
Galactic Dynamos

Question 1. One-dimensional compression of magnetised gas

(a) Compression perpendicular to the magnetic field. Use the conservation of mass and
magnetic flux to derive the dependence of magnetic field strength on gas density under one-
dimensional compression perpendicular to the magnetic field in a slab shown in the left-hand
panel of Fig. 1. Assume that magnetic field is frozen into the flow.

(b) Compression parallel to the magnetic field. Apply similar arguments to one-dimensional
compression parallel to the magnetic field, as shown in the right-hand panel of Fig. 1, to find
out how compression affects magnetic field in this case.

Solution
(a) The system is governed by the following conservation laws:

mass conservation: M = ρhLd = const, L, h = const ,

magnetic flux conservation: Φ = Bhd = const ,

where the notation is clear from the left panel of Fig. 1. With the initial values of the variables
denoted by zero subscript, we obtain

M = const ⇒ ρ

ρ0

=
d0

d
. Φ = const ⇒ B = B0

d0

d
= B0

ρ

ρ0

,

i.e., magnetic field strength is proportional to gas density.

(b) In this case the conservation laws are as follows:

Φ = Bhd = const, M = ρhLd = const, h, d = const .

Therefore, ρ = ρ0L0/L, but B = const, i.e., B is independent of ρ. In other words, the gas slides
along the magnetic field lines without affecting the field.

Question 2. Refraction of magnetic field in a spiral arm

Consider a model of the effect of a spiral arm on the large-scale galactic magnetic field, illustrated
in Fig. 2. Assume that gas densities within the arm and in the interarm region are ρa and ρi,
respectively; neglect the curvature of the arms. The magnetic field in the interarm space has a
strength 3 µG, makes an angle pi = 10◦ with the arm axis as shown in Fig. 2, and is carried into
the arm by gas flow. Assume that magnetic field is frozen into the gas and that the gas in the arm
is four times as dense as in the interarm space, ρa = 4ρi. Using the results of Question 1, calculate
the strength of magnetic field within the arm and its angle pa with the arms axis by considering
separately magnetic field components parallel and perpendicular to the arm.

Solution
As follows from the results of Question 1, the normal and tangential components of magnetic field are
differently affected by the one-dimensional compression. Denote these components by superscripts
‘(n)’ and ‘(t)’, respectively; subscript ‘i’ will refer to the interarm region, and ‘a’ refers to the arm,
as shown in Fig. 2.

The component of the interarm magnetic field normal to the arm, B
(n)
i = Bi sin pi, is unaffected

by the gas compression, whereas the tangential component, B
(t)
i = Bi cos pi, increases in proportion

to the density:

B(t)
a = B

(t)
i

ρa

ρi

.
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Figure 1: One-dimensional compression of a slab of magnetised gas in a direction perpendicular to
the magnetic field (left panel) and parallel to the magnetic field (right panel).

Figure 2: Refraction of magnetic lines in a spiral arm due to one-dimensional compression.

Then the normal and tangential components of magnetic field within the arm follow as

B(n)
a = Bi sin pi , B(t)

a = Bi
ρa

ρi

cos pi .

This yields the field strength within the arm

Ba =

√
B

(n)
a

2
+ B

(t)
a

2
= Bi

√
sin2 pi +

ρ2
a

ρ2
i

cos2 pi ≈ 3.9Bi ≈ 12 µG .

The angle to the arm axis is obtained as

tan pa =
Bn

a

Bt
a

=
ρi

ρa

tan pi ≈ 0.044 ⇒ pa ≈ 2.5◦ .

Thus, the refraction of magnetic lines due to gas compression in spiral arms leads to a closer alignment
of the magnetic field with the arm axis. The tight alignment of the large-scale magnetic field with
spiral arms is typical of spiral galaxies.

Question 3. Non-isotropic collapse through a sequence of equilibrium
states

The collapse of a flattened, magnetised cloud, initially along an external magnetic field, is governed
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by the following conservation laws (Mestel & Paris, Astron. Astrophys, 136, 98, 1984):

mass conservation: M = 2πρhR2 = const ,

magnetic flux conservation: Φ = πBR2 = const

gravity–gas pressure balance: 2πGρh2 = c2
s = const ,

where h is the cloud half-thickness (see Fig. 3), cs is the isothermal sound speed, and G is the
gravitational constant, and the field is assumed to be frozen into the gas. The difference from the
spherically symmetric collapse discussed in the Basic MHD Problem Set Q. 2(a) is that the cloud no
longer collapses freely. Instead, its thickness h is controlled by the equilibrium between the gravity
force and internal pressure.

