
Galaxies and the Universe Problems 1

Question 1. Galactic rotation

(a) Given the mass of a disc galaxy, M = 1011M�, derive a rough estimate of its rotational velocity
V at a distance r = 8.5 kpc, assuming a point-like mass distribution (i.e., derive Kepler’s
rotation law). Compare your result with the rotational velocity of 220 km/s observed near the
Sun; decide if a more realistic model with the gravitating mass distributed within an extended
disc, bulge and halo would result in a smaller or larger rotational velocity near the Sun.

(b) Find the rotation velocity within a spherically symmetric dark matter halo whose density is
given by ρ(r) = ρs(r/Rs)

n with certain constants n, ρs and Rs. Find n such that the rotation
curve is flat, as observed, i.e., V is independent of r.

Hint: the gravity field at a distance r from the centre of a gravitating sphere depends only on
the mass inside the radius r, and is the same as that of a point-like mass equal to the mass
within r.

Note: more recent dark halo models have ρ(r) =
ρs

(r/Rs)(1 + r/Rs)2
(Navarro, Frenk & White,

ApJ, 490, 493, 1997).

Solution

(a) For a point-like mass M at the origin, the gravitational potential is given by Φ = −GM/r, so
the centrifugal equilibrium equation V 2/r = ∂Φ/∂r immediately leads to

V =
√

GM/r,

where V is the rotational velocity, r is the spherical radius, and G is Newton’s gravitalm
constant. With M = 1011 M�, r = 8.5 kpc and G ≈ (1/150, 000, 000) cm−3 g−1 s−2 ≈ 6.67 ×
10−8 cm−3 g−1 s−2, we obtain V ≈ 230 km/s.

If the gravitating mass is distributed more uniformly and some of it is at r > 8.5 kpc, less mass
will be confined within r = 8.5 kpc and (r) will be smaller.

(b) With ρ(r) = ρs(r/Rs)
n, the mass within a sphere of a radius r is

M(r) = 4π

∫ r

0

r̃2ρ(r̃) dr̃ =
Ms

1 + n/3

(
r

ρs

)n+3

,

where Ms = (4π/3)ρsR
3
s. Now, the centrifugal balance equation yields

V 2 =
GMs

Rs(1 + n/3)

(
r

ρs

)n+2

,

and V = const for
n = −2.

This is one of the first models of the galactic dark halos used to explain the flattening of the
galactic rotation curves at large galactocentric distance. A difficulty of this specific model of
the dark matter distribution is that the total mass diverges at infinity,

M(r) ∝ r →∞ as r →∞.

Thus, ρ ∝ r−2 only within some range of galactocentric distances r <∼ 50 kpc, and ρ must
decrease faster at larger radii.
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Question 2. Hydrostatic equilibrium of the interstellar gas
Given that the vertical (along the z-axis, directed across the gas layer) acceleration due to gravity is
(Ferrière, ApJ, 497, 759, 1998)

gz = −

[
a1

z√
z2 + H2

1

+ a2
z

H2

]
, (1)

with a1 = 4.4 × 10−9 cm s−2, a2 = 1.7 × 10−9 cm s−2, H1 = 0.2 kpc and H2 = 1 kpc, find the
dependence of the gas density on z from the balance of pressure gradient and the gravitational
acceleration. Hence, determine the scale height of the gas distribution. (Here the first term in gz is
due to the stellar disc and the second arises from the dark matter halo; H1 and H2 are the respective
scale heights of the gravitating mass distributions.)

You may assume that the interstellar turbulence is transonic, gas temperature is constant at
T = 104 K (an isothermal atmosphere) and the magnetic, cosmic-ray and turbulent pressures are
equal to each other.

(a) Neglect the z-dependence of gz and adopt for gz a constant value, equal to gz(0.2 kpc) in Eq. (1).

(b) Now, consider z � H1 and derive, from Eq. (1), an approximate expression for gz such that
g ∝ z.

(c) (optional) Solve the hydrostatic equilibrium equation with the full form (1) and find the gas
scale heights at z → 0 and z →∞.

(d) Now, estimate the scale height of an isothermal hot gas, T = 106 K under the same assumptions
and assuming gz = gz(H) = const for the sake of simplicity. Can the hot has be confined to
a thin disc in a spiral galaxy? What value of H it is reasonable to adopt to obtain a realistic
estimate?

Hint: the speed of sound is 10 km/s at T = 104 K, independent of density and proportional to T 1/2.

Solution
We want to calculate the scale height of the gas under the different assumptions: (a), (b), (c) & (d).

