

2028-19

Joint ICTP/IAEA Workshop on Atomic and Molecular Data for Fusion

20 - 30 April 2009

WHAT/HOW - Can we tend the fire?

Detlev REITER Forschungzentrum Juelich, Institute for Energy Research, Plasma Physics 52425 Juelich GERMANY

Can we tend the fire?

Three lectures course on plasma surface interaction and edge physics

II.) HOW can we make the application work (build ITER)?

Detlev Reiter

Forschungszentrum Jülich GmbH, Institut für Energieforschung-4 52425 Jülich, Germany

Thanks to: R. Pitts (ITER), P.C. Stangeby (U. Toronto)

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft pril 2009

Joint ICTP-IAEA Workshop on Atomic and Molecular Data for Fusion, Trieste 20-30 April 2009

Motivation for Fusion Energy Research

electric power for 1 family, 1 year

Deuterium and Lithium as an abundant New Primary Energy Source

75 mg Deuterium 225 mg Lithium equivalent of 1000 litres of oil

The ITER Challenge

ITER: Furnace chamber: Ø 15 m 6.8 m high 5.3 T 15 MA 500 MW 8 min

ITER "the way"

A Joint Project of EU, Japan, USA, Russia, South Korea, China, India

contributions "in kind"

Agreement on site: Cadarache Investment ~ 5 Billion € 24. Mai 2006 Signature of ITER Implementing Agreement Design Review: 2007 Construction: 2008 – 2016

ITER's Fusion Performance in Context

ρ: heat conduction/part. convection

Terminology: limiters and divertors

Tore Supra, tor. limiter "CIEL"

Where is the limiter ????

Tore Supra

Interior view of Tore Supra

Full toroidal limiter CIEL

Terminology: limiters and divertors

JET: Poloidal Divertor

JET Furnace chamber: Ø 8.5 m 2.5 m high 3.4 T 7 MA 1 min Provide sufficient convection without accumulating tritium and with sufficiently long divertor lifetime (availability).

Engineering parameter : $S_{puff} \sim (1...13) \cdot 10^{22} \text{ s}^{-1}$

Basics – SOL width, λ_n

The problem with λ_{q}

SOL width for power, λ_q , is also small and is an important parameter of the edge plasma As for particles, λ_q is determined by the ratio of \perp to || transport (e.g. cross-field ion conduction and parallel electron conduction: i.e. $\propto (\chi_{\perp}/\chi_{\parallel})^{1/2}$), where χ_{\perp} is anomalous Scalings for λ_q can be derived from models and experiments, e.g.: "2-point" analytic modelling: $\lambda_q \propto P_{SOL}^{-5/9}$ P_{SOL} = power into SOL Scaling from H-mode experiments on JET: $\lambda_q \propto P_{SOL}^{-0.5} B_{\varphi}^{-0.9} q_{95}^{0.4} n_u^{0.15}$ ITER modelling assumes $\lambda_q = 5$ mm, JET scaling gives $\lambda_q = 3.7$ mm (cf. a=2.0 m) Very recent multi-machine scaling gives $\lambda_q/R \sim \text{constant}$ Note also that the parallel power flux, $q_{\parallel} \propto P_{SOL}/\lambda_q \sim \text{as much as 1 GWm}^{-2}$ in ITER

Stored energy scales strongly with tokamak major radius, W ~ \propto R⁴ But power deposition area in the divertor \propto R λ_{q} only (~3.0 m² in ITER)

Bottom line is that despite its increased physical size, ITER will concentrate more power into a narrower channel at the plasma edge than today's devices.

The power exhaust problem in fusion (ITER as example)

Power handling – ITER case (approx)

- Magnetic confinement is now effective enough to contain the main fusion flame, but it is too good for the plasma edge (SOL): very narrow heat-footprints on targets.
- Magnetic Confinement Fusion Reactors must operate at reduced target fluxes and temperatures ("detached regime").
- n, T upstream (core) fixed by burn criteria, density limit, etc.
- For ITER: Detached regime: decrease particle flux to target for given upstream conditions: self sustained neutral cushion (reactive plasma) controlled by PWI and A&M processes.
- Divertor detachment physics involves a rich complexity of plasma chemistry not otherwise encountered in fusion devices

 Can a reactive plasma protect the chamber from a thermonuclear plasma?
Can, simultaneously, sufficient particle throughput be maintained?