Derive a relation between magnetic field strength and density within such a cloud.

Figure 3: A non-isotropic collapse of a magnetised cloud.

Solution
Now, the conservation laws take the form (with subscript zero denoting initial values)

M = const ⇒
(

R0

R

)2

=
ρh

ρ0h0

,

ρh2 = const ⇒ h

h0

=

(
ρ0

ρ

)1/2

,

Φ = const ⇒ B = B0

(
R0

R

)2

= B0
ρh

ρ0h0

= B0

(
ρ

ρ0

)1/2

.

Thus, magnetic field frozen into a collapsing flattened cloud grows with gas density as

B = B0(ρ/ρ0)
1/2 . (1)

Question 4. Magnetic field trapped by a young star

Consider a young star produced by the collapse of an interstellar gas cloud whose magnetic field
and density are B0 = 10 µG and ρ0 = 6 × 10−22 g cm−3, respectively. As argued by Mestel & Paris
(Astron. Astrophys, 136, 98, 1984), the scaling of magnetic field strength with gas density derived in
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Question 3 is applicable to such a cloud. The size and mass of the star can be assumed to be similar
to those of the Sun, R = 7× 1010 cm and M = 2× 1033 g.

Estimate magnetic field in the star assuming that magnetic field is frozen into the collapsing gas
and compare the result with the typical strength of a stellar magnetic field of B = 103 G. Derive
estimates for both spherically symmetric collapse and a non-isotropic collapse discussed in Question 3.

By comparing the results with the typical stellar magnetic field given above, decide whether
magnetic flux is conserved during the collapse.

Solution
For spherically symmetric collapse, B = B0(ρ/ρ0)

2/3. The mean gas density within the star is given
by

ρ =
M

4πR3/3
≈ 1.4 g cm−3 ,

so ρ/ρ0 ≈ 2×1021, hence B = 10 µG×(2×1021)2/3 ≈ 1.6×109 G in the case of spherically symmetric
collapse. This value is a factor 106 larger than the typical stellar magnetic field strength.

The field enhancement is weaker if the collapse in non-isotropic, with B = B0(ρ/ρ0)
1/2 ≈ 4.5 ×

105 G , which is significantly smaller than the field strength obtained under spherically symmetric
collapse, but still too large to match a stellar field.

We conclude that magnetic flux is not conserved during the collapse, and most of it leaks from
the newly formed star. This conclusion has far reaching consequences for theory of star formation
which, unfortunately, are beyond the scope of our short course.

Question 5. Could the galactic magnetic field have originated in the
galactic centre?

Chakrabarti et al. (Nature, 368, 434, 1994) proposed that the large-scale galactic magnetic field can
be a result of an outflow of magnetised gas from an active galactic nucleus (powered by a massive
black hole). They argue that the azimuthal magnetic field within r = 3 × 1011 cm of the galactic
centre can be B0 = 3 × 105 G strong, and it can be carried out to the outer parts of the galaxy
by galactic wind (outflow of interstellar gas). These authors suggest that the strength of azimuthal
magnetic field at a radius R = 10 kpc = 3×1022 cm (similar to the distance of the Sun to the Galactic
centre) can be estimated from magnetic flux conservation as B = B0r/R ≈ 3×10−6 G, which is close
to the observed field strength.

Do you think this estimate is correct? If not, derive the correct estimate of magnetic field strength
that might result from this process.

Hint: the half-thickness of the magnetised galactic disc can be adopted as h = 1 kpc = 3×1021 cm.

Solution
The estimate appears to be wrong. The magnetic flux of the azimuthal magnetic field through a
meridional plane at the centre is given by Φ ≈ r2B0 (here and below we omit factors of order unity,
such as π or 2). When this surface has been stretched throughout the galaxy by the outflow, so that
its radial and vertical sizes become R and h, its area becomes S ≈ hR, and the flux of the azimuthal
magnetic field through it is estimated as Φ ≈ hRB, Given that the magnetic flux is conserved, we
obtain the strength of magnetic field at a radius R as

B ≈ B0
r2

hR
≈ 3× 10−16 G ,

a value 10 orders of magnitude smaller than that suggested by Chakrabarti et al. When making the
estimate, they have apparently forgotten that the thickness of the magnetised galactic disc is much
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larger than the size of the magnetised region near the black hole at the centre, and hence omitted
the factor r/h ≈ 10−10.

Question 6. Induction equation with the Hall term

Ohm’s law can be written as

~J = σ
(
~E +

1

c
~V × ~B

)
− σH

~J× ~B ,

where the last term on the right-hand side arises from the effect of magnetic field on plasma motion,
known as the Hall effect. (The factor σH is inversely proportional to the magnetic field strength B,

so that the Hall effect in fact depends on the direction of magnetic field ~̂B = ~B/B rather than on
its strength.)

