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Materials issues associated with current reactor design
• Tensile strength
• Toughnessoug ess
• Aqueous corrosion resistance
• Radiation damage tolerance

Materials issues with GenIV
• Strength
• Toughness 

F ti th l & h i l• Fatigue: thermal & mechanical
• Creep & creep-fatigue interaction
• New aspects of coolant compatibility (SCWR, VHTR & GFR, SFR & LFR, MSR)
• Radiation damage @ high dose levels• Radiation damage @ high dose levels
• Fabrication routes and joining techniques

Damage interaction, transients associated with DBA and NDBA become more critical 
i t i l t k l t th i li itissues, as materials are taken closer to their limits.

=> Importance of (non-standard) thermo-mechanical, environmental testing
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Outline

• Small specimen geometries for mechanical testing

• Application of the CEN Small Punch Creep Testing Code of Practice to• Application of the CEN Small Punch Creep Testing Code of Practice to 
a representative repair welded P91 pipe

Th l F ti St di f N l Pi i C t• Thermal Fatigue Studies for Nuclear Piping Components

• Strain-Controlled Thermo-Mechanical Fatigue: Research into Best 
P tiPractices
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Small specimen geometries for mechanical testing
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Introduction

Variety of mechanical tests types foreseen in GETMAT project
Tensile, Impact, Fracture toughness, Fatigue, Creep, Creep-Fatigue

Limited material availability due to the fabrication process
14Cr-ODS (PM): 45kg bars of 12mm, or plates of 3mm in thickness
9Cr-ODS (PM): 45kg plates of 6mm thickness9Cr-ODS (PM): 45kg plates of 6mm thickness
9Cr-ODS (EMS): 200kg plates of 10mm thickness

Material quantities requested from participants exceed the available quantities

Optimised use of test material required

⇓
Small specimen testing

(M. Serrano, CIEMAT)
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Small Specimens Test Techniques (SSTT)

International symposia
ASTM SSTT symposia (initiated in 1986, last in 2007)
IEA Symposium on SSTT for fusion materials (1995 and 1996)

Review papers
Lucas, G.E., Odette, G.R., Matsui, H., Moslang, A., Spatig, P., Rensman, J., 
Yamamoto, T. “The role of small specimen test technology in fusion materials 
development” (2007) Journal of Nuclear Materials 367-370 B (SPEC ISS ) ppdevelopment  (2007) Journal of Nuclear Materials, 367 370 B (SPEC. ISS.), pp. 
1549-1556

Reactor pressure vessel surveillance – Fracture toughness from pre-cracked charpy 
specimens

F i it IFMIF i di iFusion community – IFMIF irradiation

Micro-mechanical testing

F d i b (FIB) ill dFocused ion beam (FIB) milled
three-point bend specimen in Fe
(S. Roberts, U Oxford)
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Small Specimens Test Techniques (SSTT)

H. Matsui, “Development of Small Specimen Test Technique (SSTT) Standardization in the IMR for its Eventual IFMIF/EVEDA Activity”, 24TH 
SYMPOSIUM ON EFFECTS OF RADIATION ON NUCLEAR MATERIALS AND THE NUCLEAR FUEL CYCLE June 24-26, 2008
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SSTT  Tensile

Size effect on tensile properties Y. Kohno et al. JNM 283-287 (2000)

– Yield strength is thickness independent for thicknesses larger than a 
critical value.
– Ultimate tensile stress depends on specimen aspect ratio for aspect 
ratios smaller than a critical value (affected by irradiation)ratios smaller than a critical value (affected by irradiation).

/Ferritic/martensitic

Austenitic
Ferritic/martensitic

Austenitic

Ferritic/martensitic
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SSTT  Impact

Reduction on specimen size reduces both Upper Self-Energy (USE) and 
Ductile to Brittle Transition Temperature (DBTT), due to change in stress 
statestate.

