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Tutorial Outline
Short Review of GPS Receivers

Emphasizing what functions are affected by scintillation
Emphasizing modifications implemented for measuring scintillation 
effects

Amplitude and Phase Scintillation Measurements
Measurement Limitations

How well does the receiver perform in a scintillation environment?
How can a GNSS receiver be designed to better operate in a 
scintillation environment?

TEC Measurements
Measuring TEC or satellite and/or receiver inter-frequency biases?

Example Measurements
GPS Satellites
SBAS Geostationary Satellites



Standard Multiple Frequency GPS 
Receiver Functional Block Diagram
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GPS Receiver Modifications for 
Scintillation Monitoring
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Receiver Modifications to Measure 
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Measuring Amplitude 
Scintillation
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Typical Receiver Channel for 
Amplitude (Power) Measurements
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Signal Intensity Samples
Signal Intensity samples are based upon 
Narrowband (NBP) and Wideband (WBP) 
Power Measurements (50 samples/second)

Difference is proportional to signal power
• Theoretically cancels noise power in the mean

– Practically, it doesn’t completely – correction made later

Samples collected and stored over 60 seconds
Thus, 3000 samples every minute
These 50 sps samples are available as an output
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Computing S4 (1)
Total S4 is standard deviation of normalized Signal Intensity

Scale factor of Signal Intensity is ambiguous, but this normalization with 
average value over 60 seconds takes care of that

Desirable to remove the effects of receiver noise, theoretically 
computed as

This is square root of expected value of S42, given noise only
is average measured signal-to-noise density over 60 second 

period – also an output, as well as the above noise contribution
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Computing S4 (2)
Noise contribution is removed as follows:

If square-root argument is negative, set to 0 (means 
noise dominates amplitude scintillation)
This corrected value is computed off-line

Option also exists to compute average value of SIk
as low-pass filtered value

This presents potentially unstable normalization 
because of filter delay – results in inflated S4 values
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Low-Pass Filtering Introduces 
Delay in Normalization
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• Low-passed version
(denominator) does
not line up with
raw version
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Measuring Amplitude Scintillation 
Summary

Amplitude Scintillation
Measure GPS signal-plus-noise power
Remove, as well as one can, noise power
Relatively straight-forward
• Some “detrending” issues separating scintillation 

fades from multipath fading – a detrending 
bandwidth issue

• Averaging proves to be more stable than filtering, 
but results in higher S4 due to multipath fading



Measuring Phase Scintillation
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Some History Relative to Measuring 
Phase Scintillation Effects

GPS Silicon Valley inherited commercialized scintillation 
monitoring technology from an Air Force Small Business 
Innovation Research (SBIR) program

Toughest challenge on that program was measuring phase 
scintillation with standard GPS receivers using Temperature 
Compensated Crystal Oscillators (TCXOs)

• TCXO phase noise masked phase scintillation effects
• Problem solved using good Oven Controlled oscillators (OCXOs) 

These upgraded receivers are relatively expensive
But, provide good scintillation measurements
Even then, there are limitations to operation in a scintillation 
environment
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Measuring Phase Scintillation Effects
To measure phase scintillation, GPS receiver must track signal 
phase using a phase lock loop (PLL)

Weakest link in a GPS receiver
Measurements include perturbations of receiver and satellite oscillators

• Mostly, these perturbations cannot be removed with “detrending”
Phase includes signal Doppler, multipath and ionosphere TEC (and 
oscillator frequency offset), mostly removed with “detrending”

Typically, measurement bandwidth is the PLL loop bandwidth
Wide bandwidth makes loop more sensitive to amplitude fading, and 
thus, loss of lock
Narrow bandwidth makes loop more robust, but filters out phase 
scintillation effects

Loop can be configured to have narrow loop bandwidth for 
robustness, but still provide wide bandwidth phase data
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PLL Model with Wideband Phase 
Estimator
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Measuring TEC
Measure difference of PN code phase on L1 and L2, smoothed against 
negative difference in carrier phase

Use “semi-codeless” technique to measure on L2
Does not enhance ability to measure scintillation
15 to 35 dB less signal power recovery than L1
However, can use very low bandwidth PLL, aided with L1 Doppler phase, 
regaining 14 to 17 dB, depending upon C/N0

