Hydrometeorological Forecasting: Model Calibration and parameter Estimation Requirements

Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing

University of California Irvine

The Abdus Salam ICPT Conference on: Water Resources in Developing Countries: Planning & Management under Climate Change Scenario Trieste, Italy: Apr. 27th- May 8th 2009

UhiReSs&yAff(lidtfsrnAathulin En leChation AlrEconn (UA)

CHRS Web Site

Studying the Hydrologic Cycle at Various Scales

Globally: 86% of Evap. and 78% of Precip. occur over the oceans

Hydrologically-Relevant Climate Variables

Hydrologic predication requirements and how well are we satisfying them?

From the Global- to Watershed-Scale

Hydroclimate Science and Hydrologic/Water Resources Engineering

Hydroclimate Science

Hydrologic/Hydraulic and Water Resources Engineering

Example of Prediction: Seasonal to inter-annual

Required Hydrometeorologic Predictions

hours ----> days ----> weeks ---> months --> seasons --> years ----> decades

Climate Model Downscaling to watershed Scale

Climate Model Downscaling to watershed Scale

Downscaled Precipitation to Runoff Generation

Brief Review of Rainfall Runoff modeling:

Progress in Hydrologic Modeling

Hydrologic Modeling Challenges

Continental Scale: Focus of Hydro-Climate modelers

> Different Scales Different Issues Different Stakeholders

<u>Watershed Scale</u>: Focus of Hydro-Met. Modeling Where hydrology happens

"Semi-distributed" Hydrologic Models

Hydrologic Modeling: 3 Elements!

Hydrologic Modeling

Evolution of Hydrologic R-R Models

A look into the "heart" of R-R Models

Example of Distributed Model Appl. in large Basins

Alternative Approach to a Fully Distributed Approach

Status of Forecast Skill in Hydrologic Models

www.sciencemag.org SCIENCE VOL 316 15 JUNE 2007

SCIENCE SCOPE

1555

Shorter Time scale: Extending the Forecast Lead time

Model Calibration

The Identification Problem

- 1. Select a model structure (Input-State-Output equations)
- 2. Estimate values for the parameters

The Concept of Model Calibration

"Calibration: constraining the model to be consistent with observations"

Calibration components

Objective Function Search Algorithm Sensitivity Analysis

Problems with identifiability

The Measure of Closeness ...

Calibration Criterion

[General Exponential Power Density]

(Posterior Parameter Probability Distribution Function)

$$\boldsymbol{\varphi}(\boldsymbol{\theta}_i \mid \mathbf{y}, \boldsymbol{\gamma}) = \left[\frac{\boldsymbol{\omega}(\boldsymbol{\gamma})}{\boldsymbol{\sigma}}\right]^N \exp\left[-c(\boldsymbol{\gamma})\sum_{j=1}^N \left|\frac{e(\boldsymbol{\theta}_i)_j}{\boldsymbol{\sigma}}\right|^{2/(1+\boldsymbol{\gamma})}\right]$$

Objective function Parameter Space

Data information content

"Bucket Model" Simple two parameter Model

Data information content

Difficulties in Optimization

1 Regions of Attraction	More than one main convergence region
2 Local Optima	Many small "pits" in each region
3 Roughness	Rough surface with discontinuous derivatives
4 Flatness	Flat near optimum with significantly different parameter sensitivities
5 Shape	Long and curved ridges
	 1 Regions of Attraction 2 Local Optima 3 Roughness 4 Flatness 5 Shape

Duan, Gupta, and Sorooshian, 1992, WRR

Optimization Strategy – Local Direct Search

Calibration of the Sacramento Model Downhill Simplex Method, Nelder & Mead, 1965

Duan, Gupta, and Sorooshian, 1992, WRR
Difficulties in Global Optimization

Maximize $p(\theta^t | model, data)$ w.r.t. θ

1 – Multiple regions of attraction
2 – UNCOUNTABLE local optima
3 – Discontinuous derivatives
4 – Long and curved ridges
5 – Poor sensitivity

The Ideal case: Convex Optimization

Difficulties in Global Optimization

Parameter Estimation (non-convex, multi-optima)

Parameter Estimation (non-convex, multi-optima)

The SCE-UA Algorithm ... (1992)

Duan, Gupta, and Sorooshian, 1992, WRR

The Shuffled Complex Evolution Algorithm

The SCE-UA Algorithm ...

Duan, Sorooshian, and Gupta 1992, WRR

SCE Method – How it works ...