Derive the induction equation with allowance for the Hall effect.

Solution
As usual, we use Ohm’s law, now in the given form, to write out an expression for electric field:

~E =
1

σ
~J− 1

c
~V × ~B +

σH

σ
~J× ~B ,

where we use Ampere’s law ∇× ~B =
4π

c
~J to eliminate ~J:

~E =
c

4πσ
∇× ~B− 1

c
~V × ~B +

c

4πσ
σH(∇× ~B)× ~B ,

and then Faraday’s law
1

c

∂~B

∂t
= −∇× ~E yields the induction equation:

∂~B

∂t
= ∇× (~V × ~B)−∇× (η∇× ~B)−∇× ηH[(∇× ~B)× ~B] ,

where the last term arises from the Hall effect, and η =
c2

4πσ
, ηH = ησH .

Question 7. Helical motion

Find the helicity H = ~v · (∇ × ~v), where ~v is the velocity of motion, for a helical motion whose
trajectory is represented in parametric form as x = cos ωt , y = sin ωt , z = ut, where ω and u are
given constants, the angular velocity of rotation in the xy-plane and linear motion along the z-axis,
respectively.

Solution
The velocity field is obtained from x(t), y(t) and z(t) by differentiation with respect to t, time:
~v = (−ω sin ωt, ω cos ωt, u) = (−ωy, ωx, u), and then ∇× ~v = (0, 0, 2ω), so that H = 2ωu.

Question 8. Magnetic field in a shear flow

Consider a constant initial magnetic field, ~B = B0 ŷ at t = 0, embedded in a fluid of zero resistivity,
so that η = 0. Solve the induction equation with the velocity field ~V = V0 exp(−y2/2) x̂ with the
above initial condition to determine how the magnetic field evolves with time.

Integrate equation for magnetic lines,
dx

Bx

=
dy

By

=
dz

Bz

to obtain the equation of magnetic lines

and sketch the magnetic lines at t > 0.
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Solution
With the velocity field directed along the x-axis and dependent on y alone, the x- and y-components
of the induction equation (with η = 0) reduce to:

∂Bx

∂t
+ Vx

∂Bx

∂x
= SBy , S =

∂Vx

∂y
, (2)

∂By

∂t
+ Vx

∂Bx

∂x
= 0 , (3)

and the z-component implies that Bz = 0. With the form of the velocity field given, Vx =
V0 exp(−y2/2), we have the shear rate in the form

S = −V0y exp(−y2/2) .

The characteristic curves of Eqs (2) and (3) in the (t, x)-plane are given by

dx

dt
= Vx ⇒ x = Vxt + const ,

and we introduce new variables (τ, ξ), where τ = t and ξ is constant on the characteristics:

τ = t; ξ = x− Vxt .

In terms of the new variables, we obtain, using the standard arguments (see any textbook on first-
order partial differential equations):

∂Bx

∂t
=

∂Bx

∂τ

∂τ

∂t
+

∂Bx

∂ξ

∂ξ

∂t
=

∂Bx

∂τ
− Vx

∂Bx

∂ξ
,

∂Bx

∂x
=

∂Bx

∂τ

∂τ

∂x
+

∂Bx

∂ξ

∂ξ

∂x
=

∂Bx

∂ξ
.

Thus, Eqs (2) and (3) reduce to

∂Bx

∂τ
− Vx

∂Bx

∂ξ
+ Vx

∂Bx

∂ξ
= SBy ⇒ ∂Bx

∂τ
= SBy , and, likewise,

∂By

∂τ
= 0 .

These equations imply that By does not changes along the characteristics, whereas Bx grows along the
characteristics at the rate SBy. The variables (τ, ξ) can be interpreted as coordinates in a reference
frame moving together with the fluid; such a frame is called the Lagrangian frame, and τ and ξ are
called the Lagrangian coordinates.

The general solution of the equation for By is

By = gy(ξ) = f(x− Vxt) ,

where f is an arbitrary function. The meaning of this solution is that By is just advected (carried
along) by the flow. With the initial condition By|t=0 = B0, we obtain f = B0 and, thus, the desired
solution for By follows as

By = B0 . (4)

Now consider equation for Bx whose general solution easily follows as

Bx = SByτ + gx(ξ) = SB0t + g(x− Vxt) ,
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Figure 4: The magnetic lines in Question 2, at t = 0 (the vertical line), and that at t > 0, a Gaussian
curve. The shape of the magnetic lines at t > 0 is the same as the profile of Vx(y) indicated with
dotted lines: magnetic field is frozen into the flow and follows the elementary volumes of the fluid.

where g is an arbitrary function which is determined from the initial condition Bx|t=0 = 0 as g = 0,
so that

Bx = SB0t = −tV0B0y exp(−y2/2) . (5)

The magnetic field strength grows with t as

B =
√

B2
x + B2

y = B0

√
1 + V 2

0 y2e−y2t2.

