

Quantifying Climate Change Impacts Water Resources: A Catchment and Global Analysis

Martin Todd Department of Geography University College London (UCL) <u>m.todd@geog.ucl.ac.uk</u>

Reporting the work of many groups involved in QUEST:GSI project (PI Prof. Nigel Arnell, Walker Centre, University of Reading, UK

Water resources in developing countries: Planning and management in a climate change scenario, ICTP, 27th April-1st May 2009

Quantifying and Understanding the Earth System

Presentation overview

- Overview of QUEST Global Scale Impacts project
 - Motivation and aims
- QUEST GSI water resource analysis
 - Methodology
- Results
 - Global scale analysis
 - Catchment scale analysis
- Conclusions and future challenges

Recipe for climate change impact studies

- 1. Take climate models with high UNCERTAINTY
- 2. Force them with highly UNCERTAIN boundary conditions
- 3. Use UNCERTAIN GCM climate outputs to drive highly UNCERTAIN impact models
- 4. Give UNCERTAIN results to decision makers and run away

≜UCL

Motivation for QUEST-GSI: IPCC AR4 WGII climate impacts & adaptation

Linking mitigation policy options with adaptation

	80% emissic by 205 impacts in	0 by 2050	by 2050 Impacts in 2100	stabn at 2015 levels impacts in 2100	dimate change impects in 2100					
WATER		ality in rhoist tropics and hi ability and increasing droug		semi-arid low latitudes						
	0.4 to 1.7 billion	1.0 to 2.0 billio	•	1.1 to 3.2 billion	Additional people with increased trater stress					
	Increasing amphibian extinction		30% species at inc- ph risk of extinction							
COSYSTEMS	Increased coral bleaching	Most corals bleached	Wide	pread coral mortality						
	Increasing species range	hifts and wildfire risk	Terrestrial biospher ~15%	e tends toward a net carbon s	ource, as:					
FOOD	Crop productiviliy	Low latitudes Decreases for some coreal Increases for some perceals Mid to high latitudes	1		els decrease					
COAST	Increased damage from	floods and storms								
	Additional people coastal flooding e		-	About 30% loss of coastal wetlands 2 to 15 million						
HEALTH		1 1	1	l pry and infectio <mark>us diseases</mark> t						
	Changed distribution of	some disease vectors	and the second second	stantial burden en health serv	can 5					
SINGULAR EVENTS	Local retreat of ice in Greenland and West Antarctic		Long term commitm metres of sea-level sheet loss		Leading to reconfiguration of coastines world wide and inundation of low-lying areas					
		i i	Ecosystem change	s due to weakeging of the me	ridional overturning circulation					
		1	10 March 10		the second se					

To achieve this there is a need for a globally consistent assessment of climate change impacts across impact sectors

The NERC QUEST project

- QUEST: Quantifying Earth system processes and feedbacks for better informed assessments of alternative futures of the global environment.
 - Funded by UK Natural Environment Research Council

QUEST GSI Aims: http://www.met.reading.ac.uk/research/quest-gsi/

- To quantify the impact of different degrees of climate change on a wide range of ecosystem services globally
- To provide a consistent framework for assessing the impacts of specific climate policies
 - SRES scenarios, 2°C target etc
- Multiple sectors:
 - <u>Water resources</u>, Coastal flooding, Fluvial flooding, Crop productivity, Ecosystem productivity, Carbon storage in soils, Aquatic productivity
- To help inform policy
 - Mitigation : What is the relationship between mitigation policy and cost?
 - Adaptation e.g. water resource planning

Final outcome will be multi-sectoral syntheses of climate change impacts

Figure 9. Mortality risk hotspots and the top 20 recipients of humanitarian relief (1992-2003).

e.g. Columbia Hotspots project

Presentation overview

- Overview of QUEST Global Scale Impacts project
 - Motivation and aims
- QUEST GSI water resource analysis
 - <u>Methodology</u>
- Results
 - Global scale analysis
 - Catchment scale analysis
- Conclusions

QUEST GSI: Experimental design summary

Drive impact models with estimates of future climate and associated uncertainty

1. Multiple scenarios

- Emissions-based (IPCC SRES)
- Prescribed-temperature change scenarios
 - To produce climate impact response functions