Shuffled Complex Evolution (SCE-UA)

Global Optimization – The SCE-UA Algorithm

Duan, Gupta & Sorooshian, 1992, WRR

0.020.4 Parameter Value Parameter Value 0.35 0.015 0.3 0.01 0.25 0.005 0.2 2000 1500 2000 500 1500 1000 Û 1000500 **Function Evaluations Function Evaluations** 0.02 174 0.4 Parameter Value Parameter Value 0.015 0.35 0.01 0.3 0.005 0.25 0.2 20,000 30,000 0 10.000 20,000 30,000 0 10,000 **Function Evaluations Function Evaluations**

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Simplex Method

Shuffled Complex Evolution (SCE-UA)

SCE-UA only solves for Mode of Distribution

Shuffled Complex Evolution Metropolis

Need estimates of the prediction uncertainty

Parameter Uncertainty Methods

- (1) First-order approximations near global optimum (Kuczera etal)
 - Assumes Model is Linear
 - Assumes Posterior Dist. Guassian

(2) Generalized Likelihood Uncertainty Estimation (GLUE) θ_1 method (Beven and co-workers)

(3) Markov Chain Monte Carlo (MCMC) methods (Vrugt and others) $p(\theta^{t+1}+)$

Flow Ranges instead of point estimates

Advances in Parameter Estimation

Land-Surface Model

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Multi-Objective Approaches

Multi-Criteria Calibration Concept

Multi-Objective Optimization Problem

 $\underbrace{\text{Minimize}}_{\text{wrt } \theta \subset \Omega} F(\theta) = \{ F_1(\theta), \dots, F_n(\theta) \}$

Simultaneously finds several Pareto Solutions in a Single Optimization

 $F_2(\theta)$

Luis A. Bastidas Z. (lucho@hwr.arizona.edu)

Single- & Multi-Flux Calibrations

Data Locations Characteristics

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

•Data : May 92 - Dec 93

A Key Requirement!

Precipitation Measurement is one of the <u>KEY</u>

hydrometeorologic Challenges

Push towards High Resolution (Spatial and Temporal) Global Observations and Modeling

Precipitation Observations: Which to trust??

Sources: R. Fulton, D.-J. Seo. and J. Breidenbach, AMS Short-Course on QPE/QPF, 2002

Coverage of the WSR-88D and gauge networks

Maddox, et al., 2002

Daily precipitation gages (1 station per 600 km² for Colorado River basin) hourly coverage even more sparse

Radar-Gauge Comparison (Walnut Gulch, AZ)

Space-Based Observations

Geostationary and Polar Satellites Courtesy: NASA's ESE

<u>Precipitation Estimation from Remotely Sensed Information using</u> <u>Artificial Neural Networks (PERSIANN)</u>

Satellite Products: Promising future

Hydise UNESCO NASA Global Precipitation Mapper (DHTML) - Windows Internet Explorer, 🗸 😽 🗙 Google 2 R http://hydis8.eng.uci.edu/hydis-unesco/ Œ 📆 -<u>V</u>iew F<u>a</u>vorites <u>T</u>ools <u>H</u>elp File Edit 🖶 🔹 📴 Page 🔹 🍈 Tools 🔹 ₽ HyDIS8 UNESCO NASA Global Precipitation Mapper (D... 🛅 • 🔊 Ηı UNESCO In Association UCIrvine NASA Display Size Med Karge Current image: 2007/10/24 -- 00:00 UTC _View Whole image Latest image: 2007/10/29 -- 05:00 UTC 0 1400 2800 4200 5600 7000 8400 9800 1120012600 14000 km No Data 0 80 100 mm/6hr 10 25 40 60 2 \mathbf{G} (Ŧ) 4 🗖 Þ $[\nabla]$ чны Show 👌 😜 Internet 🔍 100% 🛛 💌
Satellite Products: Promising future

Satellite Products: Promising future

Satellite Rainfall Estimation: Research at UC Irvine

Streamflow forecasting of a catchment in US using UCI-PERSIANN rainfall Estimates for use in the US National Weather Service Runoff Forecasting System (NWSRFS).

Promising Potential for Various Applications:

Flood Forecasting Example

Satellite Rainfall Estimation: Research at UC Irvine

Very Promising

GPM Mission: Target Date 2012?

OBJECTIVES

- 1 Main satellite + 8 Smaller Satellites \
- Provide sufficient global sampling to significantly reduce uncertainties in short-term rainfall accumulations

Limit to Model Complexity

Source: Gershenfeld, 1999

AGU Monograph – Now Available

Calibration of Watershed Models presents a state-of-the-art analysis of mathematical methods used in the identification of models for hydrologic forecasting, design, and water resources management. From reviewing advances in calibration methodologies, to describing automated and interactive strategies for parameter estimation, uncertainty analysis, and probabilistic prediction, this book addresses five questions essential to the discipline:

- What constitutes best estimates for watershed model parameters?
- What computational procedures ensure proper model calibration and meaningful evaluation of performance?
- How are calibration methods developed and applied to watershed models?
- What calibration data are needed for reliable parameter values?
- How can watershed modelers best estimate model parameters and assess related uncertainties?

For scientists, researchers and students of watershed hydrology, practicing hydrologists, civil and environmental engineers, and water resource managers.

www.agu.org

Qingyun Duan

Water Science and Application 6

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Calibration of **Natershed Models**

> Hoshin V. Gupta Soroosh Sorooshian Alain N. Rousseau **Richard Turcotte** Editors

Thank You For Listening

The Rio Grande River, NM Photo: J. Sorooshian 2005

Data Requirements for Hydrologic Modeling

Limitations

prediction or forecasting of the hydrological responses of given watershed highly dependent on availability of data for calibration and prediction

Data Limitation is an Important Factor in Success of Hydrologic Modeling

Multi-Criteria Calibration Approach