We can now determine the form of magnetic lines by solving

dx

Bx

=
dy

By

=
dz

Bz

,

where the last ratio with Bz = 0 implies that the magnetic lines do not deviate from the (x, y)-plane,
i.e., dz = 0. From the first two ratios, using Eqs (5) and (4), we obtain

dx

dy
=

Bx

By

= −V0tye−y2/2 ,

which can easily be integrated for t = const:

x = V0te
−y2/2 ,

i.e., magnetic lines acquire the shape of a Gaussian curve in the (x, y)-plane similar to the profile of
the shear flow, as shown in Fig. 4.
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Question 9. Perturbation solutions for αω-dynamos

The αω-dynamo in a thin disc is governed by the following equations (written in cylindrical polar
coordinates):

γBr = − d

dz
(αBφ) +

d2Br

dz2
, (6)

γBφ = DBr +
d2Bφ

dz2
, (7)

with vacuum boundary conditions at the disc surface |z| = 1,

Br|z=1 = Bφ|z=1 = 0 ,

Derive perturbation solutions of these equations for

α = z

assuming that |D| � 1. Specifically, derive an approximate dependence of γ and ~B on the dynamo
number D. Also obtain an approximate expression for the magnetic pitch angle p = arctan(Br/Bφ).

Consider separately solutions of dipolar parity, where the boundary (symmetry) conditions at the
disc midplane z = 0 are given by

Br|z=0 = Bφ|z=0 = 0 , (8)

and those of quadrupolar parity, where

∂Br

∂z

∣∣∣∣∣
z=0

=
∂Bφ

∂z

∣∣∣∣∣
z=0

= 0 . (9)

Compare your results for the growth rates γ of the dipolar and quadrupolar solutions to decide which
of the two can be generated in galactic discs, given that typically D ≈ −10 in spiral galaxies.

Solution
In order to apply the perturbation techniques to the system of equations (6) and (7), we have to
isolate the unperturbed operator Ŵ and the perturbation operator V̂ , so that the equations can be
written in the form

γ~B = (Ŵ + εV̂ )~B ,

where |ε| � 1 is a small parameter. For this purpose we introduce new variable B′
φ such that

Bφ = B′
φ|D|1/2. As discussed in the Tutorial , this reduces the governing equations to the form

(where we have dropped the dash at B′
φ to simplify the notation):

γBr = −|D|1/2 d

dz
(αBφ) +

d2Br

dz2
,

γBφ = |D|1/2 sign (D) Br +
d2Bφ

dz2
,

which can be rewritten as
γ~B =

(
Ŵ + |D|1/2V̂

)
~B , (10)

Ŵ =


d2

dz2
0

0
d2

dz2

 , V̂ =

 0 − d

dz
(α · . . .)

sign D 0

 ,
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so that ε = |D|1/2. These equations can be solved using the perturbation techniques based on the
idea that equation with ε = 0 (known as the unperturbed equation) can be solved more or less easily,
and then an approximate solution of the system with |ε| � 1 can be found in the form of a series
expansion over the unperturbed solutions. The number of terms to be retained in the series depends
on the required accuracy of the solution.

(1) Dipolar solutions

(a) The unperturbed solution (the free-decay modes of dipolar parity)

We start with solving the unperturbed system λ~b = Ŵ~b with the same boundary conditions as the
desired solution, i.e., for the dipolar modes,

λbr =
d2br

dz2
, br(0) = br(1) = 0 ,

λbφ =
d2bφ

dz2
, bφ(0) = bφ(1) = 0 .

The equations for br and bφ are decoupled and identical to each other, and their general solutions
are, e.g. for br

br = A cos(z
√
−λ) + C sin(z

√
−λ) ,

where A and C are constants. The boundary conditions now yield

br(0) = 0 ⇒ A = 0 , br(1) = 0 ⇒
√
−λ = πn, n = 1, 2, . . . ,

where we exclude n = 0 to have a nontrivial solution for br. Thus, we have found the eigenvalues of
the unperturbed system as

λn = −π2n2, n = 1, 2, 3 . . . . (11)

The corresponding solution for br is br = Cn sin(πnz). Since the equation for bφ (as well as for br)
does admit the trivial solution, one admissible solution of the unperturbed system is given by

bn = Cn

(
sin(πnz)

0

)
.

