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Studying the Hydrologic Cycle at Various Scales
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Hydrologically-Relevant Climate Variables

Hydrologic predication 
requirements and how well are 

we satisfying them? 

Hydrologic predication 
requirements and how well are 

we satisfying them? 
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Example of Prediction: Seasonal to inter-annual 
From climate prediction

To Weather predict:
the actual event 

To impact on water resources

Decisions

Source: S. Sorooshian GEWEX-SSG
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Short Range Long Range 

hours days weeks months seasons years decades

Required Hydrometeorologic Predictions  

Forecast Requirements

Short-range Mid-range Long-range
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Climate Model Downscaling to watershed Scale

Generation of Future Precipitation  Scenarios 
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Brief Review of Rainfall 
Runoff modeling:

Progress in Hydrologic 
Modeling 
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Hydrologic Modeling Challenges 

Continental Scale:
Focus of Hydro-Climate modelers

Watershed Scale: 
Focus of Hydro-Met. Modeling    
Where hydrology happens

Different Scales
Different Issues
Different Stakeholders
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If the “World” of 
Watershed Hydrology
Was Perfect!

Hydrologic Modeling:   3 Elements!  
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PD = f(Z, X)

A look into the “heart” of  R-R Models   

Percolation Process is the 
Core element in Partitioning 
the rain between the various 
stores 

PD = f(Z, X)
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Example of Distributed Model Appl. in large Basins
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Segmentation Strategy

Alternative Approach to a Fully Distributed Approach
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Status of Forecast Skill in Hydrologic Models
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Model Calibration 

MODEL

DATA

PARAMETER

ESTIMATION



Center for Hydrometeorology and Remote Sensing, University of California, Irvine

The Identification Problem
1. Select a model structure (Input-State-Output equations)

2. Estimate values for the parameters

U

U – Universal Set M1(θ)

M2(θ)

Mi(θ) – Selected
Model Structure

D
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B
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The Concept of Model Calibration
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“Calibration: constraining the model to be consistent with observations”
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The OptimizationThe Optimization
ApproachApproach
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Calibration components

Objective Function

Search Algorithm

Sensitivity Analysis

Problems with identifiability



’60s and ’70s – Empirical regression

’80s – Likelihood & Bayesian Theory

Sorooshian and Dracup, WRR 1980

Kuczera, WRR 1983

others …

The Measure of Closeness  …

“Objective Function” or “Criterion”
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Objective function Parameter  Space 
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Data information content 

“Bucket Model”
Simple two parameter Model
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4.- Flatness Flat near optimum with 
significantly different 
parameter sensitivities

3.- Roughness Rough surface with 
discontinuous 
derivatives

2.- Local
     Optima

Many small "pits" in 
each region

More than one main 
convergence region

1.- Regions of
     Attraction

Difficulties in Optimization

5.- Shape Long and curved 
ridges

Duan, Gupta, and Sorooshian, 1992, WRR
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Optimization Strategy – Local Direct Search

Calibration of the Sacramento Model
Downhill Simplex Method, Nelder & Mead, 1965

Duan, Gupta, and Sorooshian, 1992, WRR
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Difficulties in Global Optimization
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The Ideal case: Convex Optimization

Created By  G-H Park
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Parameter Estimation (non-convex, multi-optima)

Created By  G-H Park
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Parameter Estimation (non-convex, multi-optima)
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The SCE-UA Algorithm …
(1992)

Duan, Gupta, and Sorooshian, 1992, WRR
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The SCE-UA Algorithm …

Duan, Sorooshian, and Gupta 1992, WRR

The Shuffled Complex Evolution Algorithm
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The Concept Behind SCE Method
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The Concept Behind SCE Method
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The Concept Behind SCE Method
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The Concept Behind SCE Method
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SCE Method – How it works …
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Shuffled Complex Evolution (SCE-UA)
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Global Optimization – The SCE-UA Algorithm

Simplex
Method

Shuffled
Complex
Evolution
(SCE-UA)

Duan, Gupta & Sorooshian, 1992, WRR
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Shuffled Complex Evolution Metropolis

SCE SCEMVrugt, Gupta, Bouten & Sorooshian
WRR 2003
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Need estimates of the prediction uncertainty

*θ

Hours
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including structural
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Parameter Uncertainty Methods
(1) First-order approximations near global optimum (Kuczera etal) 

Limitations
• Assumes Model is Linear
• Assumes Posterior Dist. Guassian

(2) Generalized Likelihood Uncertainty Estimation (GLUE) 
method (Beven and co-workers)

(3) Markov Chain Monte Carlo (MCMC) methods
(Vrugt and others) .)|( tp θ

.)|1( +tp θ
1+tθ tθ

θ1

θ 2

.