Electrons, Ions

ASIDE Stellarators will have same problem! see: Large Helical Device (LHD), Toki, Japan

3D LHD Plasma Edge Simulation: EMC3-EIRENE

But for rest of this lecture:

Focus on the ITER challenge

Here: restriction to 2D axi-symmetric plasmas

Numerische Simulation von Plasmaströmungen für ITER

Active role of recycling and neutral particle transport cooling the edge plasma, protecting target surfaces from overexposure

JET Furnace chamber: Ø 8.5 m 2.5 m high 3.4 T 7 MA 1 min

Recycling:a) provide convectionb) protect exposed target areas

World-wide effort to understand (and predict?) Edge Plasma dynamics on the basis of best known Plasma Surface Interaction and Atomic & Molecular Processes

Estimate "Collisionality": n_eR -n_e-Divertor Plasma density (10²⁰ m⁻³⁾ -R- Major Radius (m)

Alcator C-Mod (MIT) 10 times smaller than ITER similar shape higher density

Alcator C-Mod (MIT)

Alcator C-Mod (MIT)

HIGH RESOLUTION DIODE ARRAYS WITH D_{α} FILTER

TARGET LANGMUIR PROBES AND UPSTREAM RECIPROCATING PROBE FOR n_e AND T_e

DIVERTOR GAS PRESSURE (25±3 mTorr)

TOROIDALLY VIEWING CCD CAMERA WITH D_γ FILTER

SPECTROMETER FOR VOLUME n_e AND T_e

Shot: 990429019, at 950ms, $<n_e>=1.5 \ 10^{20}$, $I_P=0.8 \ MA$, $B_{tor}=5.4 \ T$ OSM reconstruction (Lisgo et al., 2004)

Plasma-surface interactions

Upscale to ITER is a big step

Parameter	JET MkIIGB (1999-2001)	ITER
Integral time in diverted phase	14 hours	0.1 hours
Number of pulses	5748	1
Energy Input	220 GJ	60 GJ
Average power	4.5 MW	150 MW
Divertor ion fluence	1.8x10 ²⁷	*6x10 ²⁷

*Code calculation

1 ITER pulse ~ 0.5 JET years energy input

1 ITER pulse ~ 6 JET years divertor fluence

Courtesy: G. Matthews

ITER PFC Environment

Initial reference material mix (H, D phases):

- 700m² Be first wall and start-up limiter modules
- □ 100m² W divertor dome and baffle region
- 50m² Carbon Fibre Composite (CFC) for the divertor strike point areas

Present strategy for ITER operation

- change to a full W-divertor before DT operation
- Decide on specific time for change on the basis of experience on hydrogen retention and dust
- □ all-W as future DEMO relevant choice

Courtesy: J. Roth

ITER materials choices

Courtesy: R. Pitts

Erosion

Graphite - a conservative choice forgiving material, no melting, 3825 °C sublimation temp

D peak flux $10^{24} \text{ m}^{-2} \text{ s}^{-1}$ erosion yield about 1% $\Rightarrow 10^{22}$ C-atoms m⁻² s⁻¹ for steady state $\Rightarrow 6\ 000$ kg / year or 2.6 m/year

Deposition

the tokamak - a closed system essentially all eroded particles are re-deposited

The tritium retention issue:

On JET, operated with tritium, the tritium inventory built up without saturation limit.

JET: Retained Tritium

The rate of T retention in JET during DTE1 was 40% of input, reducible to 17% after cleanup in D, without sign of saturation. P. Andrew, et al, FED <u>47</u> (1999) 233.

