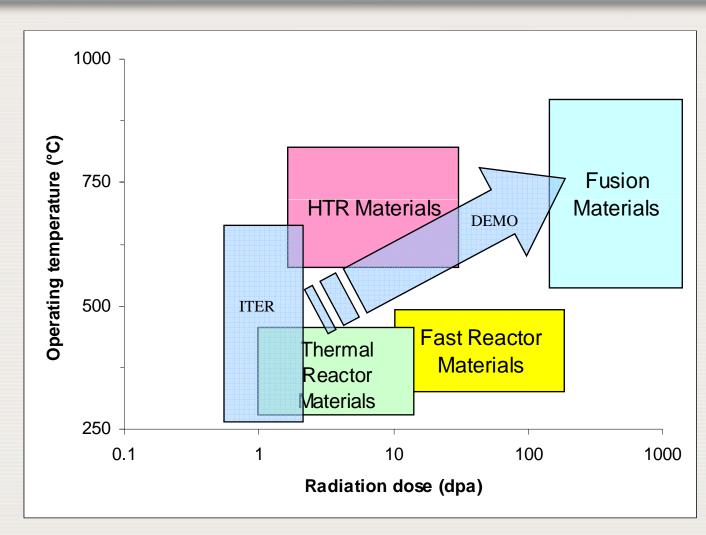
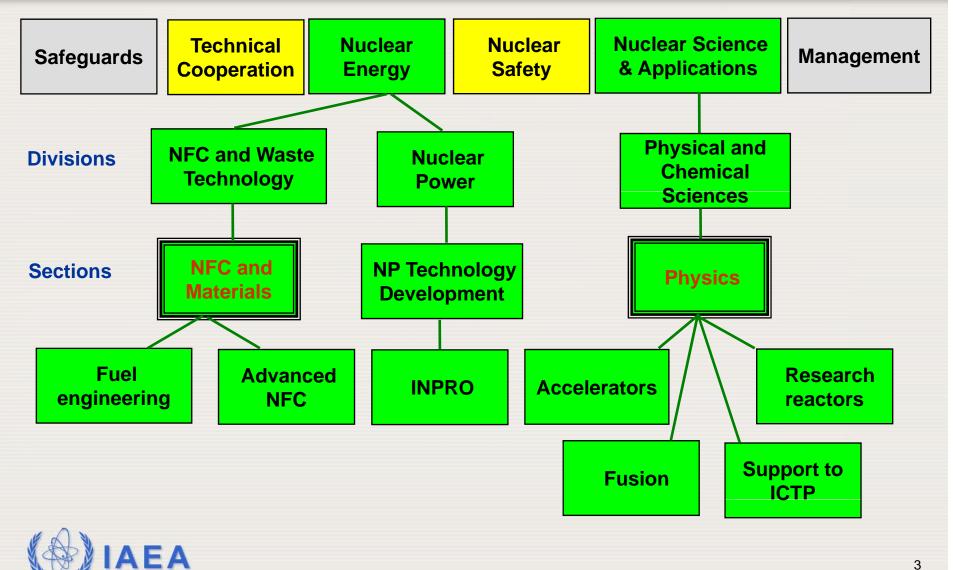
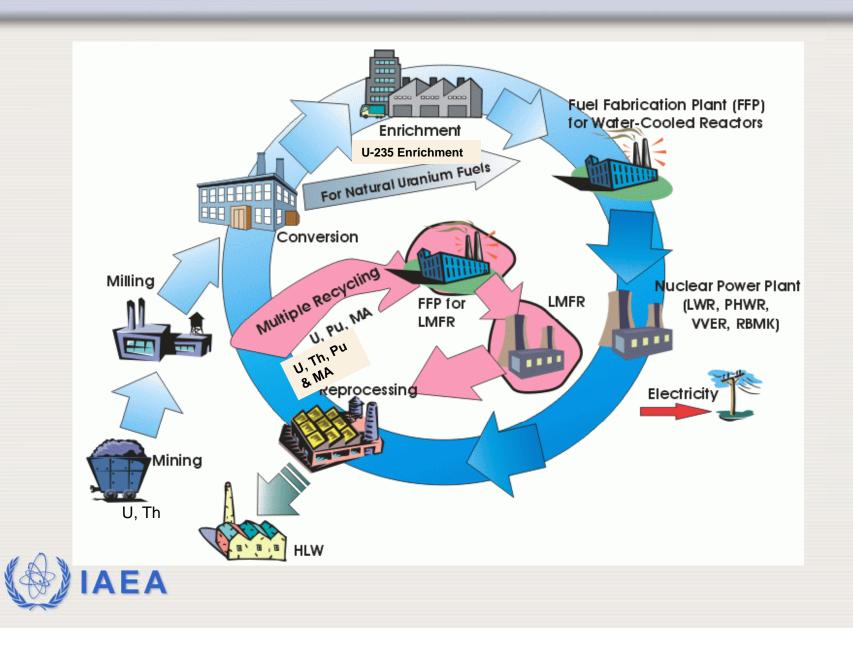
IAEA activities in the areas of fuel performance analysis and radiation-resistant materials development


