

2027-8

School on Astrophysical Turbulence and Dynamos

20 - 30 April 2009

Cluster Dynamos

A. Shurukov University of Newcastle UK

The Abdus Salam **International Centre for Theoretical Physics**

School on Astrophysical Turbulence and Dynamos

Cluster Dynamos

Anvar Shukurov

School of Mathematics and Statistics, Newcastle University, U.K.

Outline

- 1. Evidence for intracluster magnetic fields
- 2. Young clusters: decaying turbulence
- 3. Three evolutionary stages
- 4. Morphology of magnetic structures produced by the fluctuation (small-scale) dynamo

1. Evidence for intracluster magnetic fields

Coma cluster, central part, > 1000 galaxies (the Coma Berenices Constellation)

Coma cluster in X-rays (ROSAT): evidence for intergalactic gas

 $T = 10^6$ K, $n = 10^{-3}$ cm⁻³, R = 500 kpc, deviations from symmetry indicate recent merger

Radio halo: synchrotron emission of Coma at λ 90 cm, tracer of magnetic fields and relativistic electrons

Radio halos are observed in some (5–10%) clusters (lack of relativistic electrons?).

The occurrence of radio halos seems to correlate with existence of substructure in X-rays indicative of a recent merger.

Feretti & Giovannini (1998), resolution 25×50 kpc (RA×DEC).

Faraday rotation in a cluster gas: radio lobes of Cyg A

Dreher et al., ApJ, 316, 611, 1987: magnetic field in the intracluster gas,

 $B = 2 - 10 \ \mu G$, $l = 20 - 30 \ \text{kpc}$

Faraday rotation: evidence of magnetic fields in many clusters

RM of background radio sources versus distance from the cluster centre for 16 galaxy clusters;

filled symbols: field sources (Clarke et al., ApJ, 547, L111, 2001)

 $B = 2 \ \mu G$, $L = 500 \ \text{kpc}$, $n_{\text{e}} = 10^{-3} \ \text{cm}^{-3}$

 \Rightarrow RM = 1000 rad/m²

 $= 10 \text{ RM}_{\text{observed}}$

Random magnetic field b, scale $l_0 = 10$ kpc:

 $\sigma_{\rm RM} = 0.81 \ bn_{\rm e}(Ll_0)^{1/2} = 100 \ {\rm rad/m^2} \Rightarrow b = 2 \ \mu {\rm G}$

Observational estimates of magnetic fields in galaxy clusters

Method	Strength $\mu \mathbf{G}$	Model parameters
Synchrotron halos	0.4–1	Minimum energy, $k = \eta = 1$, $v_{low} = 10$ MHz, $v_{high} = 10$ GHz
Faraday rotation (embedded)	3–40	Cell size $= 10$ kpc
Faraday rotation (background)	1-10	Cell size $= 10$ kpc
Inverse Compton	0.2–1	$\begin{array}{l} \alpha = -1, \gamma_{\rm radio} \sim 18000, \\ \gamma_{\rm xray} \sim 5000 \end{array}$
Cold fronts	1-10	Amplification factor ~ 3
GZK	>0.3	AGN = site of origin for EeV CRs

From Carilli & Taylor, Ann. Rev. Astron. Astrophys., 40, 319, 2002

2. Young clusters: decaying turbulence

Galaxy clusters: merger of smaller structures

Turbulence driven in the merger events

Decaying turbulence after the merger

No direct evidence of turbulence in the intracluster gas (no line emission/absorption)

Indirect evidence from pressure fluctuations

 $l_0\simeq 100\,{
m kpc},\,\,v_0\simeq 250\,{
m km/s}$ (Schuecker et al. (2004)

Possibility of Fe XXV line observations in X-rays (Inogamov & Sunyaev 2003)

Upper limit: heating rate < X-ray luminosity, $v_0 < 200 \text{ km/s}$

(Subramanian et al., 2006)

Coulomb mean free path in the intracluster gas:

$$\lambda \simeq 5 \,\mathrm{kpc} \left(\frac{c_{\mathrm{s}}}{10^3 \,\mathrm{km \, s^{-1}}}\right)^4 \left(\frac{n_{\mathrm{e}}}{10^{-3} \,\mathrm{cm^{-3}}}\right)^{-1}$$

 \Rightarrow Collisionless gas at scales O(10 kpc).

However, Larmor radius <<
$$\lambda$$

 \Rightarrow an effectively collisional plasma?

$$\operatorname{Re} = \frac{v_0 l_0}{v} \simeq 3 \frac{v_0 l_0}{c_s \lambda \delta} = 3 \mathcal{M} \frac{l_0}{\lambda \delta}, \quad v = \frac{1}{3} c_s \lambda \delta, \quad \delta \cong 0.1 \ (?)$$

Turbulence past a solid sphere: Re > 400

Decaying turbulence

9

. .

