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1. Introduction

• Continuum treatment of classical fluids is valid when the linear dimensions (L) of the

system are so large that the volume can be partitioned into many cells, each of which

contains many particles: L � Δx � n−1/3, where n is the number density of particles.

Then the mass density, ρ(x, t), is a smoothly varying function of space. In contrast to

solids, fluids cannot maintain shear stress without yielding to it.

• If Δx is much larger than the mean free path for collisions, particles cannot free–stream

out of cells. Rather, the whole cell can be thought of as moving with a common veloc-

ity. Then the mass-weighted average velocity, v(x, t), is a smoothly varying function.

Streamlines are integral curves of the velocity field at any instant of time.

• If we average over times much longer than the collision time, the particles in any cell

may be assumed to be in local thermodynamic equilibrium (LTE). Then two thermody-

namic variables determine all other thermodynamic quantities. The simplest example

is a perfect gas, whose equation of state, p = ρkT/μmp determines p(x, t) as a function

of ρ(x, t) and T (x, t).

• Mass conservation:

∂ρ

∂t
+ ∇ · (ρv) = 0 , continuity equation (1)

Define the convective derivative, d/dt ≡ ∂/∂t + v ·∇. Then the continuity equation

can also be written as
dρ

dt
= −ρ (∇ · v) (2)

Note that (∇ · v) is the rate of change of volume of a fluid element.
• Internal stresses: The forces acting on a fluid element can be external (e.g. gravity),

as well as those due to the fluid outside of the element. The latter are usually surface

forces, such as (i) pressure and (ii) viscous (frictional) forces in the case of a non–ideal

fluid. The stress tensor makes precise the notion of one part of the medium acting on
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another part, by exerting a force across their common area of contact. Imagine a small

plane of area ΔA oriented perpendicular to the x–axis. Suppose that the material to

the left of the area element exerts force ΔF on the material to the right. Resolve the

force into its components, ΔFx, ΔFy, and ΔFz. If the area element is small enough,

the force will be proportional to ΔA. So it makes sense to define

Sxx =
ΔFx

ΔA
; Syx =

ΔFy

ΔA
; Szx =

ΔFz

ΔA
(3)

We call Sxx the normal component of the stress. Syx and Szx are the tangential com-

ponents of the stress, also referred to as components of the shear stress. At any point

in the material, we can evidently construct nine numbers, Sxx, Syx, . . ., Szz. For con-

venience, we will organise them into a matrix, often denoted by Sij, where the indices

i, j take all possible values, 1, 2, 3.

Sij is the ith component of the force exerted, per unit area, across a small area element

oriented with its normal in the jth direction. Some important properties of any stress

tensor are (see § 31-6 of Feynman Lectures II):
1: Sij is a tensor field: the ith component of the force per unit area on an area element

with unit normal n is equal to Sijnj.

2: The stress tensor is symmetric: Sij = Sji, because of the conservation of angular

momentum. Therefore only six of the nine components are independent.

3: The stress tensor may be diagonalised at any point: the stress is normal across area

elements oriented perpendicular to the principal axes.

4: The force per unit volume is equal to the negative of the divergence of the stress

tensor.

• Momentum balance: In the rest frame of a fluid element, for an inviscid (or ideal)

fluid the stress tensor is isotropic, and independent of the velocity field. We write

Sij = p δij ; ideal fluid (4)

where p is the pressure. The force per unit volume is

fi = − ∂Sij

∂xj

= − ∂p

∂xi

(5)

Therefore, momentum balance for an ideal fluid gives

ρ
dv

dt
≡ ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p − ρ∇ϕ , Euler equation (6)

where ϕ(x, t) is the potential of an externally applied gravitational field.
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• Thermodynamics: In an ideal fluid, the entropy per unit mass, s(x, t), is conserved:

ds

dt
≡ ∂s

∂t
+ v ·∇s = 0 (7)

• Boundary conditions: A fluid cannot penetrate a solid boundary, so the normal

component of the relative velocity must vanish on a boundary. However, for an ideal

fluid, there is no constraint placed on the relative tangential velocity.