In a similar manner we obtain the other, linearly independent, unperturbed eigenfunction corre-
sponding to the same eigenvalue:

b′n = C ′
n

(
0

sin(πnz)

)
.

It is convenient to normalize the eigenfunctions, i.e., to fix the constants Cn and C ′
n so that∫ 1

0
|~bn|2 dz =

∫ 1

0
|~b′n|2 dz = 1 .

For example, ∫ 1

0
|~bn|2 dz = C2

n

∫ 1

0
sin2(πnz) dz = C2

n
1
2

∫ 1

0
[1− cos(2πnz)] dz = 1

2
C2

n ,

and likewise for ~b′n. Thus, the normalization condition yields Cn = C ′
n =

√
2 and the eigenfunctions

normalized to unity are given by

bn =

( √
2 sin(πnz)

0

)
, b′n =

(
0√

2 sin(πnz)

)
. (12)



Galactic Dynamos: Problems 10

It can be verified by direct calculation that∫ 1

0

~bn · ~bm dz = 0 for n 6= m ,
∫ 1

0

~b′n · ~b′m dz = 0 for n 6= m , ~bn · ~bm = 0 for any n, m ,

i.e., each family of eigenfunctions represents an orthonormal set of functions, and the two families
are orthogonal to each other.

(b) The perturbed solution

Solution of Eqs (6) and (7) can be represented in the form

~B =
∞∑

n=1

(Cn
~bn + C ′

n
~b′n)

with certain constants Cn and C ′
n, where two terms are included for each n since the unperturbed

solution is doubly degenerate (i.e., two eigenfunctions correspond to each eigenvalue). Here we restrict
ourselves to the lowest approximation retaining the minimum number of modes in the expansion,

B ≈ Cb1 + C ′b′1 ,

where

b1 =

( √
2 sin πz

0

)
, b′1 =

(
0√

2 sin πz

)
.

Substitute the expansion into the governing equation (10) and use Ŵb1 = λ1b1 and Ŵb′1 = λ1b
′
1

(we replace the sign of approximate equality by =):

C(γ − λ1)b1 + C ′(γ − λ1)b
′
1 = |D|1/2[CV̂ b1 + C ′V̂ b′1] . (13)

Scalar multiplication with b0 and integration over z then yields, upon using the orthogonality
and normalization conditions:

C(γ − λ1) = D|1/2(CV11 + C ′V11′) ,

where the matrix elements of the perturbation operator are given by

V11 =
∫ 1

0
b1 · V̂ b1 dz , V11′ =

∫ 1

0
b1 · V̂ b′1 dz .

Further,

V̂ b1 =

 0 − d

dz
(α · . . .)

sign D 0

( √2 sin πz
0

)

=

(
0√

2 sign (D) sin(πz)

)
,

and hence b1 · V̂ b1 = 0 ⇒ V11 = 0.
The other matrix element is calculated as follows:

V̂ b′1 =

 0 − d

dz
(α · . . .)

sign (D) 0

( 0√
2 sin πz

)

=

 −
√

2
d

dz
α sin(πz)

0

 ,
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and hence

b1 · V̂ b′1 = −2 sin(πz)
d

dz
[α sin(πz)] (14)

= −2 sin(πz)
d

dz
[z sin(πz)]

= −2 sin(πz)[sin(πz) + πz cos(πz)]

= −2 sin2(πz)− 2πz sin(πz) cos(πz)

= −[1− cos(2πz)]− πz sin(2πz)

= −1 + cos 2πz − πz sin πz .

Now we are ready to integrate:

V11′ =
∫ 1

0
b1 · V̂ b′1 dz =

∫ 1

0
[−1 + cos(2πz)− πz sin(πz)] dz

= −1 +
1

2π
sin(2πz)

∣∣∣∣1
0
− π

∫ 1

0
z sin(2πz) dz

= −1 + π
1

2π

∫ 1

0
z d(cos 2πz) (integrating by parts)

= −1 + 1
2

[
z cos(2πz)|10 −

∫ 1

0
cos(2πz) dz

]
= −1 + 1

2

[
1− 1

2π
sin(2πz)

∣∣∣∣1
0

]
= −1

2
.

This yields
C(γ − λ1) = −1

2
|D|1/2C ′ ⇒ C(γ − λ1) + C ′ 1

2
|D|1/2 = 0 .