The equation for hydrostatic support of the disc is

dP

dz
= ρgz (2)

The assumption that the pressures due to the magnetic field Pmag, cosmic rays Pcr and turbulence
Pturb are all equal to the thermal pressure Pth of the 104 K gas gives us and that the turbulence is
transonic (i.e. the average turbulent gas velocity is around the sound speed v̄ ∼ cs = 10 km s−1 and
is assumed to be independent of z) gives us

Pth = Pmag = Pcr = Pturb =
1

3
ρv̄2. (3)

The factor 1/3 arises as we only require the pressure in the vertical z direction and v̄ is the
three-dimensional velocity and we have assumed that the turbulence is isotropic, so v̄x = v̄y = v̄z.
Then Eqs. (2) & (3) give

4v̄2

3

dρ

dz
= ρgz (4)

To answer (c) we will use Eq. (1) for the right hand side, but for the rest let us write this equation
in a more convenient form as follows:

gz = − z

H2

[
a2 +

a1H2√
z2 + H2

1

]
,
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then

gz = − z

H2

[
a2 +

a1H2

H1

1√
1 + (z/H1)2

]
, (5)

which gives us the convenient equation

gz = −1.7× 10−9

(
z

1 kpc

) [
1 +

13√
1 + (z/0.2 kpc)2

]
cm s−2. (6)

(a): We take gz as a constant, gz(0.2 kpc) ' −3× 10−9 cm/ s2, and then for an exponential gas
distribution in z, ρ = ρ0 exp (−z/h), Eq. (4) gives

h =
4

3

v̄2

|gz|
' 140 pc

(b): For z � 0.2 kpc Eq. (6) simplifies to

gz ' −1.7× 10−9

(
z

1 kpc

)
(14) cm s−2 = −2.4× 10−8

(
z

1 kpc

)
cm s−2 = −g0

(
z

1 kpc

)
cm s−2.

Then from Eq. (2) we have
d ln ρ

dẑ
= −3

8

g0H2

v̄2
ẑ,

where ẑ = z/H2 and H2 = 1 kpc. Integration then gives

ρ = ρ0 exp

(
− ẑ2

A2

)
with A2 = 8v̄2/(3g0H2). Compare this to the Gaussian distribution of ρ(z) = ρ(0) exp [−z2/2h2] and
we see that the scale height that we require is given by

h =

√
H2

2A
2

2
=

√
8v̄2H2

3g0

' 140 pc.

[Note: often the factor of two in the argument of the Gaussian (ρ(z) = ρ(0) exp [−z2/2h2]) is omitted
and then the quoted Gaussian scale height would be h = 190 pc.]
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Question 3. Expanding supernova remnants: the adiabatic phase

1. Find, from dimensional arguments, the Sedov–Taylor solution for the radius of an expanding
supernova remnant as a function of time, assuming spherical symmetry, and given that the
energy released in the explosion, E∗, is conserved (adiabatic expansion), and given the gas
density in the ambient medium, ρ0.

Solution

We set R = AEa
∗ρ

b
0t

c, where R(t) is the radius and A is the constant of proportionality, given
in the ’Note’ at the end of the question. Dimensionally we have:

L = MaL2aT−2aM bL−3bT c,

giving a = 1/5, b = −1/5 and c = 2/5 so we have the Sedov-Taylor solution

R = A

(
E∗t

2

ρ0

)1/5

. (7)

2. The mass of the supernova remnant consists of the stellar mass ejected in the explosion, ' 4M�,
and the mass of the swept-up interstellar gas. The former is more or less uniformly distributed
across the volume of the remnant, whereas the latter is concentrated in a thin shell. Compare
the two contributions and decide under what conditions it is reasonable to neglect the mass of
the stellar ejecta.

Solution

We can neglect the mass of the stellar ejecta M∗ = 4M� when the mass of the interstellar
medium that has been swept up by the expanding shock front into a shell Msh is greater than
the mass of the ejecta i.e. Msh � 4M�. We can estimate the time tST when the two masses
are equal using Eq. (7).

The shell mass at time t in the Sedov-Taylor phase is given by

Msh =
4π

3

(
25

3π

)3/5 (
E∗t

2

ρ0

)3/5

ρ0 = M0t
6/5, (8)

giving tST ' 600 yr.

3. The total energy of the remnant is the sum of kinetic and thermal energies. Can you decide
now, whether or not the thermal energy remains constant during the Sedov–Taylor phase?

