

2028-2

Joint ICTP/IAEA Workshop on Atomic and Molecular Data for Fusion

20 - 30 April 2009

Calculation of Atomic Data for Plasma Modeling: Atomic Structure II

Robert E.H. CLARK

IAEA, Div. of Physical & Chemical Science Dept. of Nuclear Sciences & App. A-1400 Vienna Austria

International Atomic Energy Agency

Calculation of Atomic Data for Plasma Modeling: Atomic Structure II

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

Data Obtained From Structure Code

- Energy levels
- Radial wave functions
- Effects of mixing (configuration and spinorbit)
- Plane wave Born (PWB) collision cross sections
- Oscillator strengths
- Configuration and fine structure modes

Mixing of target states

- Configurations and LS terms form basis states
- Coulomb interaction causes mixing of configurations which have the same LS terms
- Spin-orbit causes mixing of LS terms which have the same configuration
- Mixing provides better description of energy levels

Example of Configuration Mixing

- Consider Be-like ion, Fe⁺²².
- Consider configurations 2s², 2s2p, 2p², 2s3p and 2p3s.
- Configuration mixing occurs due to Coulomb interaction.
- Spin-orbit causes mixing of LS terms.
- List of make-up of energy levels:

Make-up of Energy Levels

Consequences of Mixing

- Configuration can allow "double electron" jumps. Since the 2s² ¹S₀ contains some of the 2p² ¹S₀ state, it becomes possible to have a non-zero probability for a transition to occur between those states.
- LS term mixing can cause radiative transitions between "spin-forbidden" states

Mixing effects on PWB

- Consider the transition in the He-like iron transition $2s^2 {}^1S_0 \rightarrow 2p^2 {}^3P_0$.
- This would normally be a forbidden transition for PWB for two reasons: It is a double electron jump and it is spin forbidden
- The calculation shows the PWB, while small, is non zero

Mixing effects on PWB

- Neither the 2s² ¹S₀ nor the 2p² ³P₀ level is a pure level. Mixing of the configurations occurs due to the coulomb interaction and mixing of the singlet and triplet comes in through the spin-orbit interaction, allowing this transition to occur.
- Such effects are important, they often open a channel for population or de-population of levels in a plasma calculation

Mixing effects on oscillator strength

- Consider He-like transition 1s² → 1s2p³P₁.
- The 1s2p³P₁ is actually a mixture of ¹P₁ and ³P₁ with the mixing varying with nuclear charge. For C, they mixing coefficients are 0.99995 and 0.00041, while for Fe they are 0.95922 and 0.28266.
- For carbon this is a forbidden transition,gf = 1.1851e-05

Mixing effects on oscillator strength

- For iron it is allowed, gf = 6.3684e-02
- This makes a difference in radiated power and for ionization balance
- For carbon, electron configuration overestimates radiated power, underestimates ionization rates
- For iron, configuration model is better

Selecting data for display

- All available data are listed by type
- Selection of data type allows selection by transition, lower and upper levels
- For small number of transitions, all may be viewed simultaneously
- Parameters can be changed at any time

New index

http://aphysics2.lanl.gov/tempweb/lanl/newindex.html

Summary

- Interface allows calculation of atomic structure: radial wave functions, energy levels, oscillator strengths, mixing coefficients, plane wave Born cross sections for arbitrary ion
- Interface gives access to archived sets of data at LANL