• Comment: Equations (1), (6) and (7) are 5 partial differential equations involving

the 6 unknown quantities, (ρ, v, p, s). One more equation of the form f(ρ, p, s) = 0,

due to LTE, is always assumed to be specified. Therefore, if we are given (ρ, v, p, s)

as functions of x at some instant of time, we can, in principle, integrate the equations

forward in time, to obtain (ρ, v, p, s) as functions of x at a later time.

• Problems:

1. Hydrostatic equilibrium; plane–parallel atmospheres.

2. Archimedes’ principle on hydrostatic equilibrium: buoyancy.

2. Steady flow of an ideal fluid

• A flow is steady if ∂/∂t of all quantities vanish, but v �= 0. In a steady flow, streamlines

are the paths along which fluid elements move. A Streamtube is the surface spanned

by all the streamlines that pass through a simple, closed curve.

• Energy conservation: The energy per unit mass in the fluid is,

ε(x, t) =
v2

2
+ εint + ϕ (8)

where εint is the internal energy per unit mass. Accounting for the “pdV ” work done

by pressure forces on a fluid element moving through a streamtube we can derive

Bernoulli’s equation:

v ·∇B = 0 , B =
v2

2
+ εint +

p

ρ
+ ϕ (9)

The above equation states that the quantity B is constant on streamlines. Note that

the combination εint + p/ρ = h, is the enthalpy per unit mass.

• Using equation (7), we can also prove that, v ·∇s = 0: i.e. the entropy per unit mass

is also constant along streamlines.
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• Applications of Bernoulli’s equation

(i) Lift on a 2-dimensional aerofoil: Consider a thin aerofoil inclined at a small angle

to the flow, so that the spanwise direction is perpendicular to the flow direction (x̂)

everywhere. The upward force (per unit length in the spanwise direction) on element

dx is (pb − pt) dx, where pb and pt are the pressure below and above the aerofoil.

Bernoulli’s equation gives,

pb − pt =
ρ

2

(
u2

t − u2
b

) � ρU0 (ut − ub) (10)

where we have used ut � ub � U0, the free–stream speed (which is appropriate for a

thin aerofoil). Therefore, the total lift per unit span is

FL = ρU0

∫ a

0

(ut − ub) (11)

(ii)When can a steady flow be considered as nearly incompressible? To answer this

question let us consider flow in the absence of an external field. i.e. let us assume that

ϕ = 0. Since ΔB = 0 and Δs = 0 along a streamline, we have

Δ

(
v2

2

)
= − (Δh)s = − 1

ρ
(Δp)s = −

(
Δρ

ρ

)
s

c2 (12)

where c is the speed of sound. Therefore, |Δρ/ρ|s ∼ (v/c)2. For highly subsonic flows,

v � c, and the density variations in the flow are very small. Then the continuity

equation (1) implies that ∇ · v � 0. Most flows in the lab, or inside the earth, or in

our atmosphere are nearly incompressible.

• Problems:

3. Equations of motion in conservation form.

4. The Schwarzschild criterion for the local stability of an atmosphere.

3. Vorticity

• Vorticity is a vector field, defined by

ω = ∇× v (13)

If a small, light object is placed in the fluid, it will move as a whole with velocity v,

and rotate with angular velocity ω/2.
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• Vortex lines are integral curves of ω(x, t) at time t. Because ∇ · ω = 0, vortex lines

are either closed or are infinitely long, or end on a solid boundary. A vortex tube is the

surface spanned by all the vortex lines that pass through a simple, closed curve.