KLST (DIN) and ½ size Charpy V geometries (ESIS) are widely used.
Empirical correlations exist for 9Cr steels, e.g.
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SSTT Creep

ECCC RECOMMENDATIONS - VOLUME 3 Part III [Issue 4] for gauge 
section length L0 and diameter d0 :
Full size specimens: L /d >3Full-size specimens: L0/d0 >3 
Sub-size specimens : 3 mm < d0 < 5 mm
Miniature specimens d0 < 3 mm

Generally good agreement between the creep 
rupture results of miniature specimens and 
those of conventional sized onesthose of conventional sized ones

However, diffusion processes may induce a 
size effect, which tends to be more 

ECCC WP1.1 P22 steel

,
pronounced at lower stress levels [K. 
Krompholz, JNM 305 (2002) 112–123]

Si iti it l b i t d ithSize sensitivity may also be associated with 
oxidation, bending misalignment.
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SSTT Fatigue

Size effect for fatigue life is twofold:Size effect for fatigue life is twofold:

• Statistical for fatigue crack initiation (probability of fatigue crack 
initiators in the gauge section increases with size).g g )

• Deterministic for fatigue crack growth until certain load drop level 
(ligament size)

Recommended standard specimens, e.g. ASTM E606
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SSTT  Fracture toughness

Fracture toughness is usually defined for 
small scale yielding conditionssmall scale yielding conditions
(plastic zone size << specimen 
dimensions).

Otherwise, fracture toughness is size 
dependent due to loss of constraintdependent due to loss of constraint.

⇒ Size limitations of fracture toughness 
specimens included in the standards.

⇒ Relevance for fracture mechanics testing 
of thick components (e g RPV)of thick components (e.g. RPV)

K. Walin MASC Workshop
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Application of the CEN Small Punch Creep Testing 

Code of Practice 

to a representative repair welded P91 pipe
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SSTT  Small Punch (SP)

Developed by MTI in 1981, explored in US & Japan in the '80s, SP was introduced in 
Europe in 1992, in testing of steels.

CEN Workshop Agreement CWA 15627 “Small Punch Test Method for Metallic Materials”CEN Workshop Agreement, CWA 15627, Small Punch Test Method for Metallic Materials
developed on

Part A: A Code of Practice for Small Punch Creep Testing
Time dependence of the deflection in the centre of the specimen is recorded
Relationship between the SP load and uniaxial creep stress from the stretching 
membrane theory

Part B: A Code of Practice for Small Punch Testing for Tensile and Fractureg
Behaviour.

Lucas, JNM 141-143 (1986) 532-535
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Small punch testing – why ?

Advantages

• Capable of generating tensile toughness and creep strength data from• Capable of generating tensile, toughness, and creep strength data from 
very small specimens

• Ability to sample from large component, relatively non-destructive (no 
repair is needed afterwards)

• Test itself is rather simple to perform and inexpensive

• Useful tool in assessing structural component integrity, for instance in 
weldments, clads and other anisotropic or critically weak regions

O Q tiOpen Questions

• Representativeness of such small specimens

• Reliability of correlation with uniaxial creep data
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The application of the SP test for 
fcreep has gained significant interest 

in the last decade, also as a result 
of research coordinated by the 
European Pressure EquipmentEuropean Pressure Equipment 
Research Council (EPERC) to 
develop a CEN Code of Practice for 
the application and use of the smallthe application and use of the small 
punch test for both creep rupture 
and tensile and toughness 
properties. p p
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P91 Material investigated

1. INTEGRITY Project of repair welds

BM (P91 Base material) ( )

WM (Weld material)

HAZ material INTEGRITY Pipe
SE (Service exposed*)

*Service exposed conditions: 60kh at 565oC 
under pressure of 250 bar

INTEGRITY Pipe

under pressure of 250 bar.

