-12  CNOO0-1AD1

200

180

160

140

120

100

080

060

040

.-J' ¥ _':I. \ iy | 11y F ;IE | Ls!
Al UL ¥ Tl iR N | LR | T— | I 10§ 0 71—
1 o A Y f) 1 . [ pta¥y AL T i ! L A o L R\ Y

0003 25’5 255 25? ‘ = 2;9 .‘
Six days of slant and vertical GPS derived TEC over
Pretoria during quiet geomagnetic conditions and low solar activity

(20-25 September 2008)

=~



Slant and Vertical TEC over & )
Africa and its varlablllty (cont)™
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Six days of slant and vértical GPS derived TEC over
Pretoria including disturbed geomagnetic conditions and high solar
activity (25-30 October 2001)
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Conditions under the African southern crest
of the equatorial anomaly



Slant and Vertical TEC over
Africa and;its :varlabljlty (cont)
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Mbarara during quiet geomagnetic conditions and high solar activity (5-
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Slant and Vertical TEC over
Africa and its variability (cont)
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Six dayé of slant and vertical GPS derived TEC over
Malindi (modip — 24.9) during quiet geomagnetic conditions and high

solar activity (5-10 October 2001)
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Slant and Vertical TEC over S:Z. 9
Africa and#its Varlabllflty (cont) .
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Mbarara including disturbed geomagnetic conditions and high solar
activity (25-30 October 2001)



Geomagnetic disturbed conditions at middle-
low latitudes north and south in the African
sector
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Slant and Vertical TEC over
Africa and its variability (cont)
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Six days of slant and vertical GPS derived TEC over

Lampedusa (modip 43.9) including disturbed geomagnetic conditions

and low solar activity (31 March - 5 April 2004)
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Slant and Vertical TEC over
Africa and its variability (cont)
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Introducing slant TEC rate of change



TEC gradients and TEC rate of
change

TEC spatial and temporal gradients are features of the ionosphere that
lead to errors in navigation and positioning augmented GNSS (SBAS)
systems.

In most of the conditions found at middle latitudes the effect of gradients
is very small under ionospherically quiet conditions.

A=

Under disturbed conditions like those that occur during geomagnetic
storms, gradients at middle latitudes can reach values that degrade the
performance of the systems.

At low latitudes both spatial and temporal gradients of TEC are larger and
can complicate the operation of SBAS also under nominal conditions due
to the dynamics of the development of the equatorial anomaly.

Rapid TEC fluctuations associated with the irregularities that develop
during the build up of the equatorial anomaly and produce scintillations of
the transionospheric propagating signals can also impact on the use of
GNSS operations at low latitudes.



TEC gradients and TEC rate of
change (cont.)

A=

When using GPS derived TEC data, the only quantitatively measurable
parameter related to the presence of time and spatial (horizontal)
gradients is the slant TEC rate of change.

At present it does not appears possible to separate the contribution of
geometry and gradients from the calculated slant TEC rate of change.

The rate of change is measured in TECu/min.



TEC gradients and their impact on

s
G0N
-'.!;
GNSS operations
Global Navigation Satellite Systems operations can be seriously affected in

their range accuracy in regions or conditions where large gradients of TEC
are found.

Space Based Augmentation Systems (SBAS) broadcast equivalent Grid
lonospheric Vertical Delays (GIVD) to correct ionospheric delays.
lonospheric Grid Points (IGP) are given every 52x5¢9,

From GIVDs, users interpolate to obtain the equivalent vertical delay at
each IPP using interpolation algorithms that work appropriately at middle
latitude during nominal quiet conditions where spatial gradients of TEC
are small.

When gradients are much larger it may be expected that the range delay
correction method used by SBAS would not provide adequate ionospheric
corrections.



TEC gradients and their impact on
GNSS operations (cont.)

A=

* In addition, SBAS operations are based on real-time broadcasts of
ionospheric corrections that are updated periodically at given time
intervals (5 min).

 Time-dependent changes in the ionosphere may degrade or even make
obsolete the old broadcast correction before a new one is available to the
user.

* Limits on temporal gradients or rate of change must be determined to
protect users from potentially hazardous rates of change that may occur
at the users’ ray-path lines of sight.
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TEC rate of change at a middle latitude
location in Africa
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TEC rate of change over Africa b -
(cont.) s
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TEC rate of change at a location in Africa under
the southern crest of the equatorial anomaly



TEC rate of change over Africa b
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TEC rate of change over Africa
(cont.)
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TEC rate of change over Africa b -
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(cont.) P
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Six days of slant TEC rate of change over Mbarara during a geomagnetic quiet period in
minimum solar activity (20-25 September 2008)
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Electron density depletions or “bubbles”



What they are

A=

Electron density depletions or “bubbles’: regions of the ionosphere where
n(x,y,z)/no(x,y,z) < 1
Size: tenth to hundreds of km perpendicular to the geomagnetic field

Shape: close to cylindrical with axes along the geomagnetic field (“banana
shape”)

Dynamics: rise to heights up to1000 km
eastward drift (50-100 m/s, lower at higher altitude)

branching of do to internal electric field

Physical process: F-region plasma density irregularities and upward plasma drifts in the
equatorial ionosphere that evolve nonlinearly by means of the Rayleigh-Taylor instability.

Seen in GPS derived TEC data

Are related to scintillation occurrence
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The method of bubbles detection ¢
P
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Detected bubbles in year 2004 using sTEC data from some African ESTB and IGS stations
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What kind of research can be started with whatc':
is already available (past and present data), I
waiting for more instruments to be installed

in the region?
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Possible lines of research: L )
objectives 5=

* To characterize the vertical TEC as a function of

modip over Africa, in terms of:

— Solar activity

— Seasonal variation

— Diurnal variation

— Day-to-day variability

— Short term variations (inter-hour variability)

— Differences between station values and values extracted from
global maps of vertical TEC for the same location.

— Effects of geomagnetic activity vs. quiet conditions variability



Possible lines of research: & )
objectives (cont.) P

e To characterize bubbles as observed in slant TEC

data in terms of:

— Occurrence

— Depth

— Duration

— Location of the bubble (assuming the bubble at a pierce point)
— Multiple occurrence from more than one station.



Possible lines of research: & )
objectives (cont.) P

* To investigate slant TEC rate of change in terms of:

— Location (modip)
— Solar activity

— Seasonal variation

— Diurnal variation

— Day-to-day variability
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