Now, scalar multiplication of Eq. (13) with b′1 and integration over z yield the other algebraic
equation for C and C ′:

C ′(γ − λ1) = |D|1/2(CV1′1 + C ′V1′1′) ,

where

V1′1 =
∫ 1

0
b′1 · V̂ b1 dz , V1′1′ =

∫ 1

0
b′1 · V̂ b′1 dz .

As above, it can easily be shown that
V1′1′ ≡ 0

and

V̂ b1 =

 0 − d

dz
(α · . . .)

sign (D) 0

( √2 sin πz
0

)

=

(
0√

2sign (D) sin(πz)

)
,

and therefore

b′1 · V̂ b1 = 2sign (D) sin2(πz)

= sign (D)[1− cos(2πz)] ,

and

V1′1 = sign (D)
∫ 1

0
[1− cos(2πz)] dz = sign (D) .
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This yields

C ′(γ − λ1) = |D|1/2sign (D)C ⇒ −C|D|1/2sign (D) + C ′(γ − λ1) = 0 .

The resulting system of equations for C and C ′ is given by

C(γ − λ1) + C ′ 1
2
|D|1/2 = 0 ,

−C|D|1/2sign (D) + C ′(γ − λ1) = 0 ,

and it has nontrivial solutions if its determinant vanishes:∣∣∣∣∣ γ − λ1
1
2
|D|1/2

−|D|1/2sign (D) γ − λ1

∣∣∣∣∣ = 0 ⇒ (γ − λ1)
2 + 1

2
D = 0 ,

since |D|sign (D) ≡ D. Thus,

γ = λ1 ±
√
−1

2
D .

Since λ1 = −π2 < 0, growing solutions, i.e., those with γ > 0, only occur if we choose the upper sign
(and we require that −D > 0, which is generally true in spiral galaxies and accretion discs):

γ ≈ −π2 +
√
−1

2
D ,

where we have restored the approximate equality sign as appropriate.
Growing solutions are possible if |D| is large enough, i.e., if the dynamo action is strong enough:

γ > 0 ⇒ D < −2π4 ≈ −195 . (15)

The spatial form of the solution is clarified as follows. The first of the algebraic equations for C
and C ′ gives

C(γ − λ1) + C ′ 1
2
|D|1/2 = 0 ⇒ C ′ = −C

γ − λ1
1
2
|D|1/2

= −C

√
−D/2

1
2

√
−D

= −
√

2C ,

so that

B ≈ C~b1 + C ′~b′1 = C
√

2

(
sin πz

−
√

2 sin πz

)
= C

√
2

(
1

−
√

2

)
sin(πz) .

Restoring the original field components Br → RαBr and Bφ → |D|1/2Bφ, we obtain

~B ≈ C
√

2

(
Rα

−
√

2|D|1/2

)
sin(πz) .

Thus (note that D = RαRω)

Br

Bφ

≈ − 1√
2

Rα

|D|1/2
= − 1√

2

√
Rα

Rω

,

so that the magnetic pitch angle follows, for Rα = 0.6 and Rω = −15, as

p = arctan
Br

Bφ

≈ − 1√
2

√
Rα

|Rω|
≈ −8◦ .

(2) Quadrupolar solutions
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The idea and many details of the solution for quadrupolar modes are exactly as for the dipolar modes.
The main difference is that the boundary conditions at z = 0 differ from those above, which affects
the unperturbed solution.

(a) The unperturbed solution (the free-decay modes of quadrupolar parity)

Equations for br and bφ remain the same, but the boundary conditions at z = 0 are given by (9):

λbr =
d2br

dz2
,

dbr

dz

∣∣∣∣∣
z=0

= br(1) = 0 ,

λbφ =
d2bφ

dz2
,

dbφ

dz

∣∣∣∣∣
z=0

= bφ(1) = 0 .

Proceed as for the dipolar modes:

br = C cos(z
√
−λ) + A sin(z

√
−λ) ,

dbr

dz
= −C

√
−λ sin(z

√
−λ) + A

√
−λ cos(z

√
−λ) ,

dbr

dz

∣∣∣∣∣
z=0

= 0 ⇒ A = 0 , br(1) = 0 ⇒
√
−λ = 1

2
+ πn, n = 0, 1, 2, . . . ,

where n = 0 is allowed. Thus,

λn = −π2(n + 1
2
)2, n = 0, 1, 2, 3 . . . . (16)

The eigenfunctions are again doubly degenerate; being normalized to unity, they are given by:

bn =

( √
2 cos[π(n + 1

2
)z]

0

)
, b′n =

(
0√

2 cos[π(n + 1
2
)z]

)
. (17)

As for the dipolar modes, each family of eigenfunctions represents an orthonormal set of functions,
and the two families are orthogonal to each other.