2. BRITE-EURAM LICON Project

Virgin P91 material

(D. Blagoeva & R. Hurst)
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SP sampling (8mm dia x 0.5mm thick)

Sample bar SE
materialW ld t l l materialWeld metal samples

Weld material WM

Service exposed 
material SEBase material BM

Sample bar HAZ - SE
Sample bar HAZ - BM

Sample bar  BM*I
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SP Testing Equipment

SP control interface

SP creep test rigs at JRC-IE
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SP schematic

• Sample: Disc of Ø d = 8 mm, and thickness h = 0.5 mm

• Hemispherical Puncher: radius r = 1.0 mm

• Receiving hole: R = 4 mm

• Protective atmosphere of Argon
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Setting-up SP tests - Code of Practice

1. Accurate temperature control
1 – 4mm diam. receiving 
aperture

Specimen

Punch

1

Upper die

Additional ring to clamp the 
specimen

aperture
2 – 8mm diam. specimen 
retainer 

1
2

Lower die

p

Test Thermocouple

Welded calibration

2. Correlating forces and stresses

Welded calibration 
thermocouple

F/σ = 3.33 KSP R-0.2 r1.2 h
r radius of the punch indenter

2. Correlating forces and stresses 

h specimen thickness 
R radius of the receiving hole
KSP ductility constant for the material under test  
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Stress-Rupture Results

Comparison of SP creep rupture results for different zones from the P91 weldment
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Stress-Rupture Results

* Comparison between 
uniaxial & SP stress rupture 
data

FSP/σ = 3.33 KSP R-0.2 r1.2 h

SP

Uniaxial

* R.Sandström et al. uniaxial creep 
data for P91 at 600oC
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FE Modelling

• Biaxial stress state
• Much more severe constriction, as 
compared to necking in uniaxial case
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Conclusions on SP testing

• The SP test is a reliable method to depict creep behaviour of alloys. SP 
i il t ti l i i l A l ticreep curves are similar to conventional uniaxial creep curves. A correlation 

between the SP load and creep stress has been demonstrated.

• The SP test leads to differentiation of creep curves and stress rupture• The SP test leads to differentiation of creep curves and stress rupture 
properties for BM, weld and HAZ’s. 

• The SP results clearly indicate that the weld metal is weaker than both theThe SP results clearly indicate that the weld metal is weaker than both the 
BM and SE and the CG HAZ zone behaves similarly to the WM. The FG 
HAZ is shown to be the weakest component of the weldment.

• In terms of stress rupture behaviour there appears to be straightforward 
correlation between uniaxial and SP creep as regards WM tests (default 
ductility factor from the CoP, KSP = 1). However, KSP ≠ 1  for BM & SE creep y SP ) SP
results due to larger ductility.
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Thermal Fatigue Studies for 

Nuclear Piping Components
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Problem Description

Thermal fatigue due to stratification and mixing of hot and cold water continues to be 
of importance for the life assessment of the current NPP piping systems. 

A specific TF phenomenon, known as ‘mixing tee scenario”, results from turbulent 
mixing of two fluids at different temperatures.

Here TF damage is influenced by:
– Flow characteristics
– Material properties
– Pipe geometryPipe geometry

Issue: Development of improved practical methods for predicting thermal fatigueIssue: Development of improved practical methods for predicting thermal fatigue 
damage

(E. Paffumi)
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Problem studies

• Thermal striping fatigue damage due to incomplete mixing of fluid streams at 
different temperature has the potential to occur in a number of areas if sufficiently 
good heat transfer exists between fluid and component. 

• In GEN IV: potential degradation mechanisms for components in liquid-metal cooled 
fast breeder reactor (LMFBR) and gas cooled fast reactors (GFR).

• Due to large temperature differences between liquid metal emerging from the core 
and breeder sub-assemblies, thermal striping can arise in LMFBR, in the structures 
located above the core.