Limitations
Typically not available if L1 C/N0 drops below 38 dB-Hz
Must contend with L1/L2 biases

• Satellite biases (Tau_GD and C/A-to-P)
• Receiver and antenna biases

Real-time accuracies on the order of 1 – 3 TECU, after calibration
Also, very much affected by multipath



GPS Receiver in a Scintillation 
Environment
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General GPS Receiver Limitations in 
Scintillation Environment

Phase Scintillation
Generally, not a problem at L1

• Unless a very narrow tracking bandwidth is used
• No worse than low-grade TCXO typically found in GPS Receivers

Severe problem for “semi-codeless” L2
• Very narrow bandwidth PLL coupled with erroneous aiding with L1 

phase (doesn’t agree with Doppler aiding)
Amplitude Scintillation

Primary culprit for loss of phase lock at L1
• Deep and long fades steal signal from PLL
• Narrower bandwidth is better, but could require a better oscillator, 

and may lose lock due to strong phase scintillation
• False alarms from lock detectors during fades (apparent loss of lock)

Loss of data (symbols) from SBAS signals



Phase Scintillation
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GPS Scintillation Monitor Limitations 
in Phase Scintillation Environment

Phase Scintillation
Can’t measure scintillation at L2
Measurement limitations at L1 dominated by receiver 
oscillator

• Typical receiver oscillator phase noise masks phase scintillation 
(See PSDs and plots in next charts)

• Thermal Noise limitation is about 0.1 radian @ 30 dB-Hz
• OCXO phase noise typically better than 0.05 radians

Limitation can be overcome by differencing phase 
between satellites

• Creates a requirement for high-rate data collection and 
substantial post processing
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Phase Noise PSD Comparisons
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Antofagosto Phase Scintillation vs. 
TCXO Phase Noise

= 0.396 radians = 0.46 radians
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Tradeoffs Regarding Using Low-Noise 
Oscillators (OCXOs)

Cost of low-noise OCXOs has diminished 
somewhat

The cost driver is their packaging with the receiver 
(low-volume quantities)

• This packaging must also meeting international radiation and 
conductive emission (CE) requirements

As stated, TCXO noise can be eliminated by 
differencing phase across satellites

Creates a data storage and post-processing burden
Receiver tracking bandwidth must be kept high, 
preventing tracking in noisy conditions



Amplitude Scintillation
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GPS Scintillation Monitor Limitations 
in Amplitude Scintillation Environment

Amplitude Scintillation
High S4 can cause loss of phase lock

• Of course, that is still information
• S4 is still usually valid – it is based upon non-coherent power 

measurements, at least for short to medium length fades
• See state diagram

Multipath fading limits minimum S4 capability
• Longer duration, but shallow fades
• Can be detected and eliminated because multipath also causes 

code/carrier phase divergence – scintillation does not



Fade Depths and Widths Using 50 
Hz Amplitude Samples
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Distinguishing Between Amplitude
Scintillation and Multipath Fading
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Distinguishing Between Amplitude
Scintillation and Multipath Fading
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• Moderate
Scintillation

• Varying Multipath
• All GPS Satellites



Distinguishing Between Amplitude
Scintillation and Multipath Fading
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Signal Tracking State Diagram

• Not necessarily implemented in all receivers, but is in Scintillation
Monitors described here



Example Measurements taken
in San Francisco Area

GPS Satellites
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Typical Plot of 1, 3 and 10 Second 
Sigma-Phi from All Satellites in View

6 April 2009 African Workshop 33

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20 24

C/
N0

 -
dB

-H
z,

 E
le

v 
An

gl
e 

-D
eg

re
es

S
ig

_P
hi

 -
Ra

di
an

s

GPS TOW - Hours

Sig_Phi_1

Sig_Phi_3

Sig_Phi_10

ElevAngle

C/N0



6 April 2009 African Workshop 34

Thermal Noise (C/N0) Effects Versus Theoretical 
Sigma-Phi Phase Scintillation Parameters
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Thermal Noise (C/N0) Effects Versus Theoretical 
S4 Amplitude Scintillation Parameter
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Example Measurements