• A barotropic fluid is one whose equation of state is p = p(ρ). Taking Curl of Euler’s

equation (6), and using the continuity equation (1), we can derive an equation of

motion for the vorticity field of a barotropic fluid:

d

dt

(
ω

ρ

)
≡

(
∂

∂t
+ v ·∇

)
ω

ρ
=

(
ω

ρ
·∇

)
v (14)

• The separation, dx, between two nearby fluid elements satisfies the same equation as

(ω/ρ). Consider a vortex tube of infinetesimal length, dx, and cross–sectional area,

dA, in a barotropic fluid. Let the density and vorticity in the tube be ρ and ω,

respectively. Over time, the vortex tube moves to a new location, with new values

(dx′, dA′, ρ′, ω′). Mass conservation and the fact that (ω/ρ) behaves like dx imply

that

ω′ · dA′ = ω · dA (15)

This fact is sometimes stated as, “vorticity is frozen in an ideal fluid”.

• Kelvin’s Circulation theorem: Consider an imaginary simple closed curve, C(t), in

the fluid. Imagine that the curve is spanned by a surface, S, which is partitioned into

many infinitesimal area elements dAi. If ωi be the vorticity of the ith area element,

then the sum,
∑

ωi · dAi is conserved in time as the imaginary curve C(t) moves with

the fluid. Using Stokes’ theorem, we can see that the circulation around the moving

loop C(t), defined by

Γ =

∮
C(t)

v · d� (16)

is constant in time for a barotropic fluid.

• Problems

5. A flow is called potential if ω = 0. This is the case with linear sound waves, which

is explored in this problem.

6. Flow in an idealised bath-tub.

4. Viscous Fluids

• Elastic solids (but not fluids) at rest can possess internal shear stresses. However, when

they flow, real fluids develop shear stresses, which we have ignored until now. These
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stresses give rise to frictional forces between neighbouring fluid elements and cause

dissipation of the kinetic energy of the flow. Moreover, there are shear forces between

a fluid and a solid boundary. It is a non–trivial (and not self–evident) fact that the

relative velocity between the fluid and solid is zero.

• The Viscous Stress: We have already come across one constituent of the stress

tensor, the pressure, which contributes to the normal stress in a fluid at rest. As noted

earlier, the movement of a real fluid gives rise to additional stresses. In the rest frame

of a fluid element, the stess tensor is

Sij = p δij + Tij (17)

where Tij is the viscous stress tensor. Galilean invariance implies that Tij can depend

only on the gradients of the velocity field, not on the velocity field itself.

• Rate of Strain Tensor: This is equal to the velocity gradient, ∂vi/∂xj, at any point in

the fluid. Split the velocity gradient into symmetric and anti–symmetric components.

The symmetric component is itself split into a divergence–free (shear) part and a pure

divergence part:
∂vi

∂xj

= σij +
1

3
θδij + rij (18)

where

σij =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

− 2

3

∂vk

∂xk

δij

)
; rate of shear (19)

θ =
∂vk

∂xk

; rate of expansion (20)

rij =
1

2

(
∂vi

∂xj

− ∂vj

∂xi

)
= −1

2
εijkωk ; rate of rotation (21)

• Stress–Strain relation: In a Newtonian fluid, the viscous stress is proportional to

the velocity gradient. However, the stress cannot depend on rij, because this term

describes a local motion in which relative distances between fluid particles do not

change. Therefore, in a homogeneous and isotropic fluid, we must have

Tij = −2ησij − ζθδij (22)

where η and ζ are the coefficients of dynamic and bulk viscosities, respectively. In

many cases, these can be treated as constants (and we shall do so, in the interests of

simplicity of treatment).
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5. The Navier–Stokes equation

• Adding the contribution of the force per unit volume, due to viscous stresses, the

equation of momentum balance is

ρ
dvi

dt
= − ∂p

∂xi

− ∂Tij

∂xi

(23)

where Tij is given by equation (22). This is the Navier–Stokes (NS) equation in its

most general form. At a solid boundary, the relative velocity between fluid and solid

must vanish. Mass conservation is described by the continuity equation (1). However,

the entropy is not conserved, because viscous forces dissipate kinetic energy into heat.

Therefore equation (7) is no longer true.