Victor Inozemtsev NE / NEFW / NFCM / Fuel Engineering

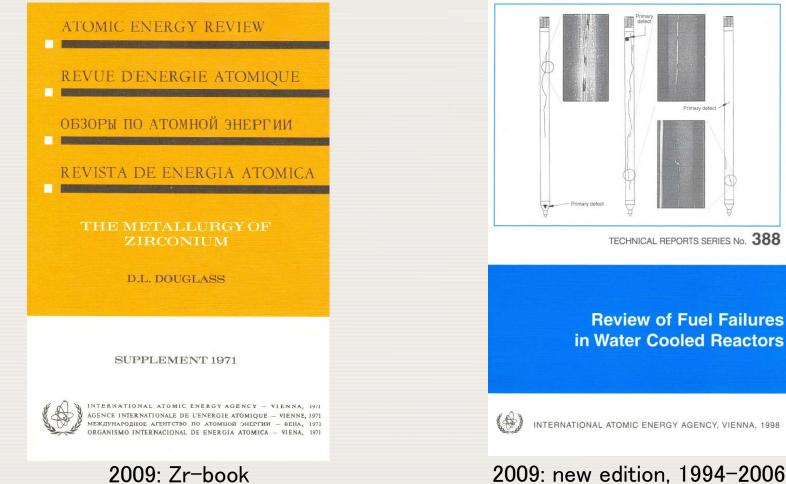

ICTP, 20-24 April 2009

Increasing demands on structural materials



Advanced materials in the IAEA Major Programme "Nuclear power, fuel cycle and nuclear science"

Nuclear Fuel Cycle and Materials Section


4

Technical Meetings (TWGFPT-2008)

Technical Meetings	Host	1	2	3	4	5	6	7	8	9	10	11
TWGFPT	IAEA											
Advanced PIE examination techniques for water reactor fuel - TECDOC-1277	Russia											
Fuel behavior under transient and LOCA conditions - TECDOC-1320	Norway											\neg
Fuel failure in water reactors: causes and mitigation - TECDOC-1345	Slovakia											
Poolside inspection and repair of water reactor fuel - VM-25642	Czech Rep.											
Improved fuel pellet materials and designs-TECDOC - 1416	Belgium											
Structural behavior of fuel assemblies, TECDOC - 1454	France											
Behavior of high corrosion-resistant Zr-based alloys	Argentina	\square										
Fuel behavior modeling under normal, transient and accident conditions and high burnup	UK				\square							
High burnup fuel experience and economics	Bulgaria											
Hot cell PIE and poolside inspection techniques for water reactor fuel	Argentina											
PHVVR fuel modelling	India											
Fuel rod instrumentation and in-pile measurement techniques	Norway											
PHVVR fuel design, fabrication and performance	Argentina											
Advanced fuel pellet materials and fuel rod designs for water cooled reactors	Switzerland											
Fuel behavior and modeling under LOCA and RIA conditions	Japan											
Water chemistry and clad corrosion/hydriding/deposition including fuel failures	Ukraine				\square							
Design, manufacturing and radiation behaviour of FR fuels (joint)	Russia											
Fuel integrity during normal operation and accident conditions in PHWR	Romania											
Hot-cell PIE and pool-side inspection (in cooperation with HOTLAB)	Slovakia											
Fuel modelling	Finland											