Extrapolation to ITER: the permitted in-vessel inventory, 0.5 kg, could be reached in 100 shots
Availability – the main remaining challenge of fusion research

cost of electricity:

$$\text{COE} \propto A^{-0.6} \eta_{\text{th}}^{-0.5} P_e^{-0.4} \beta_N^{-0.4} N^{-0.3}$$

availability (A) thermodynamic efficiency (η_{th}) unit size (net electrical output, P_e) normalised beta (β_n) limiting density normalised to the Greenwald density (N)

Power Plant Conceptual Study (PPCS) Stage II D J Ward, I Cook, N P Taylor

the key issues determining the availability:

- life time of wall components
- tritium retention

Carbon re-deposition, Tritium co-deposition

Location of tritium in JET vessel during the post-DTE1 shutdown

The location of the deposition is surprising: only a few mgs were found on typical tiles, but 520 mg were vacuumed up from the cooled, out-of-sight louvers, suggesting up to 3200 mg also that have fallen through to the vessel floor. J.P. Coad, et al, J Nucl Mater <u>290-293</u> (2001) 224. On JET, operated with tritium, the tritium inventory built up without saturation limit.

This problem may be so serious as to rule out the use of carbon in fusion devices.

That, however, would eliminate the leading candidate material, and the one that, by a considerable margin, we know most about.

It would be a setback to be driven to the extreme of not being able to keep the carbon option open.

Transport creates and moves impurities

lons:

Cross-field transport – turbulent driven ion fluxes can extend into far SOL

→ recycled neutrals
 → direct impurity release
 ELMs can also reach first walls

Eroded Impurity ions "leak" out of the divertor (∇T_i forces)

SOL and divertor ion fluid flows can entrain impurities

Neutrals:

From divertor plasma leakage, gas puffs, bypass leaks → low energy CX fluxes → wall sputtering
Lower fluxes of energetic D⁰ from deeper in the core plasma
A problem for first mirrors

Courtesv: R. Pitts

Migration balance – example from JET

Tritium retention (1)

One of the most challenging operational issues for burning plasmas

If carbon present, complex interplay between erosion → hydrocarbons → dissociation/ionisation → transport → re-deposition → migration to remote areas with high sticking coefficients and retention in codeposits

Carbon traps D, T very efficiently D/C ratio can be in the range ~0.4 → > 1 depending on the type of re-deposited layer Retention very hard to characterise in today's

mostly carbon dominated devices

Dependent on materials, T_{surf}, geometry (limiter/divertor), operating scenarios (H-mode, Lmode, low/high dens.)

Reported measurements range from 3-50% retention

e.g. on JET, ~3% obtained from long term, post mortem surface analysis, ~10-20% from gas balance.

Courtesy: R. Pitts

Tritium retention (2)

The consequences of tritium retention for ITER

Extrapolations of tritium retention results to ITER

after how many ITER pulses do we reach the limits for tritium retention?

Extrapolation from experiments	D,T flux (#/s)	T-retention rate (T/ion)	ITER retention gT/s extrapolation (flux: 1.8 10 ²⁴ /sc)	shots /T-limit (400 sec)
TEXTOR	5 10 ²⁰ /s	6.4 10 -4	0.0064	136
JET T experience	1.2 10 ²² /s (inner only)	1.75 10⁻² (only louver)	0.10g	9
JET GB on tiles	2 10 ²² /s	2.7 10 ⁻³	0.024	36
JET C5 on louver from QMB	1.9 10 ²² /s	2.9 10-4	0.0026	340
Modelling				
ERO-code (2% CxHy er.)			0.006	145
WBC code			0.007	125

large uncertainties, but in any case critical

Mixed Materials

No fusion device operating today contains the material mix currently planned for the ITER first wall and divertor: **Be, W, C**. Cross contamination of the material surfaces will be unavoidable. This is likely to have several consequences:

Divertor and SOL physics

Experimental finding: Sheath limited flow ⇒ high recycling ⇒ detachment

• Theoretical hypothesis:

This is brought about by power- and flux dissipation due to a chemically rich self sustained plasma formed near exposed target surfaces, by the recycling process.