θ1
θ
2
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Flow Ranges instead of point estimates 
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Evolving DirectionsEvolving Directions

Advances in Parameter Estimation
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Multi-Objective  Approaches  
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Multi-Criteria Calibration Concept
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Multi-Objective Optimization Problem

MOCOM Algorithm:

Does NOT require conversion
to a sequence of single optimization problems

Simultaneously finds 
several Pareto Solutions 
in a Single Optimization
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ARM-CART SGP Site

100 km

Grid: ~100,000 km2

Luis A. Bastidas Z. (lucho@hwr.arizona.edu)
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Tucson
•Type: Semi-Desert
•Cover: 9.2%
•Precipitation: 275 mm
•Data : May 93 - Jun 94

BOREAS (NSA-OJP)
•Type: Evergreen Needleleaf
•Cover: 6.5%
•Precipitation: 242 mm
•Data : Jan 94 - Dec 96

ARM-CART (E13)
•Type: Mixed Crop / Farm Land
•Cover: 8.1%
•Precipitation: 600 mm
•Data : Apr 95 - Aug 95

ABRACOS (Reserva Jaru)
•Type: Evergreen Broadleaf
•Cover: 9.7%
•Precipitation: 1600 mm
•Data : May 92 - Dec 93

Cabauw
•Type: Short Grass
•Cover: 16.6%
•Precipitation: 776 mm
•Data : Jan 87 - Dec 87

Data Locations Characteristics
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Data 
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DATA
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A Key Requirement!

Precipitation Measurement is one of 
the KEY

hydrometeorologic Challenges

Push towards High Resolution ( Spatial and Temporal) Global 
Observations and Modeling 
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Precipitation Observations: Which to trust??

Sources: R. Fulton, D.-J. Seo. and J. Breidenbach, AMS Short-Course on QPE/QPF, 2002
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Coverage of the WSR-88D and gauge networks

3 km AGL2 km AGL1 km AGL
Maddox, et al., 2002

Daily precipitation
gages (1 station per 600 km^2 
for Colorado River basin)
hourly coverage
even more sparse
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Radar-Gauge Comparison (Walnut Gulch, AZ)

Radar data:

Storm  depth (mm)

70% overestimation
by the radar!

Rain gauge data:

Z=300R1.4, 2.4o elevation, HailThresh=56 dbz

Precipitation event: 
Aug. 11, 2000
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Space-Based Observations

Satellite ObservationsSatellite Observations
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Geostationary and Polar Satellites Courtesy: NASA’s ESE
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PERSIANN System “Estimation”
Global IR

MW-RR 
(TRMM, NOAA, DMSP Satellites)

Merged Products
- Hourly rainfall
- 6 hourly rainfall
- Daily rainfall
- Monthly rainfall

ANN

Error 
Detection

Quality
Control

Merging

Sa
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ns
Products

High Temporal-Spatial Res.
Cloud Infrared Images

Fe
ed

ba
ck

Hourly Rain EstimateSampling

MW-PR Hourly Rain Rates
(GSFC, NASA; NESDIS, NOAA)

Hourly Global Precipitation Estimates

Gauges Coverage

GPCC & CPC
Gauge Analysis

Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks (PERSIANN)

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

(CPC, NOAA)
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Satellite Products: Promising future
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Satellite Products: Promising future
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Satellite Products: Promising future
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DIRECT
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Precipitation

Yilmaz et al.  JHM 2005

Gages used by NWS

Leaf River Near Collins
Mississippi  

USGS # 02472000

Basin Area : 753 mi2

Streamflow forecasting of a catchment in US using UCI-PERSIANN rainfall Estimates 
for use in the US National Weather Service Runoff Forecasting System (NWSRFS). 

Promising Potential for Various Applications: 

Flood Forecasting Example

Satellite Rainfall Estimation: Research at UC Irvine
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RAINGAGE
Corr =0.95
RMS =23.9
BIAS =-1.32

Corr =0.92
RMS =28.8
BIAS =-6.74

RADAR

PERSIANN
Corr =0.94
RMS =22.6
BIAS =-5.15

Satellite Rainfall Estimation: Research at UC Irvine

Yilmaz et al.  JHM 2005
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SatelliteSatellite--Based Precipitation: Based Precipitation: 
Any Good for Any Good for HydrometeorologicalHydrometeorological

Applications???Applications???a000174.mpeg

Very Promising
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OBJECTIVES

• 1 Main satellite  + 8 Smaller 
Satellites \

• Provide sufficient global sampling 
to significantly reduce uncertainties 
in short-term rainfall accumulations

GPM Mission: Target Date 2012?
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Cross-Validation

Limit to Model Complexity 
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Source: Gershenfeld, 1999
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AGU Monograph – Now Available
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Thank You For ListeningThank You For Listening

The Rio Grande River,  NM   Photo:  J. Sorooshian 2005
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Limitations 

prediction or forecasting of the hydrological responses of given watershed
highly dependant on availability of data for calibration and prediction

Data Requirements for Hydrologic Modeling 
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Data Limitation is an Important Factor in Success of Hydrologic Modeling

Data Requirements for Hydrologic Modeling 
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Multi-Criteria Calibration Approach
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Gupta, Sorooshian, Yapo, WRR, 1998