SBAS Geostationary Satellites
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SBAS GEO Phase Measurements
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GEO Amplitude Measurements

6 April 2009 African Workshop 38

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 4 8 12 16 20 24

Si
gm

a 
Co

de
/C

ar
rie

r 
Di

ve
rg

en
ce

 -
m

et
er

s

GPS TOW - Hours

• Standing wave
multipath
detrends out
very well

• Code/carrier
divergence
due to crossing
Doppler of 2
GEOs

• May be some
scintillation
during late evening



Easy to Distinguish between Multipath and 
Amplitude Scintillation from GEOs
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Receiver Demonstration

GSV4004B GPS Ionospheric Scintillation 
and TEC Monitor
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GSV 4004B & Antenna
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GSV4004B GPS IONOSPHERIC SCINTILLATION AND TEC MONITOR AND OPTIONAL GPS702GG
ANTENNA



GPS IONOSPHERIC SCINTILLATION AND 
TEC MONITOR (GISTM) FEATURES - 1

Tracks and reports scintillation and TEC measurements from up 
to 10 GPS satellites and 3 SBAS GEO(s) in view (no TEC on 
SBAS GEOs).  
A 25 Hz raw signal intensity noise bandwidth and a 25 Hz 
phase noise bandwidth insures that all the spectral components 
of both amplitude and phase scintillations are measured.  Phase 
data and amplitude data are sampled at a 50 Hz rate.
Single frequency (L1) satellite carrier phase is compared 
against a stable ovenized crystal oscillator (OCXO) to insure 
that all phase scintillation effects are recorded, not merely the 
1/f refractive component measured by dual-frequency 
differential systems.  The stable OCXO also allows tracking with 
a narrowband phase-lock-loop (PLL) to provide more robust 
tracing in scintillating environments.
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GPS IONOSPHERIC SCINTILLATION AND 
TEC MONITOR (GISTM) FEATURES - 2

Software is included in the GISTM to automatically compute and log the 
amplitude scintillation index, S4, and phase scintillation index, , computed 
over 1, 3, 10, 30 and 60 seconds.  In addition, TEC and TEC phase are each 
logged every 15 seconds.  Phase and amplitude data, either in raw form or 
detrended (to remove systematic variations), can also be logged at a 50-Hz 
Scintillation measurements from the GISTM can easily be scaled to the 
frequencies of the new, L-band and C-band low-orbit personal 
telecommunications satellites to predict the magnitude of scintillation effects 
on those commercial systems.  These measurements can also be scaled to 
lower frequencies typical of older military and commercial systems.
Utility software is included: 1) Script Logging utility for controlling the receiver 
and requesting data logs, 2) Various data parsing utilities for extracting data 
from the logs and converting to ASCII data, 3) A utility to view logs collected 
at a 1/60-sec rate.  Standard NovAtel windows-based utilities (GPSolution4 
and Convert4) can also be used for real-time viewing of receiver status and 
for data parsing.
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Specific GSV4004B Data Logs
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LOG ID BYTE COUNT DESCRIPTION
RAWSINB 327 H + 4 + (n * 420) GISTM 50-Hz phase and amplitude data, and 1-Hz TEC data 

(rate = 1 per sec)
DETRSINB 326 H + 4 + (n * 420) GISTM detrended RAWSINB data (rate = 1 per sec)
ISMRB 274 H + 4 + (n*152) GISTM main data record (rate = 1 per 60 sec)



The Future
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Future GPS, SBAS and Galileo
Added GPS frequencies will enhance both scintillation and 
TEC monitoring

GPS will add open-coded L2C (at L2) and L5 (1176.45 MHz) 
signals as satellites are replenished

• L2C on 8 Block IIR-M satellites
• L2C and L5 on all subsequent Block IIF satellites
• L1C on GPS III satellites
• L1F and E5 on Galileo satellites

SBAS GEOs will broadcast at L1 and L5
• WAAS has two on orbit
• Inmarsat-4s are on orbit, but not yet operational

Galileo will have open-coded signals at L1 and at L5, but not L2