Expert Reviews

2009: new edition, 1994-2006

Contents of the IAEA Review of fuel failures in water-cooled reactors (1994-2006, 94% of WRs)

1 INTRODUCTION

2 EVOLUTION OF FUEL OPERATING ENVIRONMENT AND DESIGN FUEL CHANGES

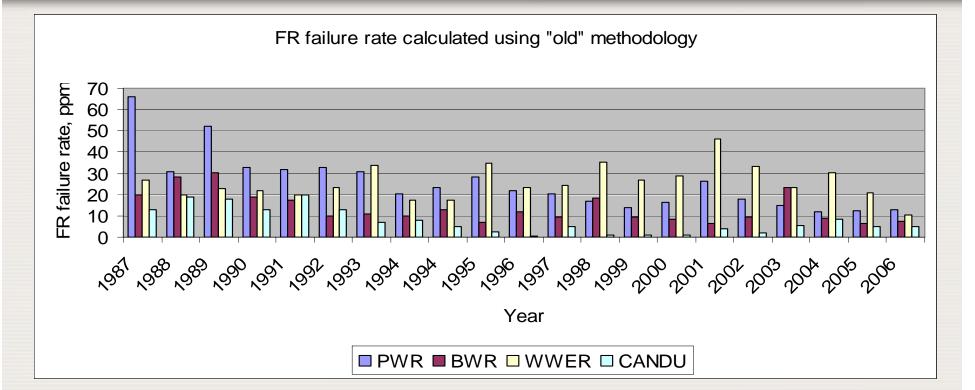
- 2.1 EVOLUTION OF FUEL OPERATING ENVIRONMENT
- 2.2 FUEL DESIGN EVOLUTION
- 2.3 FUEL TYPES IN OPERATION
- 3 WORLD OVERVIEW ON FUEL FAILURES IN 1994-2006
- 3.1 INTRODUCTION
- 3.2 COOLANT ACTIVITY LEVELS
- 3.3 METHODOLOGY OF FUEL FAILURE RATE EVALUATION
- 3.4 COLLECTION AND TREATMENT OF FUEL FAILURE DATA
- 3.5 EVALUATION OF PWR FUEL LEAKERS
- 3.6 EVALUATION OF BWR FUEL LEAKERS
- 3.7 EVALUATION OF WWER FUEL LEAK RATE
- 3.8 EVALUATION OF FUEL LEAKAGE IN CANDU/PHWR
- 3.9 MULTIPLE FAILURE INCIDENTS/DEFECT EXCURSIONS