2. Uncertainty: Ensemble approach

- GCM uncertainty
 - AR4 models (n=18),
 - HadCM3 QUMP perturbed physics ensemble (n=17)
- Impact model uncertainty
- Socio economic uncertainty

Future climate data using pattern scaling

Rationale: (i) convenient (ii) globally consistent approach (iii) facilitates prescribed warming scenarios

Create scenarios by *pattern-scaling* climate model output

1. Determine pattern of climate change for each GCM and climate variable T, P, WV, cloud, wind (from A2 run 2070-99)

2. Scale for global mean temperature

3. Add the scaled climate changes to an observed gridded climate data set (CRU TS3.0 0.5 degree global gridded data)

(Preserves year-to-year and decade-to-decade variability in the original time series)

Executed using the ClimGen software developed by Tim Osborne at Climatic Research Unit (CRU) at University of East Anglia (UEA), UK

UCL

HadCM3 A2 temperature change by 2080s divided by global temp change

Pattern scaling for precipitation

Normalised precipitaian change (mm/day) 2070-99 vs 1961-90

DCL

Example

•AR4 GCMs (n=18)
•HadCM3 QUMP (perturbed physics) set (n=17)

Advantages/Limitations of method

- Advantages
 - Convenient
 - Globally consistent
 - Allows calculation of climate change signal for different degrees of 'prescribed' warming
 - Easy to account for GCM uncertainty
- Disadvantages
 - Assumes linear dependence of magnitude of climate change pattern on global mean temperature
 - Downscaling is simple interpolation of GCM climate change pattern

Presentation overview

- Overview of QUEST Global Scale Impacts project
 - Motivation and aims
- QUEST GSI water resource analysis
 - Methodology
- <u>Results</u>
 - Global scale analysis
 - Catchment scale analysis
- Conclusions

Macro-scale global hydrological model

MacPDM (developed by Nigel Arnell, University of Reading, UK)

- daily water balance accounting model
- 0.5 degree model grid resolution
- parameters estimated from spatial data sets (soil, vegetation)
- Driven by CRU TS 3.0 monthly data (weather generator for daily data)
- PE estimated using Penman-Monteith
- soil moisture characteristics vary within grid cell
- no routing from cell to cell
- not calibrated at the catchment scale

MacPDM performance: Global mean runoff

Tends to overestimate runoff in dry regions – evaporation of runoff and transmission loss not adequately accounted for (see presentation by Wheater on Monday)

Results: Change in runoff under A1b emissions (2050-80 minus 1961-90)

Substantial uncertainty in response between GCMs especially in tropics
Will calculate probability distributions of runoff change from multi-model ensemble simulations

Indicators of water resources stress

Indicator = water resources per capita by watershed

Indicator of *impact* of *climate change*

= populations living in *water-stressed* watersheds, where runoff decreases *significantly*

Water-stressed: < 1000m³/capita/year

"significant decrease": decrease in runoff greater than standard deviation of 30-year mean runoff

But takes no account of

- •Basin storage e.g. in much of Africa soil water store supports agriculture
- •Different rates of water use (i.e. withdrawals)

Distribution of water stresses

A1b 2050 - core models

Distribution of water stresses

A1b 2050 - core models

Regional climate impact response function

Characterising adaptation

- How can we characterise adaptation across a large domain?
- Adaptation options and feasibility vary with local context

At each grid cell impose a hypothetical reservoir with defined yield (75% of mean flow) and reliability (90%)

Indicator of impact – change in volume

Change in volume to maintain target yield and reliability

DCL

HadCM3 A1b 2050

	-10=-100 to -90%, -9=-90 to -80% 0=0 to 10% 30= >=300%																																							
								Τ		Т																														
		L.	1							1	1	1		1								1			1		1													
-10	-9 -	8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Global scale analysis: Conclusions

- Broad-scale approach to estimating climate change impacts on river runoff and water resources stresses
 - Determine Climate Impact Response Function to help define levels of 'dangerous climate change'
 - Quantify uncertainty
- Applied generalised approaches to characterising adaptation
- Initial results only so far

But adaptation strategies to climate change will generally be developed at the catchment scale...