(b) The perturbed solution

Retaining the minimum admissible number of modes in the eigenfunction expansion,

B ≈ Cb0 + C ′b′0 ,

proceed exactly as above to show that

C(γ − λ0) = D|1/2(CV00 + C ′V00′) ,

where the matrix elements of the perturbation operator are given by

V00 =
∫ 1

0
b0 · V̂ b0 dz , V00′ =

∫ 1

0
b0 · V̂ b′0 dz .

As shown in the Tutorial, V00 = 0.
Further,

V̂ b′0 =

 0 − d

dz
(α · . . .)

sign D 0

( 0√
2 cos(πz/2)

)

=

 −
√

2
d

dz
[α cos(πz/2)]

0

 ,
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and hence

b0 · V̂ b′0 = −2 cos(πz/2)
d

dz
[α cos(πz/2)] (18)

= −2 cos(πz/2)
d

dz
[z cos(πz/2)]

= −2 cos(πz/2)[cos(πz/2)− 1
2
πz sin(πz/2)]

= −2 cos2(πz/2) + πz sin(πz/2) cos(πz/2)

= −[1 + cos(πz)] + 1
2
πz sin(πz) ,

so the matrix element follows as

V00′ =
∫ 1

0
b0 · V̂ b′0 dz =

∫ 1

0
[−1− cos(πz) + 1

2
πz sin(πz)] dz

= −1− 1
2

∫ 1

0
z d(cos πz) (integrating by parts)

= −1− 1
2

[
z cos(πz)|10 −

∫ 1

0
cos(πz) dz

]
= −1− 1

2

[
−1− 1

π
sin(πz)

∣∣∣∣1
0

]
(19)

= −1
2

. (20)

This yields
C(γ − λ0) = −1

2
|D|1/2C ′ ⇒ C(γ − λ0) + C ′ 1

2
|D|1/2 = 0 .

As before, the other algebraic equation for C and C ′ follows as

C ′(γ − λ0) = |D|1/2(CV0′0 + C ′V0′0′) ,

where

V0′0 =
∫ 1

0
b′0 · V̂ b0 dz , V0′0′ =

∫ 1

0
b′0 · V̂ b′0 dz .

As above,
V0′0′ ≡ 0

and

V̂ b0 =

 0 − d

dz
(α · . . .)

sign (D) 0

( √2 cos(πz/2)
0

)

=

(
0√

2 sign (D) cos(πz/2)

)
,

and thus

b′0 · V̂ b0 = 2 sign (D) cos2(πz/2) ⇒ V0′0 = sign (D) .

This yields
−C|D|1/2sign (D) + C ′(γ − λ0) = 0 .

The resulting system of equations for C and C ′ has the same form as for the dipolar solutions,
but now with a different λ:

C(γ − λ0) + C ′ 1
2
|D|1/2 = 0 ,

−C|D|1/2sign (D) + C ′(γ − λ0) = 0 ,
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and it has nontrivial solutions if its determinant vanishes:

(γ − λ0)
2 + 1

2
D = 0 ,

so a growing solution has

γ ≈ λ0 +
√
−1

2
D = −1

4
π2 +

√
−1

2
D ,

and
γ > 0 ⇒ D < −1

8
π4 ≈ −12 . (21)

This is useful to compare with the condition for the dipolar modes to grow, D < −195, Eq. (15).
It is clear that dipolar modes require much stronger dynamo action. Since dynamo numbers typical
of spiral galaxies are about −10, we can conclude that quadrupolar modes should dominate in spiral
galaxies. This conclusion is confirmed by detailed observational analysis on the large-scale magnetic
field in the Milky Way.

The spatial form of the solution:

C ′ = −C
γ − λ0
1
2
|D|1/2

= −
√

2C

as for the dipolar modes. This results in the same magnetic pitch angle as for the dipolar modes:

p = arctan
Br

Bφ

≈ − 1√
2

√
Rα

|Rω|
≈ −8◦ .

Question 10. Perturbation solution for α2-dynamos

The α2-dynamo in a thin disc is governed by the following equations (written in cylindrical polar
coordinates):

γBr = −Rα
d

dz
(αBφ) +

d2Br

dz2
, (22)

γBφ = Rα
d

dz
(αBr) +

d2Bφ

dz2
, (23)

with vacuum boundary conditions at the disc surface |z| = 1,

Br|z=1 = Bφ|z=1 = 0 ,

1. Derive perturbation solutions of these equations for

α = z

assuming that |Rα| � 1. Specifically, derive an approximate dependence of the growth rate γ

and ~B on Rα.