3.10 FUEL ROD FAILURE RATES AND FUEL FAILURE CAUSES DURING 1987-2006

3.11 EVALUATION OF WORLD AVERAGE LWR FUEL FAILURE RATES

3.12 CONCLUDING REMARKS ON CHAPTER 3

4 DETECTION, EXAMINATION AND ANALYSIS OF FUEL FAILURES


- 4.1 INTRODUCTION
- 4.2 EVALUATION OF COOLANT ACTIVITY
- 4.3 LOCALIZATION OF FUEL FAILURES
- 4.4 FUEL EXAMINATION

4.5 FUEL FAILURE ANALYSIS

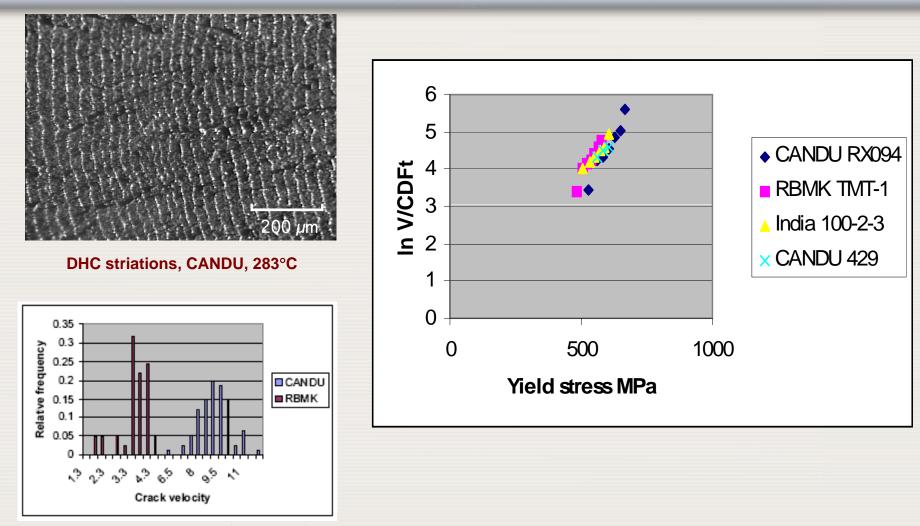
- 5. MECHANISMS AND ROOT CAUSES OF FUEL FAILURE
- 5.1 INTRODUCTION
- 5.2 GRID-TO-ROD FRETTING
- 5.3 FRETTING BY DEBRIS
- 5.4 CORROSION
- 5.5 PCI (PELLET-CLADDING INTERACTION)
- 5.6 MANUFACTURING DEFECTS
- 5.7 CROSS FLOW/BAFFLE JETTING
- 5.8 PRIMARY HYDRIDING
- 5.9 DELAYED HYDRIDE CRACKING (DHC)
- 6 FUEL STRUCTURAL DAMAGE AND OTHER FUEL ASSEMBLY ISSUES
- 6.1 ASSEMBLY BOW
- 6.2 MECHANICAL DAMAGE DURING HANDLING
- 6.3 CRUD & AXIAL OFFSET ANOMALIES (AOA)
- 6.4 OTHER MISCELLANEOUS DAMAGES
- 7 SECONDARY FUEL FAILURES
- 7.1 BACKGROUND
- 7.2 OBSERVATIONS FROM EXPERIENCES
- 7.3 DEGRADATION CHARACTERISTICS
- 7.4 MECHANISMS
- 8 FUEL FAILURE PREVENTION AND MANAGEMENT IN PLANT OPERATION
- 8.1 EXISTING OPERATING LIMITS AND RECOMMENDED PRACTICES
- 8.2 IMPROVEMENT OF QUALITY DURING
- MANUFACTURING
- 9 CONCLUSIONS

Evolution of fuel failure rate: 1987 - 2006

The combination of results from the previous and present IAEA Fuel Failure Reviews reveals a tendency for reduction of fuel failure rate, but with recurrent increases linked mainly to massive fuel failures.

IAEA Coordinated Research Projects (CRP): Delayed Hydride Cracking (DHC)

Phase 1: DHC-1 "Delayed Hydride Cracking in Zr alloys in pressure tube nuclear reactors" 1998-2002 IAEA TECDOC-1410


ORGANIZATION	COUNTRY		
AECL	Canada		
STUDSVIK	Sweden		
CNEA	Argentina		
BARC	India		
KAERI	R. of Korea		
LEI	Lithuania		
PINSTECH	Pakistan		
INR	Romania		
VNIINM	Russia		
NPIC	China		

Phase 2: DHC-2 "Delayed Hydride Cracking of Zr alloys fuel cladding" 2005 - 2009 (TECDOC under preparation)

ORGANIZATION	COUNTRY		
STUDSVIK	Sweden		
TOMARI Consulting	Canada		
CNEA	Argentina		
BARC	India		
KAERI	R. of Korea		
LEI	Lithuania		
PINSTECH	Pakistan		
INR	Romania		
VNIINM	Russia		
IPEN	Brazil		

DHC: Zr-2.5% Crack Velocity Results

CANDU and RBMK, 250°C (m/s x 10⁻⁸)

IAEA Coordinated Research Projects (CRP): Fuel Behaviour Modelling Program

• DCOM (1981-1985). Development of Computer Models for fuel element behaviour in water reactors. 15 participants from 12 countries. *Need to improve temperature and FGR predictions.*

• FUMEX-1 (1993-1996). Fuel modelling at extended burnup.19 participants from 14 countries. International Fuel Performance Experimental database (IFPE). *Need to improve mechanical interaction and extend burnup for FGR*.

