

Structural Materials for Fusion Power Plants Part II: Multi-scale Modelling Radiation Effects

Presented by J. L. Boutard¹

¹ EFDA CSU-Garching (Germany)

Fusion Materials Topical group:

MAT-REMEV: Modelling Radiation Effects in EUROFER

- Co-Chairs:
- Helsinki University:
- VTT Finland:
- Uppsala University:
- Riso National Lab:
- UKAEA:
- SCK.CEN Mol:
- FZK:
- TU Bratislava :
- CRPP:
- CEA:
- University Alicante:
- TU Karlsruhe:

- S. Dudarev (UKAEA), M. Rieth (FZK)
- K. Nordlund, N. Juslin, C. Björkas
- S. Tähtinen (VTT)
- J. Wallenius, P. Olsson
- B. Singh
- S. Dudarev, D. Nguyen Manh, M. Lavrentiev
- L. Malerba, D. Terentyev, M. Matijasevic,
- A. Almazouzi, P. Jaquet
- A. Moslang, M. Rieth, M. Klimenkov
- V. Slugen
- R. Schaeublin, G. Lucas, A. Ramar
- F. Willaime, C. C. Fu, A. Barbu, L. Ventelon
- University Polytech. Madrid: M. Perlado
 - M. J. Caturla, C. Ortiz
 - D. Weygand, M. Mrovec

Fusion or Fission National Programmes:

- P. Klaver (Uni Belfast), S. Roberts & M. Jenkins (Uni Oxford) UK:
- D. Rodney, J. Chaussidon France:

Radiation Effects Modelling:

The Initial Objectives of the EU Programme 2001⁽¹⁾

• To study the radiation effects in the EUROFER RAFM steel

- In the range of temperatures from RT to 550 °C
- Up to high dose ~100dpa
- In the presence of high concentrations of transmutation impurities (i.e. H, He)

• To Develop modelling tools and database capable of:

- Correlation of results from:
 - The present fission reactors & spallation sources
 - The future intense fusion neutron source IFMIF
- Extrapolation to high fluences and He & H contents of fusion reactors

To experimentally validate the models on adequate sytems & at the relevant scale

(1) M. Victoria, G. Martin and B. Singh, The Role of the Modelling Radiation Effects in metals in the EU Fusion Materials Long Term Program (2001)

Outline

- Radiation Induced Defects: Thermodynamics & Kinetics in α -Fe
- He diffusion mechanisms in Fe-C
- Phase Stability of Fe-Cr system, based on DFT
- Dynamical Properties of Dislocations in Fe and Fe-He
- Concluding remarks

Radiation Induced Defects: Thermodynamics & Kinetics in \alpha-Fe

Radiation Modified Microstructure Scale and tools for Multi-scale Modelling

Molecular Dynamics Simulation

Production Efficiency & Fraction of Clustered Defects

- Important scattered in clustered defect fraction makes these MD simulation useless as the first block of radiation effects modelling
 - No convincing argument except
 - The inter-atomic potentials were predicting the <111> SIA as stable configuration in α -Fe

IAEA-ICTP, Development of Radiation Resistant Materials, Trieste (I) 20-24 April 2009

IENT AGREEMEN

Indirect Experimental Knowledge of Point Defect Energetics: Damage Resistivity Recovery in Pure Metals

H. Schultz, Atomic Defects in Metals, Landolt-Börnstein New Series, Group III, vol. 25, Springer-Verlag Berlin, 1991, p. 115.

Self Interstitial Atoms in bcc Transition Metals: DFT Calculations

Empirical Potential based on ab initio Molecular Dynamics simulation of cascades in α -Fe

Three α -Fe Semi-Empirical potentials developed in 2006

- Based on different functional forms and physical assumptions •
- Reproducing ab-initio SIA energetics: <110> SIA is the stable configuration in α -Fe

Isochronal Thermal Recovery of Radiation damage in α-Fe Ab initio based Event Kinetic Monte-Carlo

IAEA-ICTP, Development of Radiation Resistant Materials, Trieste (I) 20-24 April 2009

OPMENT AGREEMENT

He Diffusion Mechanisms in $\alpha\text{-Fe-C}$

 Esol(eV)
 4.22
 4.39
 4.57

C. C. Fu and F. Willaime Phys. Rev B72 (2005) 064117.

23 MeV ⁴He²⁺: Jülich Compact Cyclotron

Microstructure after Implantation:

