

2028-4

Joint ICTP/IAEA Workshop on Atomic and Molecular Data for Fusion

20 - 30 April 2009

Calculation of Atomic Data for Plasma Modeling: Ionization Processes

Robert E.H. CLARK

IAEA, Div. of Physical & Chemical Science Dept. of Nuclear Sciences & App. A-1400 Vienna Austria

International Atomic Energy Agency

Calculation of Atomic Data for Plasma Modeling: lonization Processes

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

Electron impact ionization

- Process similar to excitation, incoming free electron, outgoing free electron with different energy
- However, now there are two outgoing free electrons, causes complication
- Total energy after collision is $E_T = E_i \Delta E$, where E_T total energy after collision, E_i is the impact energy and ΔE is the ionization energy

Electron impact ionization

- This energy is distributed between the two outgoing electrons
- For a given angular momentum of one outgoing electron, there is a range of angular momenta possible for the other, depending on the angular momentum of the target state
- These considerations give rise to a very large number of possible free electron wave functions needed to solve problem

Common approximations

- Lotz formula. Well-known. Not bad accuracy for well-studied systems.
- Scaled Coulomb Born. Extension of the excitation method. Fits available. Accuracy acceptable for many systems.
- Distorted wave. Problem is now in two outgoing free wave functions, split of total energy between the two. Large increase of computational time
- Convergent close coupling (CCC) has been successfully applied to ionization

Scaled hydrogenic method

Reduced hydrogenic cross section:

$$Q_{nl}^{HR} = \left(\frac{Z}{n}\right)^4 \frac{Q_{nl}^H}{\pi a_0^2}$$

For complex ion,

$$Q(u) = \pi a_0^2 \left(\frac{n}{Z_{eff}}\right)^4 r_{nl} Q_{nl}^{HR}$$

Scaled hydrogenic method

Note for hydrogenic ion, ionization energy is:

$$E^{I}(Ryd) = \left(\frac{Z}{n}\right)^{2}$$

Assume similar for complex ion to arrive at:

$$Q(u) = \frac{\pi a_0^2}{[E^I(Ryd)]^2} r_{nl} Q_{nl}^{HR}(u)$$

Scaled hydrogenic method

- If scaled hydrogenic cross section, $Q_{nl}^{HR}(u)$ Is known, then cross section for arbitrary ion can be calculated
- Scaled cross sections calculated for 1s through 6g have been fitted as function of shell and impact energy
- Result is fit formula for scaled hydrogenic cross section
- Allows calculation of approximate cross section for any ion

Scaled Hydrogenic Method

Fit form used:

$$Q_{nl}^{HR}(u) = \frac{1}{u} \left[\left(C_1 + \frac{C_2 + C_3 l}{n} \right) \ln(u) + \left(C_4 + \frac{C_5 + C_6 l}{n} \right) \left(1 - \frac{1}{u} \right) + \left(C_7 + \frac{C_8 + C_9 l}{n} \right) \left(1 - \frac{1}{u} \right)^2 \right]$$

Scaled hydrogenic

- In previous, u is the electron impact energy in threshold units
- Result is cross section for one shell of hydrogenic
- Possible to include angular coupling effects as well as mixing of target states
- The C_i are the fitting coefficients with the values:

Fitting parameters

C₁ 1.5369

C₂ 0.99656

C₃ -0.61916

C₄ 2.4463

C₅ -2.4773

C₆ 3.2151

C₇ -1.4512

C₈ 1.7230

C₉ -0.47075

Distorted wave

- Similar to calculation for excitation
- Difficulty is now there are two outgoing free electrons
- Energy splits between two, very many free electron orbitals needed
- Perform quadrature over outgoing electron energy split
- Computational time is significant

Close coupling

- Application now made to ionization
- Convergant close coupling technique developed by Bray and Fursa has wide range of applications
- Still under development
- Difficulty handling partial filled shells

Photoionization

- Photon causes ejection of electron
- Not very likely in fusion plasmas
- Inverse process is radiative recombination
- Competes with inverse of electron impact ionization, three body recombination
- Radiative recombination is often dominant recombination mechanism

Autoionization

- May have ion suffer inner shell excitation
- Result may lie above continuum
- Result is autoionization
- Inverse process is di-electronic recombination
- Both may be very important in fusion plasmas
- May be calculated with DW theory, or automatically generated with CC methods

Data from archives

- Choice is made on opening page
- Select element from list
- Select particular model, normally only one, can be more
- Select ion
- Can now view data, but cannot add to these files

Summary

- Interface allows calculation of electron impact ionization, photoionization and autoionization
- Scaled hydrogenic, binary encounter of DW
- Graphical and files of data available
- Archived data available