• Problems:

1. Molecular origins of viscosity.

2. Entropy (i.e. heat) production due to viscosity.

• The NS equations are applicable to subsonic as well as supersonic flows. Many astro-

physical flows are supersonic. However, it is important to understand subsonic flows,

because they are (i) simpler than supersonic flows; (ii) ubiquitous in the air and water

that surrounds us. We saw earlier that subsonic flows could be considered as very

nearly incompressible. Our aim is to understand flows, rather than density stratifica-

tion. Henceforth we only consider incompressible flows of a constant density fluid.

• The NS equation for an incompressible fluid:

∂v

∂t
+ (v ·∇)v = −∇

(
p

ρ

)
− ∇ϕ + ν∇2v

∇ · v = 0

On solid boundaries, v = velocity of the boundary (24)

where ν = η/ρ is the kinematic viscosity. We note that equations (24) are complete

in themselves. The continuity equation is trivially satisfied and can be dropped. The

entropy equation was needed to specify the local thermodynamical state of the fluid.

However, the pressure is now determined by the condition of incompressibility, rather

than thermodynamics.

• Take dot product of v with equation (24) and integrate over space, to obtain the rate

at which the kinetic energy of the fluid is dissipated:

d

dt

∫
d3x

v2

2
= −ν

2

∫
d3x

(
∂vi

∂xj

+
∂vj

∂xi

)2

(25)
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• Problems

3. From equation (24), derive a Poisson equation for the pressure.

4. Flow down an inclined plane with gravity.

5. Poiseuille flow.

6. Viscous diffusion of Vorticity

• Take Curl of the NS equations (24):

dω

dt
≡ ∂ω

∂t
+ (v ·∇)ω = (ω ·∇)v + ν∇2ω (26)

In addition to advection and stretching of vortex lines, vorticity diffuses through the

fluid by viscous action.

• The impulsively pulled plate: A fluid at rest fills the region y > 0. The lower

boundary is suddenly jerked at time t = 0, and attains velocity x̂U0 (which condition,

we assume, is maintained for all time). If the fluid was non-viscous, it would continue

to remain at rest, while the lower boundary slips past it. However, when ν �= 0, the

fluid will be set into motion, and this happens by the diffusion of vorticity. For t > 0,

the velocity field in the fluid must be of the form v = x̂u(y, t). Hence the vorticity

field is ω = ẑω(y, t), where ω = −∂u/∂y. In equation (26), the advective and vortex

stretching terms drop out, and we are left with a diffusion equation for ω:

∂ω

∂t
= ν∇2ω (27)

This initial–value problem requires us to specify ω(y, 0+). We know that

u(y, 0+) =

{
U0 , if y = 0

0 , if y > 0
(28)

Hence

ω(y, 0+) = −∂u

∂y
= U0 δ(y) ; vortex sheet at y = 0 (29)

and the required solution to equation (27) is

ω(y, t) =
U0√
πνt

exp

(
− y2

4νt

)
(30)

The velocity field is

u(y, t) = U0 −
∫ y

0

dy′ω(y′, t) (31)
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After an interval of time, t, fluid in the region 0 < y < Δy ∼ √
νt has been set in

motion.

• Boundary Layers: Consider flow past a thin plate, which occupies the region y =

0, x > 0. For x → −∞, the velocity field is x̂U0, where U0 > 0 is a constant. If the

fluid were inviscid, it would slip past the plate, and the velocity field would be x̂U0

everywhere outside of the plate. However, when ν �= 0, the fluid elements encountering

the front of the plate (at x = 0, y = 0) decellerate to zero velocity, because of the

no-slip boundary condition. The steep velocity gradient is responsible for the creation

of a sharp spike of vorticity. As the fluid flows past the plate, this vorticity diffuses

into the bulk of the fluid. Over an interval of time t, a fluid element (which is not in

contact with the plate) travels a distance x ∼ U0t down the plate. From our experience

with the previous problem, we may guess that vorticity should have diffused a distance

Δy ∼ √νt perpendicular to the plate. The region, x > 0, y < Δy ∼√
νx/U0 is called

the boundary layer: at any x > 0, the fluid velocity increases sharply, from zero at

y = 0 to about U0 for y ∼ Δy. For y > Δy, the flow is nearly unaffected by the

presence of the plate.
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