- Frenkel Pairs
- He in substitution:

He is Created as interstitial but E^m=0.06 eV so that migration is fast even at room temperature and reaction with vacancies easy

He and point defect energetics based on DFT: (2) Diffusion and Clustering with vacancies

• Binding Energy:

C. C. Fu and F. Willaime Phys. Rev B72 (2005) 064117.

- Mobile Defects: V, SIA & di-SIA
 - $E^{m}(SIA) = 0.34 \ eV \ E^{m}(di SIA) = 0.42 \ eV$ $E^{m}(V) = 0.97 \ eV$

C.C. Fu et al. Nature Materials 4, 68 (2005)

14 of 36 slides

- **Dissociative Diffusion Mechanism** $HeV \rightarrow He + V$ $\Delta E = E^{b}(He - V) = 2.20 \ eV$
- Kick-out mechanism

 $\begin{aligned} HeV + I &\rightarrow He \\ \Delta E &= E^{b}(He - V) - (E^{f}(I) + E^{f}(V)) \\ \Delta E &= -3.60 \ eV \end{aligned}$

 Vacancy mechanism by migration of HeV₂ Complex

 $E^{m}(HeV_{2}) = 11 \text{ eV}$ $E^{b}(V - HeV) = 0.78 \text{ eV}$

C.C. Fu and F. Willaime, Phys. Rev. B72, (2005) 064117.

Fe-C: Ab initio Kinetic Modelling of He-Desorption

Universidad de Alicante

16 of 36 slides

- Vacancies are mainly trapped in CV and VC₂.
- Carbon traps a large amount of V, which inhibits the growth of stable He-V clusters

\rightarrow He desorption favored.

But there are other mechanisms also involving Helium...

1) HeV + $C_{int} \rightarrow$ HeVC and 2) HeVC + $C_{int} \rightarrow$ HeVC₂ occur easily with 50 appm C 3) HeVC₂ \rightarrow VC₂ + He_i. HeVC₂ releases Helium with a low $E_{diss}(1.0 \text{ eV})$ of HeVC₂ much lower than E_{diss} of HeV (2.30 eV).

 \rightarrow He desorption is enhanced.

Phase Stability based on DFT calculated Enthalpy of Atomic Configurations

CALPHAD Fe-Cr Phase Diagram

The important region for Fusion is the low temperature 9-14%Cr domain where Experiments are difficult since low temperature means low time to reach equilibrium There is phase instability at lower temperature range **Non-symmetric Fe-Cr Formation Enthalpy**

• Fe-Cr System: DFT Calculation of the Formation Enthalpy $\Delta H_{mix} = H[(1-x)Fe + xCr] - (1-x)H_{Fe} - xH_{Cr}$

- Consequences of the sign change in the Fe rich domain at 0K: Cr is soluble in Fe &above ~6%Cr the system unmix into Cr and Fe- ~6%Cr alloy
- Present CALPHAD Fe-Cr phase diagram does not reproduce this behaviour as the Formation Enthalpy does not change Sign (see Part III)

Phase Stability of Fe-Cr: Essential Role of Magnetism

• Fe: Large Ferromagnetic Ordering Energy ~0.3 eV/atom. Stabilisation of the ferromagnetic bcc crystalline structure versus:

- NM fcc structure: high temperature crystalline structure of Fe
- NM hcp structure: structure of the isovalent 4d (Ru) and 5d (Os)

G. Liu, D. Nguyen-Manh, B.G. Liu and D. G. Pettifor Phys. Rev. B71, (2005)174115

- Cr: spin density wave or anti-ferromagnetic ground state are matter of debate, with very small energy difference. Metallic impurities (Mn) are reported to stabilize the Anti-Ferromagnetic Magnetic (AFM) order:
 - The AFM-ordering energy is weak ~ 0.014 eV/atom.

T. P. C. Klave, R. Drautz and M. W. Finnis Phys. Rev. B74 (2006) 094435. R. Hafner, D. Spisák, R. lorentz and J., Hafner J. Phys.: Condens. Matter 13 (2001) L239-L247.

