

2025-38

Satellite Navigation Science and Technology for Africa

23 March - 9 April, 2009

Scintillation Modelling

BENIGUEL Yannick I.E.E.A. 13 Promenade Paul Doumer 92400 Courbevoie FRANCE

Scintillation Modelling

Y. Béniguel, IEEA

Contents

Model description

Comparisons with measurements

□ Mapping developments

Instability development vs time transverse to the magnetic field plane

Solving Boltzman equations

electronic density in a plane transverse to the terrestrial magnetic field

t = 150 s.

Propagation through a Gaussian lens

We assume a unitary field with a Gaussian phase distribution at $z = z_1$

$$E(x,0) = \exp(-j\Phi_0 \exp(-x^2/r_0^2))$$

The field at z₂ may be obtained using the Fresnel Kirchhoff integral

$$E(x, z_{2}) = \sqrt{\frac{-j2\pi(z_{2} - z_{1})}{k}} \int_{-\infty}^{\infty} \exp(jk(z_{2} - z_{1})) \exp\left\{\frac{-jk(x - \xi)^{2}}{2(z_{2} - z_{1})}\right\} E(\xi, z_{1}) d\xi$$

where the space Fourier transform of the field has been made

Propagation through a Gaussian lens

Medium with a random dielectric constant

Fluctuations of the electronic density

$$E(x,z) = e^{jkz} \int \widehat{E}(K,0) \exp\left(\frac{jK^2z}{2k} + jKx\right) dK$$

GISM scintillation model

- NeQuick to provide the background ionosphere
- Medium defined by statistical parameters
- Multiple phase screen theory
- Resolution using an FFT algorithm
- includes an orbit generator (GPS, GLONASS, Galileo)

Phase Synthesis

• Pb : to synthesize a random signal Y(x) with a pre - defined spectral density G(v)

Linear filter : Y(x) = R(x) * X(x)

Spectral density of the input signal : $\gamma_{x}(v) = 1$

Filter gain G(v) such that $G(v) = [S(v)]^{1/2}$

S(v) is the spectral density of the signal to be synthesized

Result obtained by inverse Fourier transform

Signal spectrum (GISM)

3 parameters for the spectrum

- the slope,
- the cut off frequency,
- the low frequency value

Spectrum Analysis

from measurements in South America

Sample characteristics : S4 = 0.51, sigma phi = 0.11

Sample characteristics : S4 = 0.51, sigma phi = 0.11

Spectrum parameters

5 days RINEX files considered in the analysis
S4 > 0.2 & sigma phi < 2 (filter convergence)
2 parameters to define the spectrum : T (1 Hz value) & p

Phase variance : time domain vs frequency domain

$$\sigma phi^{2} = 2\int_{fc}^{\infty} PSD(f)df = 2\int_{fc}^{\infty} Tf^{-p}df = 2T \left[\frac{f^{-p+1}}{-p+1}\right]_{fc}^{\infty} = \frac{2T}{(p-1)fc^{p-1}} \qquad \text{(if } p > 1\text{)}$$

Satellite Navigation Science and Technology for Africa / Trieste 7 april 2009

linear relationship

Scintillations strength

Scintillations Parameters S4 and σ_{Φ}

S4 standard deviation of the intensity

σ_{Φ} standard deviation of the phase

Weak fluctuations hypothesis

$$\sigma_{\Phi}^2 = 2(\lambda r_e)^2 L L_0 \sigma_{Ne}^2$$

$$S_4^2 = 4 (\lambda r_e)^2 L C_s \int \sin^2 (q^2 Z) \cos(q \rho) \frac{dq}{(1 + (q/q_0)^2)^{p/2}}$$

L is the propagation distance inside the fluctuating medium

 L_0 is the average size of the inhomogeneities 500 < L_0 < 1 km will contribute to scintillations \rightarrow 1st Fresnel zone

Scintillation levels depending on the local time

Probability of intensity Modelling

GISM output

10 minutes sample with S4 = 0.6 & sigma phi = 0.1

PRIS Measurement campaign

Institutions : IEEA (Fr), DLR (Ge), GMV (Sp), ESA / ESTEC, CLS (Fr), U. of Rennes & Brest (Fr)

Measurement problems

Most of the measurements are affected by multipaths

For the statistical analysis

- Elevation angle > 20°
- Code Carrier divergence
- S4 > 0.2

Seasonal Dependency

Results obtained using the data base

Depending on local time

Depending on the day of the year

Depending on the day of the year

Depending on the day of the year

Maps

N'Djamena

Model / measurement comparison

The model extent area fits with what is obtained by measurements

Assimilation technique principle

Principle of Scintillation Map Generation

Measurements, S₄ computation Assimilation of data into the GISM Scintillation map.

Maps using an assimilation technique

Scintillation measurements over Brazil with 6 stations

• The circle of each IPP is proportional to the measured S4

2 stations are almost collocated : distance = 100 km

Collocated stations (100 km)

1 week of measurements

All visible GPS satellites are considered

Computed correlation coefficient : 0.8

Correlation distance

For a given satellite, the distance between the IPPs is approximately the same than the distance between the stations.

The correlation coefficient between the S4 of 2 IPP is assumed to be a gaussian function of the distance : $c = exp(-\alpha d^2)$

Since c = 0.8 for d = 100 km, the deduced correlation distance (c = 0.5) is about 175 km.

Probability of simultaneous fading

Fades statistics

Example of equatorial scintillation in Ascension Island, in solarmax conditions (2001)

Source H. Guichon, Thalès

Fade duration / mean time between fades L1 & C band

fade duration / mean time between fades L1 / flux = 150

Positioning errors

Simulation

- GPS constellation simulated with a yuma file
- S4 measured for each tracked satellite
- Receiver model described with typical parameters
- Positioning error computed

GPS Positioning Errors

movie

Positioning errors from measurements in Brazil in 2001

Page 47

Conclusions

- Results obtained during PRIS campaign at low solar activity exhibit the expected usual trends
- The GISM model results show a reasonable agreement as compared to measurements
- ✓ Mapping algorithms are being developed
- Measurement campaign will be continued in the future (Northern Europe, South America, Vietnam & Africa)