Solution

The kinetic energy in the Sedov-Taylor phase is

Ekin =
1

2
MshṘ

2
ST,

with the shell mass given by Eq. (8) and the shell radius by Eq. (7). Thus

Ekin ∝ R3
STṘ2

ST ∝ t6/5t−6/5 = constant,

and since the total energy is conserved the thermal energy must remain constant during the
Sedov-Taylor phase of the remnant expansion.
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Note: by solving the equation of motion, it can be shown that the pre-factor in the dependence of R
on t is given by (25/3π)1/5 (see, e.g., J. E. Dyson & D. A. Williams, The Physics of the Interstellar
Medium, 2nd edition, IOP, Bristol, 1997, §7.3).

Question 4. A dissipating SN remnant: the turbulent scale in the ISM
Estimate the radius and time, since the start of the expansion, when a supernova remnant merges
with the surrounding medium: this happens when the expansion velocity decreases below the local
speed of sound, cs = 10 km s−1 (and hence the shock disappears).

For this purpose, use the expression for the snowplough phase as given in the lectures,

R = R0

[
1 + 4

V0

R0

(t− t0)

]1/4

, V = Ṙ,

where

t0 = 3.5× 104

(
E∗

1051 erg

)4/17

n
−9/17
0 yr, V0 = 230

(
E∗

1051 erg

)1/17

n
2/17
0

km

s
,

and n0 ' 0.1 cm−3 is the ambient gas number density. Here t0, R0 and V0 are the time, remnant
radius and its expansion velocity at the transition from the adiabatic phase to the momentum-
conserving phase (i.e., the time when cooling of the shocked interstellar gas in the spherical shell
becomes important). You may assume that t � t0 (but you should confirm that this is true using
your final result!). The resulting maximum SNR radius in fact controls the turbulent scale in the
ISM.

Solution
At the transition from Sedov-Taylor to snowplough phases we find t0 ≈ 105 yr and V0 ≈ 175 km s−1.
At the time t0 the remnant has the radius R0 ' 50 pc, using Eq. (7). For t� t0 we have

R ' R0

(
4

V0

R0

t

)1/4

,

and

Ṙ ' 1

4
(4V0R

3
0)

1/4t−3/4.

When the remnant stops expanding Ṙ = cs = 10 km s−1, so we obtain

t '
(

R0

4cs

)4/3 (
4

V0

R0

)1/3

= 3× 106 yr,

and then the radius when the remnant merges with the ambient ISM is

R ' R0

(
V0

cs

)1/3

= 50 pc

(
175

10

)1/3

= 130 pc.

Question 5. Kinetic energy injection by SNe into the ISM

1. Using your results from Question 4, estimate the fraction of the supernova explosion energy
that is injected into the ISM as kinetic energy: estimate the kinetic energy of the SNR (given
that almost all of its mass is in the dense shell expanding at the speed V ). The total explosion
energy can be adopted as E∗ = 1051 erg (after §7.3.6 in Dyson & Williams, op. cit.).

Solution

The kinetic energy at the end of the snowplough phase is

Ekin =
1

2
MṘ2 =

1

2

4π

3
ρ0R

3Ṙ2 ' 1050 erg,
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so using our results from Q. 4 we find

Ekin

E∗
' 1050

1051
= 10%.

2. The energy of a turbulent flow is transferred from larger to smaller scales and then lost to heat
at a dissipation scale. Therefore, any turbulent flow needs to be continuously supported by an
energy source: without that, the turbulence decays.

Given that the interval between individual supernova explosions in the Milky Way is about 50
yr, calculate the turbulent velocity v0 of the diffuse gas (number density n0 = 0.1 cm−3) that
can be supported by the kinetic energy supply from the SNe. Assume that the turbulent scale
is l0 = 100 pc, and the time scale of kinetic energy transfer along the spectrum is l0/v0.

Solution

The total energy available, throughout the Galactic disc, to drive turbulence from supernova
explosions per year is given by

Ėg =
E∗

10τSN

,

where τSN = 50 yr is the interval between explosions and we have used the 10% efficiency
estimated above.

Kinetic energy is transferred down the turbulent cascade at a rate of

ėturb =
1

2
ρ0v

2
0

v0

l0

and so the rate at which the turbulent energy cascade will remove energy from the injection
scale of l0, throughout the Galactic disc, is

Ėg = ėturbVg =
1

2

v3
0

l0
ρ0 πR2

g2hg,

where Rg ' 15 kpc is the radius of the Galaxy, hg ' 200 pc is the scale height of the disc and
ρ0 ' 0.1mH cm−3. This gives an estimate for the turbulent velocity in the diffuse gas of

v0 ' 30 km s−1.
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