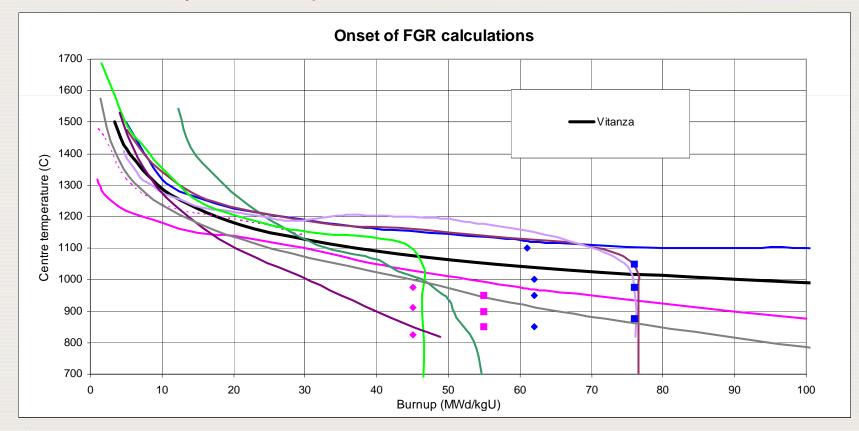
• FUMEX-2 (2001-2006). 18 participants from 16 countries. Uncertainty on high burnup effects, rim structure and PCMI.

• FUMEX-3 (2008-2011). About 30 participants from 20 countries. The exercise is designed to consider transient behaviour, mechanical interaction and other high burnup behaviours.

Joint OECD/NEA–IAEA International Fuel Performance Experiment (IFPE) Database:

The public IFPE Database on for the purpose of fuel behaviour code development and validation is located at:

http://www.nea.fr/ntml/science/fuel/ifpelst.html


Well-qualified data on $Zr - UO_2$ fuel that illustrate specific aspects of fuel performance.

In addition to direct in-pile measurements, the database includes PIE information on clad diameters, oxide thickness, hydrogen content, fuel grain size, porosity, Electron Probe Micro Analysis (EPMA) and X-ray Fluorescence (XRF) measurements on caesium, xenon, other fission product and actinides.

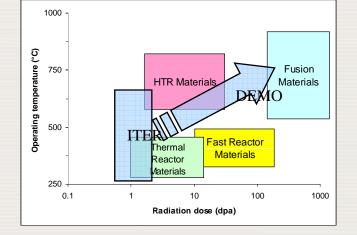
Predictions of the Vitanza threshold (CRP FUMEX)

The codes were asked to predict the temperature at which 1% fission gas release occurs as a function of burnup. The Vitanza threshold is experimentally derived, but only to a burnup of around 40GWd/tU

CRP on Accelerator Simulation and Theoretical Modeling of Radiation Effects (SMoRE)

WHY

Growing operational requirements and their variability
Growing cost and duration of direct irradiation tests
Not sufficient understanding of radiation effects


WHAT

Both existing and perspective structural materialsBoth practical tasks and basic research

WHEN

•2007 – Round Table at the AccApp'07, Consultancy in the IAEA
•2008 – Technical Meeting in KIPT 1st Research Coordination Meeting in Vienna
•2009 – Contracts and Agreements: Belgium (SCK.CEN), China (CIAE), France (CEA, EdF), India (BARC), Poland (IAE), Russia (IPPE, KI), Slovakia (BU), Spain (IFN), Ukraine (KIPT), USA (LLNL), OECD (NEA), RoK (KAERI)

Workshops and Conferences (NE+NA)

2009

International Topical Meeting on **Nuclear Research Applications** and Utilization of Accelerators

You are welcome!