• Experimental tests:

numerical experiments with integrated computational plasma edge models

Experimental findings

JET, 1994, MARK-I Divertor

JET, 1998, MARK-II Divertor

Also indicated: B2-EIRENE-computational grids for JET simulations

JET, MARK-I, density ramp-up

-ohmic -no imp. injection -simply: D2-puff

Linear, sheath limited regime, convection (.... 1985)

• low density: high temperature, plasma profiles along fieldlines nearly constant, low radiation losses

• energy balance: sheath dominates

 $q_{\parallel,M} \approx q_{\parallel,D} \approx \delta_e^* T_D \Gamma_D$

small particle flux to the plate:
 neutral mean free path >> divertor dimension

• divertor density linearly follows midplane density

TEXTOR FZJ

inner bumper limiter/divertor Hidden: DED

ALT-II limiter

Linear, sheath limited regime: Tore-Supra, TEXTOR

R

Conduction limited (high recycling): dilution by multiple recycling (1985-1995, ITER CDA)

 Lower Midplane temperature (higher density), reduced convection (near target re-ionisation)
 ⇒ parallel temperature gradients: low T_e, high n_e near the target D

• Non-linear regime:
$$T_D \sim n_M^{-2}$$
, $n_D \sim n_M^3$ and flux $\Gamma_D \sim n_M^2$

Trapping of neutral particles in the divertor: high recycling and detachment regime

+ COUPLING EIRENE TO BRAAMS CODE: ASDEX UPGRADE SINGLE-NULL

Particle simulation: PWI, A&M Visible light from ASDEX-U divertor

The route to detachment (1)

Mean free paths for particle collisions are long: $\lambda_{coll} \propto T_u^2 / n_u, T_u \sim T_e \sim T_i, \lambda_{ee} \sim \lambda_{ei} \sim \lambda_{ii}$ SOL collisionality: $v^* = L/\lambda_{coll}$ is low Power flow to surface largely controlled by target sheath: $q_{\parallel t} = \gamma n_t c_{st} T_t + n_t c_{st} \varepsilon_{pot}$ γ = sheath heat transmission coefficient ε_{pot} = potential energy per incident ion

 v^* rises as n_u rises, finite electron heat conductivity:

 $\begin{array}{l} q_{\parallel,cond} = -K_{\parallel} dT / ds_{\parallel}, K_{\parallel} = \kappa_0 T^{5/2} \quad (\text{note: } \kappa_{0,e} \gg \kappa_{0,i}) \\ \text{allows parallel T gradients to develop} \rightarrow \mathsf{T}_t \\ \text{decreases, but pressure balance maintained} (\nabla \mathsf{p}_{\parallel} \sim \mathsf{0}) \text{ so that } \mathsf{n}_t \text{ rises strongly} (\Gamma_t \propto n_u^2) \\ \lambda_{\text{ion}} (\propto 1/\mathsf{n}_t) \text{ decreases so that target recycling} \\ \text{increases strongly} \rightarrow \text{flux amplification} \\ \text{As } \mathsf{T}_t \downarrow, \text{ radiation loss increases} \rightarrow \mathsf{T}_t \downarrow \text{ further} \end{array}$

Courtesy: R. Pitts

•Below 1.5 eV additional reduction of plasma flux by volume recombination (virtual target, neutral cushion). Escape of neutrals to the sides followed by ionisation in hotter plasma (6-7 eV) further upstream

 $\Gamma_{\rm D} \sim n_{\rm M}^{-2}$ dependence is broken

The route to detachment (2)

At sufficiently low T_t , (< 5 eV), neutral ionisation rate < ion-neutral friction processes (CX, elastic scattering).

Momentum transferred from ions to dense cloud of neutrals in front of the plate (recycle region) \rightarrow begins to reduce n_t , $\nabla p_{||} \neq 0$ and plasma pressure falls across recycle region.

Once $T_t \sim 1-2 \text{ eV}$ (and if n_t high enough), volume recombination locally "extinguishes" plasma, reducing target power flux

Detachment seen experimentally in many devices, but complex "volumetric" process and relative importance of ion-momentum friction vs. recombination still unclear. X-point geometry \rightarrow long connection lengths \rightarrow high residence times in low T_e plasma \rightarrow efficient radiative loss favouring power reductions where q_{||} is highest (i.e. on flux surfaces near separatrix).