• Other areas of potential occurrence include piping systems in pressurized (PWR) 
and boiling water (BWR) reactors:                                                                            

- at the Residual Heat Removal System (RHRS) of the Civaux NPP Unit-1 1998;            

- at the excessive extraction piping at the Genkai Nuclear Power Station Unit-2 2007

This work is being performed within the framework of g p
NULIFE Thermal Fatigue Network of Excellence
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Test Material and Specimen Geometry

Thermal shock experiments on cylindrical specimens from 316L 
stainless steel 

axial loadaxial load

48 mm224mm 48 mm224mm 48 mm48 mm

14 mm20 mm 14 mm20 mm

External diameter: 48 mm      Length: 224 mm    
Internal diameter:  20 mm      Wall thickness: 14 mm 
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Experimental set-up

The specimen is heated by electromagnetic induction from outside and quenched 
internally with room temperature water.

Axial loading train 

Water 
quenchingquenching 

lines
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Experimentally imposed thermal cycle

Tmax=300C

C
∆T

 ≈
 2

75
C

Quench time 
10sec Heating time ~10 sec~10sec Heating time 10 sec
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Fatigue damage assessment

Experimental techniques for fatigue damage detection by test 
interruption at pre-selected numbers of cycles

• Crack initiation:

Cellulose acetate replica technique for the detection of surface cracking- Cellulose acetate replica technique for the detection of surface cracking 
(crazing cracks) 

- Radiography with panoramic view to provide complementary information 
about crack distribution revealed by replica techniqueabout crack distribution revealed by replica technique

• Crack growth: 

- Ultrasound time of flight diffraction technique (TOFD) for the through-wall  
crack characterization - location, length and depth of cracks



ICTP/IAEA Workshop on Radiation Resistant Materials, Trieste, 20 – 24 April 2009 33

Replica technique

Examples of cracks detected by replica – Test TF1 –Tmax=300ºC

Inner surface before 
testing

Inner surface after 55600 
quenching cycles 25-300ºC

Time quenching: 5sec    Time 
heating: 40 sec
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Time of flight diffraction technique (TOFD)

Typical pattern of pulses from 
an internal flaw



ICTP/IAEA Workshop on Radiation Resistant Materials, Trieste, 20 – 24 April 2009 35

Time of flight diffraction technique (TOFD)

Transducers and wedges used 
during the inspections

Transducers on a wedge used 
for inspecting axial cracksp g
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Example TOFD results (Tmax=300ºC)

Crack depth versus number of 
quenching cycles for the defects of 

the specimen TF1

90000 N90000 N
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FE simulation of semi-elliptical cracks under thermal fatigue loading

C bi ti f d t il d 2 D d 3 D i l ti dCombination of detailed 2-D and 3-D simulations and 
experimental data to assess experimental findings

Cracked body analysis based on

- Short (< 1 mm) crack model

- Elastic-plastic long crack fracture mechanics model
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Conclusions and further work

• A series of thermal fatigue tests has been carried out on tubular specimens g p
in 316L(N) steel, with test durations up to 200000 cycles. A customized 
TOFD measurement system allows assessment of the distribution and depth 
of thermal fatigue cracks. 

• Combining FE-generated thermal stress fields with simplified models for 
semi-elliptical cracks provides a conservative description of the crack growth 
b h ibehaviour.

• The results highlight the importance of well-documented experimental 
benchmarks for thermal fatigue assessment methods such as the proposedbenchmarks for thermal fatigue assessment methods, such as the proposed 
European procedure being developed in the NULIFE network. This can be 
used to demonstrate the damage tolerance of existing and future reactor 
designsdesigns.
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Strain Controlled Thermo Mechanical Fatigue:Strain-Controlled Thermo-Mechanical Fatigue:

Research into Best Practices
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Thermo-Mechanical Fatigue (TMF):

Thermal fatigue of components results from internal thermal constraints

associated with cyclic temperature gradients.

Alternatively, thermal constraints of a representative volume element

can be simulated by uniform temperature and mechanical strain fields

cyclically imposed on a specimen with uniform gauge section.

