

Simulating climate change impacts on the hydroecology of the Okavango River system, Southern Africa: Consideration of uncertainty

Martin Todd

Department of Geography
University College London (UCL)

m.todd@geog.ucl.ac.uk

Piotr Wolski and Mike Murray-Hudson
Harry Oppenheimer Okavango
Research Centre (HOORC)
University Of Botswana

Denis Hughes
Rhodes University
South Africa

Water resources in developing countries: Planning and management in a climate change scenario, ICTP, 27th April-1st May 2009

QUEST-GSI catchment-scale studies

basins represent a range of physical and human environments

UCL

- The Okavango River system
 - Climate
 - Hydrology
 - Socio-economic and development context
- Hydrological and ecological modelling
- Simulating climate change impacts
- Conclusions

The Okavango River system

Climatology

Pronounced NE-SW moisture gradient in SA rainfall esp. over Okavango region

Basin region humid (max 1200mm/yr) Delta region semi arid (~400 mm/yr)

Summer wet season in southern African (SA) rainfall

Climatology

Okavango basin region has highly variable climate •Interannual to multi-decadal

What drives climate variability in this region?

- Problematic to study: Data gap since 1970
- Use the Okavango discharge record
- Filter to retain high frequency (interannual) and low frequency (multiannual) components

Correlation of HF Q with SST

Variability in Equatorial Atlantic SST (Atlantic Nino) may be primary driver of interannual variability

Correlation of LF Q vs SLP

Driven by decadal NAO and/or associated SSTs?

UCL

- The Okavango River system
 - Climate
 - Hydrology
 - Socio-economic and development context
- Hydrological and ecological modelling
- Simulating climate change impacts
- Conclusions

Hydrology of the Okavango Delta: flood pulse

Flooding in the Delta is a product of interaction of

- inflow from upstream catchment (peak April)
- local rainfall (peak Jan)
- antecedent wetness

Minimum in February

Peak in September

*UCL

Nature of flood wave

Hydroperiod

Hydroperiod - description of varying water levels at a site

- Duration of inundation
- Depth of inundation
- Amplitude of water level fluctuations
- Frequency of inundation

In Okavango Delta driven by:

- External factors:
 - inflow
 - local rainfall
- Internal factors
 - Channel-floodplain interactions
 - topogaphy
 - geomorphological processes

Inundation frequency from TM satellite imagery

Delta environments

Hydroperiod determines ecological status (Ecotopes)

UCL

- The Okavango River system
 - Climate
 - Hydrology
 - Socio-economic and development context
- Hydrological and ecological modelling
- Simulating climate change impacts
- Conclusions

Water resource development and adaptation issues

Subsistence Agriculture

National Food Security

Conservation

Hydroelectricity

Urban & Industrial Growth

Rural Development

Post-Conflict Reconstruction

Eco-Tourism Development

Tri-nation committee OKACOM has responsibility for developing Integrated Water Resources Management plan

≜UCL

- The Okavango River system
- Hydrological and ecological modelling
 - River basin model
 - Okavango delta model
 - Ecological model
- Simulating climate change impacts
- Conclusions

The information chain leading to a climate projection

A 'cascade' of uncertainty

Modelling the Okavango river system

Okavango Delta: Semidistributed water balance 'reservoir' model

Modelling the Okavango river basin

- Modified Pitman rainfall/runoff model utilised (STATSIM) developed at Rhodes University, RSA
 - Water balance with groundwater and channel routing functions.
 - Semi-distributed (24 sub basins)
 - Data requirements
 - catchment average monthly rainfall
 - catchment average monthly potential evaporation (derived from Hargreaves equation)

≜UCL

Data over the catchment region is poor

Interpolated gauge data 1960-72 Satellite estimate 1990-01

Data over the catchment region is poor

- The Okavango River system
- Hydrological and ecological modelling
 - River basin model
 - Okavango delta model
 - Ecological model
- Simulating climate change impacts
- Conclusions