Cr-Solution & Cr-Cr interaction in the Fe-Cr System Solution energy of Cr in α -Fe is slightly negative: $\Delta E^{sol} \sim -3$ meV/atom 0.4 0.2 Magnetic (a) **(b)** 0.1 0.2 2 * 2 * 2 system energy (eV) ΔEf (meV) $2 \times 2 \times 3$ First NN Cr 0 Ô 3 x 3 ; **Magnetic Frustration** 3x3x3E -0.1 -0.2 **Non Magnetic** -0.4 -0.22.5 0.5 1.5 2 2 0.51.5 2.5Cr pair separation (a,) Cr pair separation (a_0) For a system with two Cr the highest energy is when both Cr are Nearest **(a)**

(a) For a system with two Cr the highest energy is when both Cr are Nearest Neighbours (NN) and the system energy decreases monotonically with Cr separation by at least 0.3 eV:

Such an energetics maximize Cr-Cr separations favours ordering and the existence of solid solution and ordering

(b) The nearest neighbour Cr-Cr repulsion is due to magnetism as it has completely changed in the Non Magnetic (NM) case.
 Magnetic frustration is governing the solubility of Cr in Fe in the Fe-rich domain

T. P. C. Klaver, R. Drautz and M. W. Finnis Phys. Rev. B74 (2006) 094435.

Phase Stability in the Fe-Cr systm (MCX &CE) (1) Cluster Expansion (CE) based on DFT calculation The Mixing enthalpy calculated ab initio can be mapped exactly onto Isinglike Hamiltonian: $E^{CE} = J_0 + \sum_{sites} J_i \sigma_i + \sum_{pairs} J_{ij} \sigma_i \sigma_j + \sum_{triplets} J_{ijk} \sigma_i \sigma_j \sigma_k + \dots$ Where: $J_i J_{ij} J_{ijk}$ are an infinite set of effective interaction independent of the atom occupying the site I, j or k is equal to 1 if the site i is occupied by a Fe atom $-\sigma_i$ is equal to -1 if the site I is occupied by a Cr atom 0.020 nber of atoms in cluster CE coefficients (meV) Enthalpy of mixing (eV/atom) 0.015 (1) -46.18 (NN) (2) 0.00039 (NNN) (3) 0.001 (3rd NN) 0.010 (4) 2.35 (4th NN) (5) 2.85 (5th NN) 3 (6) - 0.460.005 **CE Prediction** (7) 1.52(8) - 2.62(9) 6.660.000 (10) - 4.954 (11) 2.49-0.005 (a) 5 (12) 5.53

With 12 clusters and CE J coefficients independent of the occupancy of the crystalline site:

0.2

0.0 Fe 0.4

Cr concentration

DFT formation enthalpies (4x4x4 supercell) of 74 atomic configurations are reproduced with a predictive error ~7 meV

M. Yu. Lavrentiev, R. Drautz, D. Nguyen-Manh, T.P.C. Klaverand S.L. Dudarev Phys. Rev. B75 (2007) 014208

1.0

Cr

0.8

0.6

- Exchange Monte Carlo (MCX) allows:
 - sampling the various configurations in system where configuration disorder is important like in Fe-Cr and
 - calculating easily enthalpies and variation of Gibbs free energy at thermal equilibrium
- A random exchange between the different atoms of a pair is proposed. The decision whether to accept or to reject the move is made according the Metropolis scheme:
 - If the induced energy change ΔU is negative the change is accepted,
 - if ΔU is positive the exchange is accepted with if the probability

 $P = \exp(-\Delta U / kT) > r$ r is a random figure between 0 and 1

• System handled can have a few hundreds of thousands of atoms:

- 40x40x40 bcc units cells (128,000 atoms), 60x60x60 unit cells 432,000 atoms or 80x80x80 unit cells (1,024,000 atoms)
- with for each run a total of $\sim 10^{8}$ exchanges
- Mixing enthalpy versus T and Cr content
- Chemical potentials in the semi-grand canonical ensemble
- Clustering and Ordering behaviour

Phase stability in the Fe-Cr system (MCX & CE) (3) Enthalpy of mixing and clustering

Comparison with experimental data: Short Range Order inversion in Fe-Cr

Short Range Order

- Described by the Warren-Cowley parameter $\alpha_n(x) = 1 \frac{P_n^{Cr-Fe}}{1-x}$
- P_n^{Cr-Fe} is the conditional probability of finding Fe atom in the Nth coordination sphere of a Cr atom
- If no Short Range Ordering: $P_n^{Cr-Fe} = 1 x$ therefore $\alpha_n(x) = 0$ $P_n^{Cr-Fe} < 1 - x \quad \text{therefore} \qquad \alpha_n(x) > 0$ $P_n^{Cr-Fe} > 1 - x \quad \text{therefore} \qquad \alpha_n(x) < 0$ - If Cr clustering:
- If Cr ordering:
- Diffuse neutron scattering & electrical resistivity measurements showed that the SRO parameter change sign at 705 K around 10% Cr (*)

(*) I. Mirebeau, M. Hennion and G. Parette Phys. Rev. Lett. 53 (1983) 2351.