 $E_k = Ck^s, \ k \le k_0, \ s = 2, 4$

Total specific energy: $E(t) \simeq \frac{1}{2}v_0^2$

On the other hand,
$$E(t) = \int_0^\infty E_k \, dk \propto k_0^{s+1}$$
.

$$\frac{dE}{dt} = -\frac{v_0^2}{t_0} \simeq -v_0^3 k_0, \quad t_0 = 1/(k_0 v_0)$$

 $v_0 \propto E^{1/2}, \ k_0 \propto E^{1/(s+1)} \Rightarrow \frac{dE}{dt} = -AE^{(3s+5)/[2(s+1)]}$ $E \propto t^{-\alpha}, \ l_0 = 2\pi/k_0 \propto t^{\beta}, \quad \alpha = 2\frac{s+1}{s+3}, \ \beta = \frac{2}{s+3}$

 $\sim \sim \sim$

3. Three evolutionary stages

Stage 1. Cluster formation, $0 \leq t \leq$ 4 Gyr

Volume-filling random flow, v₀ ~ 300 km/s, l₀ ~ 150kpc,
 produced in the major merger event

(e.g., wakes of merging subclusters).

- **Re** \gtrsim 100 \Rightarrow turbulence.
- □ Fluctuation dynamo: *B* amplified by a factor *A* > 3000,

 \Box $B \simeq 2 \mu G$, $\ell_B \simeq 20-30 \text{ kpc}$ (if $B_0 > 10^{-9} \text{ G}$),

 $\Box \ \sigma_{RM} \cong 200 \ rad/m^2$

Magnetic field in a merging cluster of galaxies

Roettiger et al, ApJ, 518, 594, 1999

Stage 2. Decay after major mergers, $4 \leq t \leq 9$ Gyr

$$v_0 \propto t^{-3/5}$$
, $\ell_0 \propto t^{2/5}$
 $\Rightarrow v_0 \simeq 150$ km/s, $\ell_0 \simeq 300$ kpc at $t = 9$ Gyr

Dynamo action, $A > 2 \times 10^4$, $B \simeq 1 \,\mu$ G, $\ell_B \simeq 40 \,\text{kpc}$

$$R_m$$
, Re $\propto t^{-1/5}$, $\sigma_{
m RM} \propto t^{-2/5}$

Magnetic field in a decaying turbulent flow

256³ resolution, $\ell_0 = L_{\text{box}}/1.5$, $\mathcal{M} \simeq 0.1$, $\text{Re} = R_{\text{m}} = 420$. Colour: B_{\parallel} ; vectors: B_{\perp}

Stage 3. Mature cluster: turbulence in the wakes of galaxies and galaxy groups

Turbulent wake (Prandtl: see Landau & Lifshitz, Hydrodynamics): $l_{0x} \simeq L_i (x/L_i)^{1/3}$, $v_{0x} \simeq V_i (x/L_i)^{-2/3}$, x = distance along the wake, $L_i \& V_i$ = size & speed of the body. http://www.eng.fsu.edu/~shih/succeed/cylinder/cylinder.htm Clumps $m = 3 \times 10^{13} M_{\odot}$ falling into cluster $M = 10^{15} M_{\odot}$ every $\Delta t \propto m^{-1/2} \simeq 0.3$ Gyr (Lacey & Cole 1993),

 \Box gas stripping radius $R_0 \simeq 100$ kpc,

• wake length
$$\frac{X}{R_0} = 27 \left(\frac{\text{Re}}{10^3}\right)^3$$

 \Box $v_0 \simeq 250$ km/s, $\ell_0 \simeq 200$ kpc, $B \simeq 2 \ \mu$ G, $\ell_B \simeq 30$ kpc

Volume filling factor:
$$f_V \simeq 0.02 \left(\frac{\text{Re}}{10^3}\right)^5$$

Area covering factor:
$$f_S \simeq 0.2 \left(\frac{\text{Re}}{10^3}\right)^4$$

Turbulence and magnetic fields at various stages of a galaxy cluster evolution (the Coma cluster)

Evolution stage	Duration	v_0	l_0	t_0	B_{eq}	l_B	$\langle B^2 \rangle^{1/2}$	$\sigma_{\rm RM}$
	[Gyr]	[km/s]	[kpc]	[Gyr]	$[\mu G]$	[kpc]	$[\mu G]$	[rad/m ²]
Major mergers	4	300	150	0.5	4	25	1.8	200
Decaying turbulence	5	130	260	2.0	2	44	0.8	120
Subcluster wakes		260	200	0.8	4	34	1.6	110
Galactic wakes		300	8	0.03	4	1.4	1.6	5

4. Morphology of magnetic structures produced by the fluctuation (small-scale) dynamo

Filaments?

Sheets?

Ribbons?

Anything else?

Would different people see the same?

Are the conclusions robust?

