Areal estimates of precipitation and temperature in the Upper Indus Basin

Presentation to workshop on Water Resources in Developing Countries: Planning & Management in a Climate Change Scenario, ICTP-Trieste -- 28 April 2009

-- by Nathan Forsythe, Newcastle University advised by Dr. Hayley Fowler, Prof. Chris Kilsby, Mr. David Archer

Location of the Upper Indus Basin (UIB)

Reasons for interest in the UIB

- Convergence of westerly weather influences (Mediterranean, North Atlantic) & tropical systems (Indian Monsoon).
- Hydrological regimes are thus potentially extremely sensitive to climate change.
- Indus River & tributaries dominant elements in Pakistan economy (hydropower, food security and agricultural sector employment).

Overview of initial PhD project outline

Plan of work:

- 1. Exploration of the observed data set.
- 2. Construction of relationships between largescale atmospheric patterns and local climate.
- 3. Construction of a (physically-based) modelling framework.
- 4. Modelling of future climate change.
- 5. Assessment of possible responses.

Climate & flow regimes in the UIB

Initial work on areal transformations of temperature as forecasting input / predictor

Lapse rate derivation from Minimum Temperatures, select stations 1994 - 1997/98 & 2001 - 2005

Elevation of the freezing level (0° isotherm)

Variation in percent coverage of different temperature zones for Hunza river at Dainyor Bridge

Further work on area representation of catchment melt/energy conditions

- For Hunza, at least 40% of variation in anomalies from seasonal (monthly) averages remains to be explained (quantifiably traced)
- Planned analysis approach :
 - Consideration of proxy variables for albedo variation (eg number of days with precipitation)
 - Analyses of relationship between cloud cover and flow variability

Initial work on areal transformations of precipitation as forecasting input / predictor

Cumulative Annual Precipitation in the Astore catchment

Cumulative Annual Wetdays in the Astore catchment

Mapped preliminary cluster groups

Further work on areal representation of catchment precipitation distribution

- Analysis approach :
 - Literature review for comparison of potential physically-based interpolation techniques
 - Pursuit of regime classification by cluster analysis once adequate AWS record has been acquired

Further work on forecasting of anomalies in concurrent-effect predictors

(eg energy inputs, albedo variation, etc)

Anomaly forecasting by relationships between largescale atmospheric patterns and local climate

Global circulation phenomena thought to affect UIB climate:

Thank you for your time.

Your questions and comments are most welcome!

Analyses of Temperature data

- Derivation of lapse rates
- Calculation of monthly position of freezing level (0° isotherm) for Tmin & Tmax
 - Monthly equations for regional daily Tmin & Tmax by altitude/elevation
- Extrapolation using hypsometry data, on a subcatchment basis, to determine % area experiencing different water-phase states
- Comparison of estimated melt area
 (Tmin>0°C) to observed flow on monthly basis

Analyses of Precipitation data

Analysis approach:

 Identification of orographic and windorientation (windward or leeward) effects within coherent rainfall regime groups

 Exploration of relationships between regime groups for simplified estimation and forecasting

Further work on forecasting anomalies of predictors concurrent with melt-runoff processes

- Correlation analyses of published phenomena indices (eg SOI, IOD) at various time-lags with temperature and precipitation anomalies in UIB
- Development of linear regression models for anomalies
- Development of weather typing combining local observations with gridded dataset of atmospheric variables

Objective of this analysis: develop linear predictors of flow derived from local observations.

Average Monthly Flow at Dainyor Bridge & Percent of Hunza catchment in melting conditions

Flow versus Melt Area, Hunza at Dainyor Bridge, 1966 - 2002** using Tmin at Astore

Anomaly comparison : Flow versus Melt Area, Hunza at Dainyor Bridge, 1966 - 2002**, melt season only (area > 2%)

Anomaly % catchment in melt (Tmin>0) [fraction], calculated using Astore

Total precip by 4-month season (averaged by previous cluster iteration)

Cumulative precip monthly (averaged by previous cluster iteration)

Cumulative wetdays monthly (averaged by previous cluster iteration)