⇒ strain-controlled thermo-mechanical fatigue test

Design & residual life analysis of safety critical components

exposed simultaneously to thermal & mechanical loadse posed s u ta eous y to t e a & ec a ca oads

(gas turbines, aero engines, automotive & process industries)
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Mechanical loads due to thermal constraints

temperature: T = T + δT F(ωt) mech strain: ε = ε + δε F(ωt − ϕ)temperature: T  T0 + δT F(ωt) ,    mech. strain: εm  εm,0 + δε F(ωt ϕ)

phase angle ϕ ,   F(x) = F(x + 2π) ,    ∀ x
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Triangular TMF waveforms (in strain control without dwell):
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M. Ramesh, PSI: TMF of TP 347

Out-of-Phase vs. In-Phase TMF
Material TP 347, T = 100 – 340°C, ν = 0.03Hz, εm = 0.3, 0.4, 0.5% 

OP cycles result in shorter TMF lives 
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Mechanical Response

800 400°C

Hysteresis loops:

O t f h

400
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Effect on Number of TMF Cycles to Failure
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TMF testing issues

• Load train alignment
• Precision extensometry

LCF Thermal
fatig e

Load-contr.
TMF

Strain-contr.
TMFfatigue TMF TMF

Dynamic temperature measurement & controlDynamic temperature measurement & control

Therm. – mech. load phasing

• Pre-cycling, start-up procedures
• Thermal strain compensation

Time based: εtot (t) = εm (t) + εth (t)
Temperature based: εtot (t, T) = εm (t) + εth (T)
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TMF-Standard  Project GRD2-2000-30014
Thermo-mechanical fatigue – the route to standardisation
(funded within the GROWTH Programme of the EC)

Objectives: to establish a TMF testing platform in Europej g p p
to issue a validated code-of-practice
to disseminate and exploit the results

Duration: 48 months (2001 – 2005)
Budget: ~ 1.800.000 Euro (~ 1.080.000 EC contr.)
Consortium: 10 principal contractorsConsortium: 10 principal contractors

9 assistant contractors, 1 external participant
No. of tests: ~ 400 incl. 120 validation tests
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TMF-Standard

WP 3:  Pre-normative research on TMF procedures & tolerances

Task 1: Pre-cycling, start, interrupt, restart procedures

Task 2:Dynamic T measurement and control

Task 3: Thermal strain comp., deviations from nominal Tp ,

Task 4: T gradient effects in 3 different sample geometries
(solid cylindrical, hollow cyl., solid rectangular)(solid cylindrical, hollow cyl., solid rectangular)

Task 5: Deviations from nominal phase angle
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Challenges in TMF temperature measurement and control:
– Temperature rates (heating & cooling) up to 50°C/s to be controlledTemperature rates (heating & cooling) up to 50 C/s to be controlled 

with sufficient accuracy (± 5°C or 1% of ∆T)
-> specimen design, heating system, fast temperature control system

– T measurement must not affect crack initiation and TMF life
-> Avoid any microstructural damage, e.g. by thermocouple attachment

– Heating method (induction radiation ) must not influence– Heating method (induction, radiation, ...) must not influence 
temperature readout in the absence of thermal equilibrium
-> no cold spot at thermocouple, nor direct over-heating of thermocouple

– Long-term stability of dynamic temperature fields must be ensured
-> no drift of T profile
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Issues affecting dynamic T measurement and control:

• heating method

• specimen geometry• specimen geometry

• type of T measurement device: thermocouple (TC), pyrometer

• method of TC attachment 

These issues are interrelated and cannot be optimized independently !
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Heating methods

Resistance furnace: too slow

Direct ohmic heating: practicable for miniaturized, e.g. thin-walled 
tubular, specimens only

di ti (b lb) f i t ifradiation (bulb) furnace: appropriate, if

- excessive radial temperature gradients are avoided

issue of reflectivity differences: specimen TC is addressed- issue of reflectivity differences: specimen – TC is addressed

Induction heating: most commonly used in TMF

skin effect to be kept sufficiently low- skin effect to be kept sufficiently low

- “cold spot” to be avoided by proper TC type and attachment method
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Induction heating