Hydrological model of the Okavango delta • TC

- Okavango delta is highly complex and dynamic mosaic of surface conditions
- Very difficult to model with distributed grid based model.
- Developed simple water balance 'reservoir' model
 - Network of interlinked reservoirs
- 'Semi-distributed'
 - Water balance calculated for each of 8 major distributaries ('reservoirs') within the delta

Model validation

Delta model validation

Good simulation of hydroperiod

Hydroperiod classification

Floodplain class	Sub-class	class code	flood frequency	flood duration (months/year)
Permanent floodplain	proper	PF1	1	12
	fringe	PF2	1	8-12
Regularly flooded seasonal floodplain		RF1	1	4 - 8

3 classes 4 classes

- The Okavango River system
- Hydrological and ecological modelling
 - River basin model
 - Okavango delta model
 - Ecological model
- Simulating climate change impacts
- Conclusions

Ecotopes - vegetation communities

Dynamic ecotope model

Expert system. Current ecotope depends on:

- ecotope in previous year
- inundation duration in previous 5 years

Wolski & Murray-Hudson, Water SA, 34, 605-610

- The Okavango River system
- Hydrological and ecological modelling
 - Development scenarios
- Simulating climate change impacts
- Conclusions

Development scenarios

- 3 contrasting scenarios of future water use derived.
 - Quantifying losses due to domestic use, livestock, water abstractions for irrigation and urban supply, dams
- Low development:
 - low population growth, small scale irrigation and no additional abstractions
- Medium development:
 - medium population growth, small and large scale scale irrigation, riparian deforestation, two dams and no additional abstractions
- High development:
 - As medium but with all proposed dams and pipeloine to Windhoek, Mamibia.

Results: Simulated mean future Okavango river discharge under devlopment scenarios

Presentation overview

- The Okavango River system
- Hydrological and ecological modelling
- Simulating climate change impacts
- Conclusions

General framework of analysis of climate change impact:

Simulated changes in Okavango delta flood class distribution

Changes relative to 'dry' baseline conditions

Simulated changes in Okavango delta flood class distribution

Journal of Hydrology, Special Issue, 2006, Vol 331

Climate change uncertainties

Climate change uncertainties

Downscaling climate change signal

Presentation overview

- The Okavango River system
- Hydrological and ecological modelling
- Simulating climate change impacts
 - Probabilistic climate change estimates
- Conclusions

Change in mean annual values

• SRES B1 scenario, 2021-2050 compared to 1961-1990

Bars denote +/- one standard error

Change in mean annual values

SRES B1 scenario, 2021-2050 compared to 1961-1990

Bars denote +/- one standard error

Deriving probability distributions from the multi-model ensemble

- Use Bayesian approach of Tebaldi et al. (2005)
 - Extension of Reliability Ensemble Averaging approach of Giorgi and Mearns (2002) in which GCMs weighted according to by
 - Model bias (error vs. historical obs)
 - Convergence (how close their projected climate is to that of ensemble mean)
- In Bayesian method prior distributions representing climate change uncertainty and likelihoods (from model bias and convergence criteria) are combined to give posterior distributions of climate change (using Markov Chain Monte-Carlo with Gibbs sampler)

Ecotopes - vegetation communities

Results – simulated distribution of ecotopes

Sedgeland

from Wolski (in prep)

Grassland

Savanna

90% confidence interval

Grassland

9000
7000
6000
4000
3000
1000
1000
Time [years]

from Wolski (in prep)

90% confidence interval

Result: Transition to drier ecology

Summary and conclusions

- Okavango river is of major socio-economic and ecological importance in Africa
 - River catchment and delta provide vital ecosystem services
- Complex climate with pronounced variability
- Potential climate change impacts assessed using suite of hydrological and ecological models
- Results indicate that climate change impacts are potentially very large
 - Greater than variability in 20th century
 - (greater than development scenarios)
- Uncertainty in projected impacts very large and sign uncertain
 - Problematic for policy makers
- Probabilistic estimates of future climate
 - Indicate likely drying in hydrology in the Delta
- Criteria for GCM weighting is a contentious issue

≜UCL