Presentation overview

- Overview of QUEST Global Scale Impacts project
 - Motivation and aims
- QUEST GSI water resource analysis
 - Methodology
- <u>Results</u>
 - Global scale analysis
 - Catchment scale analysis
 - <u>Mekong river</u>
 - Rio Grande
- Conclusions

Catchment-scale studies

•Network of basins to represent a range of physical and human environments

Catchment scale analysis

- Provides comparison with global hydrological model
 - More sophisticated basin hydro models
- Facilitates much more precise estimates of water scarcity
 - Current measures of "water scarcity" do not inform adaptation
- Case studies for adaptation policy

[±]UCL

Climate change impacts on the Mekong River

- 795,000 km^{2,} 4200km long, Mean total annual discharge = 475bn m³ (6th largest in world)
- Climate: Summer SW monsoon rainfall
- From Tibetan plateau (>5000m) to Vietnam and South China Sea
- China, Burma, Thailand, Laos, Cambodia & Vietnam
 - ~ 50 million people
- Socio-economic importance:
 - Fish:
 - 700,000 tons, 300 species p.a. (1992)
 - Fish are 50-80% total protein intake
 - Agriculture
 - Hydropower

UCL

Hydrological model

- SLURP (Semi-distributed Land-Use Runoff Process) model
 - Semi-distributed, physically based
 - Kite, G. (2001) *Journal of Hydrology*, 253 pp1-13.
- 13 sub-basins derived from DEM
- Sub-basins further divided, based on landuse (9 categories)
- FAO world soil map
- Model driven by CRU TS3.0 monthly data downscaled to daily with weather generator
- Et derived using Linacre method

Summary: Uncertainty envelopes

Uncertainty associated with GCMs greater than that from SRES emission uncertainty and is greater than magnitude of impact over 1-6C global warming

Comparison of Global model (MacPDM) and catchment model

DCL

2050s runoff change from present – A1B models

Presentation overview

- Overview of QUEST Global Scale Impacts project
 - Motivation and aims
- QUEST GSI water resource analysis
 - Methodology
- Results
 - Global scale analysis
 - Catchment scale analysis
 - Mekong river
 - Rio Grande
- Conclusions

Impact of climate scenarios on freshwater resources in the Rio Grande - Brazil

Márcio Nóbrega and Walter Collischonn, IPH UFRGS

- Triburtary of Parana river
- drainage area: 145000 km2
- Hydropower is the most important source of electric energy in Brazil

- 60% of hydropower production in Brazil comes from the Paraná river and its tributaries. Rio Grande provides 16% of total
- One of the largest river regulation reservoirs (Furnas) is located on the rio Grande
- Itaipu dam

Porto Alegre, Brazil

The MGB-IPH large scale hydrological model (similar to VIC)

SIMULATED CLIMATE CHANGE IMPACTS: GCM uncertainty

Relative differences between GCMs in +2°C scenarios and detrended series

UCI

Future developments:

Use the hydrological model outputs to feed the Long-term planning model of the hydropower system (NEWAVE) and see how energy costs will be affected

Uncertainty is problematic. Water mangers will do nothing

Comparison of catchment and global model results

•Relative change across GCMs is similar between the global and catchment models •Magnitude of change

DCL

•Magnitude of change differs

Climate impact response function for HadCM3: All basins from global model

Percentage Change in Average Annual Runoff – HadCM3 Prescribed

Summary of QUEST-GSI

- Integrated global multi-sector climate change impact assessment with consistent climate change scenarios
 - Derive climate impact response functions (as a function of global warming)
- Water resource assessment undertaken with global hydrological model and individual river basin network
- To inform mitigation and adaptation policy

[±]UCL

Challenges

1. UNCERTAINTY

- Very high and probably underestimated
 - Largely associated with GCM precipitation
 - Hydrological model uncertainty of secondary importance
 - Related to Et method?
- Reduce or accept uncertainty?
 - Envelope of non-discountable climate change?
 - Probabilistic estimates from grand ensembles
 - GCM weighting?

2. ADAPTATION

- Adaptive adaptation?
- 'Bottom-up' approach to climate risk assessment and adaptation policy
- Climate is only minor part of adaptation

3. WATER STRESS INDICES

- current measures of "water scarcity" do not well inform adaptation
- Need to develop More meaningful water stress indicators (basin by basin)

DCL

Thanks for your attention

Wake up now