JET, (ohmic), DETACHMENT

Measured and extrapolated ion fluxes to inner and outer divertors, density ramp

Degree of detachment (DOD)

Princeton QED device (gaseous Divertor concept simulator)

Schematic

Scaling of calorimeter signals with gas pressure

 Hsu et al., PRL 49, 1001 (1982):
 QED

 Schmitz et al., J.Nucl.Mat. 196-198, (1992):
 PISCES

 Ohno et al., PRL 81, 818 (1998):
 NAGDIS

Key difference: here: P_{gas} given. In a fusion device the neutral cushion must be self sustained by recycling process. This issue will be addressed in linear MAGNUM device (FOM)

Full detachment is a problem

Detachment which is too "strong" (particle flux reduced across the whole target) is often associated with zones of high radiation in the X-point region and confined plasma (MARFE)

MARFE formation can drive a transition from H to L-mode (H-mode density limit) or disruption

MARFE physics still not well understood

Limit detachment to regions of highest power flux (where it is needed most). Maintain remainder of SOL in high recycling (attached) A few ways to arrange that this happens more readily:

Divertor closure

Increased closure significantly improves divertor neutral pressure \rightarrow increased neutral density (n_n), promoting earlier detachment

Closing "bypass" leaks important for increasing n_n

Divertor closure also promotes helium compression and exhaust – very important for ITER and reactors

Target orientation

Impurity seeding

Strong impurity seeding also reduces ELM size but high price can be paid in confinement

Divertor exhaust

Apart from power handling, primary function of divertor is to deal with He from fusion reactions → compress D, T, and He exhaust as much as possible for efficient pumping (and therefore also good density control).

Critical criterion for an ITER burning plasma is that He is removed fast enough such that: $\tau_{p,He}^* / \tau_E \leq 5-10$ is satisfied.

 $\tau_{p,He}^{*}$ is the global helium particle residence time – a function of τ_{p} , the He neutral density in the divertor and the pumping speed (conductance).

Helium enrichment:

$$\eta_{He} = \frac{n_{He}^{pump} / 2n_{D2}^{pump}}{n_{He}^{plasma} / n_{e}} = \frac{C_{pum}}{C_{plas}}$$

is the ratio of He concentration in the divertor compared to the main plasma.

To cryopumps

e.g. ITER: He prod. rate ~2×10²⁰s⁻¹ Max. divertor pumping speed ~200 Pa m³s⁻¹ ~ 1×10²³ He atom s⁻¹ \Rightarrow C_{pump} ~ 2×10⁻³ = 0.2% Typical acceptable He conc. in the core: ~4% \Rightarrow η_{He} = 0.2/4 = 0.05 is minimum required. The values of $\tau_{p,\text{He}}^*$ and η_{He} required for ITER have been achieved experimentally

Courtesy: R. Pitts

The JET divertor design philosophy

Michael Pick has used to describe the design of the JET divertor:

"The only way to do research is to tell the complete truth. And the truth is that research is often based partially on intuition, which is a perfectly acceptable basis for research in the face of a lack of evidence and verified predictive models.

We built the divertor based on what we thought would be a reasonable solution, based on simple extrapolation, models and intuition, leaving open the possiblities to change."

Still true for ITER, despite significant progress in edge plasma science and predictive quality of models See lecture III One and a half decade ago we lacked a credible solution to the divertor problem.

 With the discovery of the cold, detached, radiating divertor in the 1990s, we now have (the makings of) a divertor solution for high power magnetic confinement devices.

We now have enough understanding of "WHAT" (JET, Tore-Supra, D-IIID, ASDEX, LHD, W7AS,.....) to proceed with the "HOW" (to build ITER,...) Very little on the "WHY" question still, see lecture III But we are ready to go: Bring on ITER!

Compare to similar situation after first flight of Wright brothers

Reserve slides

Edge Diagnostics on ITER will be critical

"Mission statement" for this talk ...

"The interaction of plasma with first wall surfaces will have a considerable impact on the performance of fusion plasmas, the lifetime of plasma-facing components and the retention of tritium in next step burning plasma experiments"

Progress in the ITER Physics Basis, Chap. 4: "Power and particle control", Nucl. Fusion 47 (2007) S203-S263