2. For the approximate solution obtained, B = eγt B, derive the physical components of magnetic
field by isolating the real part of B and interpret the result in terms of the temporal variation
of magnetic field.
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Consider solutions of quadrupolar parity, where the boundary (symmetry) conditions at the disc
midplane z = 0 are given by

∂Br

∂z

∣∣∣∣∣
z=0

=
∂Bφ

∂z

∣∣∣∣∣
z=0

= 0 . (24)

Solution
First, we write the governing equations in the matrix operator form to isolate the unperturbed
operator and the perturbation:

γ~B = (Ŵ + RαV̂ )~B , (25)

with

Ŵ =


d2

dz2
0

0
d2

dz2

 , V̂ =

 0 − d

dz
(α · . . .)

d

dz
(α · . . .) 0

 . (26)

The unperturbed eigenvalues and eigenfunctions are exactly as in Question 9, as given in Eqs (11)
and (12) for the dipolar modes, and Eqs (16) and (17) for the quadrupolar modes. Thus, we can
proceed to the perturbed solution:

B = Cb0 + C ′b′0 ,

where

b0 =

( √
2 cos πz/2

0

)
, b′0 =

(
0√

2 cos πz/2

)
.

Substitute the expansion into the governing equations and use Ŵb0 = λ0b0 and Ŵb′0 = λ0b
′
0:

C(γ − λ0)b0 + C ′(γ − λ0)b
′
0 = RαCV̂ b0 + RαC ′V̂ b′0 .

Scalar multiplication with b0 and integration over z then yields, upon noting that the eigenfunc-
tions are normalized to unity and bn · b′n = 0:

C(γ − λ0) = Rα(CV00 + C ′V00′) ,

where the matrix elements of the perturbation operator are given by

V00 =
∫ 1

0
b0 · V̂ b0 dz , V00′ =

∫ 1

0
b0 · V̂ b′0 dz .

Further,

V̂ b0 =

 0 − d

dz
(α · . . .)

d

dz
(α · . . .) 0


( √

2 cos πz/2
0

)

=

 0
√

2
d

dz
[α cos(πz/2)]

 ,

and hence V00 = b0 · V̂ b0 = 0.
The other matrix element:

V̂ b′0 =

 0 − d

dz
(α · . . .)

d

dz
(α · . . .) 0


(

0√
2 cos πz/2

)

=

 −
√

2
d

dz
[α cos(πz/2)]

0

 ,
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and hence

b0 · V̂ b′0 = −2 cos(πz/2)
d

dz
[z cos(πz/2)] .

This is the same expression as in Eq. (18), and so we obtain the same result as in Eq. (20):

V00′ = −1
2

.

This yields
C(γ − λ0) + 1

2
RαC ′ = 0 .

Now, the other algebraic equation for C and C ′ follows as

C ′(γ − λ0) = Rα(CV0′0 + C ′V0′0′) ,

As above,
V0′0′ ≡ 0

and

V0′0 =
∫ 1

0
2 cos(πz/2)

d

dz
[z cos(πz/2)] dz = −V00′ = 1

2
.

The resulting system of equations for C and C ′ is given by

C(γ − λ0) + C ′ 1
2
Rα = 0 , −C 1

2
Rα + C ′(γ − λ0) = 0 .

The solvability condition is the vanishing of the determinant of the system, which yields

(γ − λ0)
2 +

(
1
2
Rα

)2
= 0 ⇒ γ − λ0 = ±i1

2
R ⇒ γ = −1

4
± i1

2
Rα . (27)

The first of the algebraic equations then gives

±Ci1
2
Rα + 1

2
RαC ′ = 0 ⇒ C ′ = ∓iC ,

and hence

B ≈ C

(
1
∓i

)
cos

(
π

2
z
)

. (28)

To complete the solution, we isolate the real part of the magnetic field, including both the temporal
and spatial dependencies. Since

e±iRαt/2 = cos (Rαt/2)± i sin (Rαt/2) ,

we obtain from Eqs (28) and (27)

B = eγt B = C cos
(

π

2
z
)

e−tπ2/4
[
cos

(
1
2
Rαt

)
± i sin

(
1
2
Rαt

)] ( 1
∓i

)
,

so that

ReBr = C cos
(

π

2
z
)

e−tπ2/4 cos
(

1
2
Rαt

)
,

ReBφ = C cos
(

π

2
z
)

e−tπ2/4 sin
(

1
2
Rαt

)
.

The magnetic field exhibits decaying oscillations and represents a standing helical wave. For t = 0,
ReBr = max for a given z, whereas ReBφ = 0, so the oscillations in the two components have a
phase shift. This means that the magnetic field vector rotates with time (a standing helical wave).
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