Wilkin et al., PRL 2007

Minkowski functionals

Morphology of structures in 3D is completely characterised by FOUR *Minkowski functionals*:

(Hadwiger's theorem, 1957)

 $V_{0} = \iiint dV \qquad \Rightarrow \text{Volume}$ $V_{1} = \frac{1}{6} \iint dS \qquad \Rightarrow \text{Surface area}$ $V_{2} = \frac{1}{6\pi} \iint (\kappa_{1} + \kappa_{2}) dS \qquad \Rightarrow \text{Integral mean curvature}$ $V_{3} = \iint \kappa_{1} \kappa_{2} dS \qquad \Rightarrow \text{Euler characteristic}$

 κ_1 , κ_2 = principal curvatures

V. Sahni et al., ApJ 1998

Computing Minkowski functionals

 n_0 = number of grid points within the structure,

$$n_1$$
 = number of complete edges,

 n_2 = number of faces within the structure,

 n_3 = total number of grid cubes,

N = total number of grid points in the domain.

$$V_{0} = n_{3}$$

$$V_{2} = \frac{2(n_{1} - 2n_{2} + 3n_{3})}{9N^{2}}$$

$$V_{1} = \frac{2(n_{2} - 3n_{3})}{9N}$$

$$V_{3} = \frac{n_{0} - n_{1} + n_{2} - n_{3}}{N^{3}}$$

(J. Schmalzing et al., ApJ 1997 & 1999)

Shapefinders

 $V_{0} = \iiint dV$ $V_{1} = \frac{1}{6} \iint dS$ $V_{2} = \frac{1}{6\pi} \iint (\kappa_{1} + \kappa_{2}) dS$ $V_{3} = \iint \kappa_{1} \kappa_{2} dS$ Thickness, Width, Length $T = \frac{V_{0}}{2V_{1}}, \quad W = \frac{2V_{1}}{\pi V_{2}}, \quad L = \frac{3V_{2}}{4V_{3}}$ Planarity and Filamentarity $P = \frac{W - T}{W + T} \text{ and } F = \frac{L - W}{L + W}$

□ Filament: P = 0, F = 1; □ Pancake: P = 1, F = 0; □ Sphere: P = F = 0

(P, F) =(a) (0.096, 0.81); (b) (0.66, 0.23); (c) (0.66, 0.12); (d) (0.25, 0.66); (e) (0.18, 0.43); (f) (0.14, 0.23); (g) (0.087, 0.073); (h) (0.0036, -0.0047).

Application to a kinematic simulation of the fluctuation dynamo in a periodic box (Wilkin et al., PRL, 99, 134501, 2007).

□Velocity field:

$$\mathbf{u} (\mathbf{x}, t) = \sum_{n=1}^{N} [\mathbf{C}_n \times \hat{\mathbf{k}}_n \cos\phi_n + \mathbf{D}_n \times \hat{\mathbf{k}}_n \sin\phi_n],$$
$$\phi_n = \mathbf{k}_n \cdot \mathbf{x} + \omega_n t,$$

$$\mathbf{C}_{n}, \mathbf{D}_{n}: \quad E(k_{n}) = ak_{n}^{4} \left[1 + \left(\frac{k_{n}}{k_{0}}\right)^{2}\right]^{(s-4)/2} \exp\left[-\frac{1}{2}\left(\frac{k_{n}}{k_{d}}\right)^{2}\right]$$

$$l_1 \equiv \min(T, W, L), \quad l_2 \equiv \operatorname{med}(T, W, L), \quad l_3 \equiv \max(T, W, L)$$

Different scaling for *s* =1 (slope -2/3 instead of -1)

$$l_1 \equiv \min(T, W, L), \quad l_2 \equiv \operatorname{med}(T, W, L), \quad l_3 \equiv \operatorname{med}(T, W, L)$$

 $l_3 \simeq \text{const}$.

An integral scale, $l_I = 2\pi \frac{\int M(k) \, dk}{\int k M(k) \, dk} \propto R_{\rm m}^{-0.42}$ for all s

Morphology at varying $R_{\rm m}$ (the kinematic stage)

(P, F) = (a) (0.096, 0.81); (b) (0.66, 0.23);
(c) (0.66, 0.12); (d) (0.25, 0.66);
(e) (0.18, 0.43); (f) (0.14, 0.23);
(g) (0.087, 0.073); (h) (0.0036, -0.0047).

$$P = \frac{W - T}{W + T} = \frac{l_2 - l_1}{l_2 + l_1} \qquad F = \frac{L - W}{L + W} = \frac{l_3 - l_2}{l_3 + l_2}$$

$$P \sim 1 - 2[1 + \frac{3}{8}R_{\rm m}^{0.2}]^{-1}, \quad F \sim 1 - 2[1 + \frac{1}{18}R_{\rm m}^{0.55}]^{-1}$$

 $R_{\rm m} > 200 \rightarrow F > P$, filamentary magnetic structures

Current $\vec{J} \equiv \nabla \times \vec{B}$: ribbons, $(P, F) \equiv (0.57, 0.82)$ for $J \equiv 2J_{\rm rms}$, $R_{\rm m} \equiv 1500$

Dependence on the isosurface level $B = \alpha \, B_{\rm rms}$

The working range: $2 < \alpha < 5$