• heating of subsurface layer: Skin effect d = (4πσµν)−1/2

ensure very good thermal contact of TC (not heated directly)• ensure very good thermal contact of TC (not heated directly)

TC spot-welded outside GL Ribbon TC wrapped around centre

Water coolingWater cooling
for T profile stability
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Thermocouples (TC)

T control by spot-welded TC outside the gauge length:
+ Stable and good thermal contact

Reference temperat re in the centre of the GL− Reference temperature in the centre of the GL
− “Cold spot” can be an issue

T control by ribbon TC in the gauge length:
+ Direct measurement in GL w/o damage
+ No “cold spot“, as contacting length sufficiently long
− Thermal contact to specimen surface may be insufficient and prone to 

variation by oxidation, surface rippling, micro-cracking…
T measurement point

Cylindrical specimen Flat specimen
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TMF-Standard summary

TMF-Standard CoP on strain-controlled TMF 
t i th “ ” f 4 k f 20 E l b t i• contains the “essence” of 4 years work of 20 European laboratories

• has been validated by ~ 120 TMF tests (OOP and IP)
• comprises a lot of informative material and practical recommendationsp p
• has contributed to improving & harmonizing TMF practices
• provides underpinning base to the new ISO 12111 standard:  

sign convention of phase angle
recommended specimen geometries
max. allowable temperature deviationa a o ab e te pe atu e de at o
max. allowable temperature gradients (axial, radial, circumferential)
max. thermal hysteresis
Young’s modulus verification
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Remark

While consensus has been reached as to the max. allowable temperature 

deviations and temperature gradients, there is still no generally accepted, 

optimized method of dynamic temperature measurement & control:

f iti l i i i t t- awareness of critical issues remains important;

- use of complementary methods is necessary to ensure accuracy of technique

However, what does „accuracy“ mean in the absence of appropriate methods of

Dynamic Temperature Calibration
? ? ?
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In situ calibration of dynamic temperature measurement and control 
using a phase transformation:g p

Issues to be addressed: 

Temperature ramping at ± 1 10º C/sTemperature ramping at ± 1 … 10º C/s
No thermal equilibrium between TC & specimen: means of TC attachment
Little direct heating of TC, mainly indirectly via specimen surface

Will the TC read the right temperature ?

Possibilities for establishing reference temperatures:

1. NPL: displacive phase transformation of eutectoid steel1. NPL: displacive phase transformation of eutectoid steel
2. JRC-IE: solid-liquid phase transition of Al-Cu
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NPL method for dynamic T calibration

Eutectoid steel (0.8% C) – phase change on heating at ~740°C
Pearlitic ( bcc Fe-C / Fe3C) -> austenitic ( fcc Fe-C )
Phase change on cooling ~ 680°C (under cooling > 50°C)Phase change on cooling ~ 680 C   (under-cooling > 50 C) 
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JRC-IE method for dynamic T calibration

Al ring soldered into Cu case inserted into tubular specimen

Al
Cu
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Al-Cu system

eutectic point @ 548°C, 33 wt% Cu
θ phase (CuAl2) @ 591°C, 53 wt% Cu



ICTP/IAEA Workshop on Radiation Resistant Materials, Trieste, 20 – 24 April 2009 59

Temperature cycling over θ phase transition
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Temperature differences
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Advantages of Al-Cu system

• No need to alloy intermetallic θ phase with 53 wt% Cu

D t t bl θ h d l l d d i 1 t l• Detectable θ phase develops already during 1st cycle

• Sharp solid-liquid phase transition upon heating

• Less hysteresis (under-cooling < 10ºC)

• > 50 cycles possible

• Not ferromagnetic 

(cf. induction heating circuit affected by permeability)  
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Outlook: Environmental TMF

TMF performance in 
• vacuum/inert atmosphere

i i t• corrosive environments
• hydrogen

Setups for low pressure (left) and high pressure (right) environmental LCF/TMF tests  


