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• A random process is one whose outcome does not seem to follow a de-
terministic pattern. Of course, it could well be that the underlying laws
are deterministic, and even simple to state. However, our knowledge of
the parameters of the system is often limited, and if the system is suf-
ficiently sensitive to those parameters, it virtually becomes impossible
to predict the outcome of the process in a deterministic manner.

• There is a class of random processes that follow statistical determinism.
What it means is that although we are not be able to predict the
outcome of a given experiment, we are still able to say something about
the relative frequencies of various possible outcomes in a probabilistic
manner.

• Let us imagine a process that has discrete outcomes that belong to
a set U , that is Xi ∈ U ≡ {X1, X2, X3, . . .}. By repeatedly drawing
outcomes we can construct frequencies pi through

pi = lim
N→∞

NXi

N
(1)

If the limit exists and is well defined then pi is called the probability
of obtaining Xi and P = {pi} is called the probability distribution
function (PDF)

Examples: Throwing a dice, drawing cards randomly from a deck, toss-
ing a coin, etc.

• The expectation value of a function F of Xi is defined as

〈F 〉 =
∑

i

piF (Xi) (2)

• From a logical point of view it is useful to define the concept of an
ensemble of identically prepared systems. The limit over N could then
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be thought of as limit over the ensemble. This makes it possible to talk
about the time evolution of the PDF.

• If the PDF for a system is invariant with respect to time then the pro-
cess is called stationary. For stationary processes limit over ensemble is
identical to the limit taken in time. As an example of a non-stationary
process consider a dice that accumulates dirt and grime unevenly over
a period of time. In this case its PDF might evolve with time.

• An ensemble is a useful theoretical device, however, often it is impos-
sible to attain in practice. The assumption of stationarity then makes
it possible to estimate the PDFs for such systems. In other cases there
might be theoretical reasons to believe that the distribution has a cer-
tain form. In such cases the PDF is a theoretical model for the random
process and has to be verified by experiments.

Continuous Processes

• A continuous random process X is one whose outcome is not discrete.
In this case the PDF P (X) is a probability density in the following
manner. The probability of obtaining an outcome in the range X and
X + dX is given by

dp = P (X)dX (3)

• By an obvious generalization, the expectation value of a function F (X)
is

〈F 〉 =

∫
P (X)F (X)dX (4)

In particular the expectation value of F (X) = X, called the mean, is

μ = 〈X〉 =

∫
XP (X)dX (5)

A random process that has zero mean is called centered. The variance
of random variable X is defined as

σ2 = 〈(X − μ)2〉 =

∫
(X − μ)2P (X)dX (6)

and σ is known as the standard deviation.
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• The mean and variance are the most commonly used statistical descrip-
tors of random processes. In general we define the mth moment of the
random variable X as

〈Xm〉 =

∫
XmP (X)dX (7)

It is easy to show that σ2 = 〈X2〉 − 〈X〉2

• The characteristic function of P (X) is defined as the expectation value
of exp(iZX)

K(Z) = 〈exp(iZX)〉 =

∫
exp(iZX)P (X)dX (8)

The characteristic function is the Fourier transform of the PDF. Since
the PDF is normalized, we see that the characteristic function always
exist. However, the moments of the random process (derived below)
may not exist.

• It is easy to see that

〈Xm〉 =

(
1

i

)m
d

dZ
K(Z)

∣∣∣
Z=0

(9)

• A centered Gaussian random process is one for which

K(Z) = exp

(
−1

2
σ2Z2

)
(10)

The PDF for a centered Gaussian process is easily seen to be

P (X) =
1√
2πσ

exp

(
−X2

2σ2

)
(11)

Multivariate random processes

• It the outcome of a random process is not a scalar but a vector X =
{X1, X2, X3, . . .}, where Xis are continuous variables, then it is called
a multivariate random process.
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• A multivariate random process is Gaussian if for any arbitrary vector
Z, Z ·X is a Gaussian random variable.

• The characteristic function is given by

K(Z) = 〈exp (iZ ·X)〉 = exp

(
−1

2
〈Z ·X〉2

)
= exp

(
−1

2
ZiZj〈XiXj〉

)

(12)

• Defining σij = 〈XiXj〉 as the covariance tensor, we find that the char-
acteristic function of a multivariate random process is completely spec-
ified by the covariance tensor. In fact, all the higher moments of a
Gaussian random field can be derived from the second moment.

Random Fields

• Till now we have talked of only scalar and vector random processes
where the outcome of an experiment is either a scalar or a vector. In
general random processes could be functions of space as well as time.

• Let us first consider a random scalar field Φ(x, t). What it means is
that at a given space point, Φ is a random variable that has different
values are different times. And at a fixed time it has different values
at different space points.

• The PDF for such a process is a more complicated object called a
probability functional that assigns probability for the process returning
a value between Φ(x, t) and Φ(x, t) + dΦ(x, t). As we have learnt, for
Gaussian random processes all the information is encoded in the two
point correlation function that we had earlier called the covariance
tensor; which in this case is defined as

ξ(x,x′, t, t′) = 〈Φ(x, t)Φ(x′, t′)〉 (13)

• If the correlation function depends only on the difference x − x′ then
the process is called homogenous, similarly, if the correlation function
depends only on the difference in time t− t′ then the process is called
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stationary. For a moment let us imagine a random process that is
independent of time. Then for a homogenous process

ξ(x− x′) = 〈Φ(x)Φ(x′)〉 (14)

• Furthermore, if the correlation function depends only on the length
r = |x− x′| then the process is called isotropic. Thus, for an isotropic
process

ξ(|x− x′|) = 〈Φ(x)Φ(x′)〉 (15)

• Power spectrum: Consider the Fourier transform of Φ(x)

Φk =

∫
R3

Φ(x)eik·x d3r (16)

and the inverse transform as

Φ(x) =
1

(2π)3

∫
R3

Φke
−ik·x d3k (17)

We should note here that for a homogenous random field, which ex-
tends over infinite space, the Fourier transform does not exist. We
must assume a finite support for the process. However, taking the vol-
ume to be large our formal results, derived below through the Fourier
transform, still hold. For a finite volume Fourier integral is replaced
with the Fourier series leading to similar results.

• Let us consider the quantity

〈ΦkΦ
�
k′〉 =

∫
R3

∫
R3

〈Φ(x)Φ(x′)〉ei(k·x−k′·x′)d3rd3r′

=

∫
R3

∫
R3

ξ(x− x′)ei(k·x−k′·x′)d3rd3r′

By changing coordinates to u = x− x′ and x′ = x′, this can be cast in
the form

〈ΦkΦ
�
k′〉 =

∫
R3

∫
R3

ξ(u)ei[(k−k′)·x′+k·u]d3ud3r′ (18)

This change of coordinates has to be considered carefully. We have to
ensure that the Jacobian is properly taken into account and the tiling
of the coordinate space is done properly. For details look for Faltung
theorem in any standard book.
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• Performing the integration over x′ we obtain

〈ΦkΦ
�
k′〉 = (2π)3δ3(k− k′)

∫
R3

ξ(u)eik·ud3u = (2π)3δ3(k− k′) P (k)

(19)
where P (k) is the power spectrum. For an isotropic process P (k) =
P (k), and is given by the Fourier transform of the two point correlation
function ξ(r). This remarkable result is known as Wiener-Khinchin
theorem.
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