Modelling Dynamical Properties of Dislocations

Dislocations in bcc metals Elasticity Theory (1)

Screw dislocation:

is parallel to the dislocation line

Geometry and Crystallography

- The dislocation line separates two parts of the crystal (i) one has glided (ii) the other has not.
- The glide is defined in direction and value by the Bürgers vector **b** equal to a/2<111>
 - **b** can belong two three planes (110), (120) and (231), which are a priori possible glide planes

Peierls Barrier or Peierls Nabarro stress

To move a dislocation as a whole from the equilibrium A to the next one C to overcome an enthalpy of activation per unit line ΔW or a critical stress σ_{PN} characteristic of the position B

The a/2 {110} glide system is the most favourable in agreement with experimental observation in bcc Fe [a]

hkl	110	121	231
ΔW in meV per b	(1.1)	24	104
σ_{PN} in GPa	0.14	3.2	14

[a] W.A Spitzig and S. A. Keh, Acta Metall. 18 (1970)611

Core structure of <111> screw dislocations in bcc metals

Lisa Ventelon & F. Willaime Invited talk ICFRM-13 Dec2007 Nice (F)

Non-degenerate core

DFT in V, Ta, Nb, Cr, Mo, W and Fe
Mendelev potential in Fe (Phil. Mag. 2003)

- Pair potentials (Vitek, '70)
 For bcc Fe:
 - Dudarev-Derlet
 - (J. Phys. Cond. Mat. 2005)
 - Ackland (Phil. Mag.1997)
 - Molecular Simulation of Fe screw dislocation with degenerate core : a/2 {112} is the glide system at odds with experimental results

J. Marian, W. Cai and V. Bulatov Nature Materials, Vol 3, March 2004, 158-163

Screw Dislocation in bcc Fe (3) DFT calculation of Peierls Barrier

Lisa Ventelon & F. Willaime Invited talk ICFRM-13 Dec2007 Nice (F)

 Energy Barrier of a Screw Dislocation calculated ab initio with SIESTA and via MD with the Mendelev Empirical Potential [*M. I. Mendelev et al. Phil. Mag.*83 (2003) 3977]

> Non-degenerate core: MD & SIESTA

In agreement with other DFT calculations on bcc Fe by: S. L. Frederiksen and K.W. Jacobsen Phil. Mag. 83 (2003)365.

• Dipole Method as rationalized by Cai & Bulatov

Cluster Method similar to Woodward et al.

Activity 4: Screw Dislocation at Low Temperature in α-Fe: (2) Kink Formation Energy

Development of a New Procedure for:

Dislocation Line Arrangement & Boundary Conditions to handle one type of kink V-or-I

Feasibility with Empirical Potential

Unpublished Work by L. Ventelon & F.Willaime

MENT Dynamical Properties of Dislocation: MD simulation of Hardening induced by He, and He-V-Clusters

Obstacle forces: 2nm void

Increasing shear

- Molecular Dynamic Simulation
 - Strain Controlled : 3.10⁷ s⁻¹ (60 m/s)
 - T: 10, 100, 200, 300, 500, 700 K
 - Simulation cell: 14 nm x 20nm x 20 nm

• Obstacle strength ranking

- He atom: negligible
- Void : strong obstacle
- He-V cluster:
 - Similar to voids: He/V<5
 - Stronger than void: He/V>5

Robin Schaeublin et al. CRRP-EPFL (CH)

Conclusion

Thank you for your Attention

Comptes Rendus Physique "Materials Subjected to Fast Neutron Irradiation" Volume 9, n° 3-4, April-May 2008 Elsevier Publishers (online on ScienceDirect) Guest Editors: J. L. Boutard, S. L. Dudarev

Thank you for your Attention