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Daily Operational Flood Forecasting Sequence

Statistically corrected
downscaled forecasts

Update soil moisture
states and in-stream flows

Generate forecasts

Calihrate model Calihrate AR error model

Generate forecasts Generate hindcasts Generate forecasts Generate hindeasts

Generate hindeasts

Multi-Model Hindcast/Forecast Discharge Generation

| Calihrate mnlti-model |

v A 4

Generate forecasts | | Generate hindcasts |

Generate forecasted model error PDF

Convolve multi-model forecast
PDF with model error PDF

Above-critical-level
forecast probabilities
transferred to Bangladesh




Probability

Final flood forecast “calibration” or
"post-processing”

“bias”

obs

Forecast >
PDF =
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Post-processing has corrected:

* the “on average” bias
« as well as under-representation of the 2nd moment of the empirical
forecast PDF (i.e. corrected its “dispersion” or “spread”)

Our approach:

 under-utilized “quantile regression” approach

« probability distribution function “means what it says”

» daily variation in the ensemble dispersion directly relate to changes in
forecast skill
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Significance of Weather Forecast Uncertainty
Discharge Forecasts

Precipitation Forecasts Discharge Forecasts
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Step 1: generate discharge = FD¥

ensembles from precipitation §

forecast ensembles (Q,): El/ L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
|
|

Q, [m¥/s]
Step 2: a) generate multi-model hindcast error time-series using precip estimates;
b) conditionally sample and weight to produce empirical forecasted error PDF:

a) 1000_ Residuals forqcast b) PDF -1
horizon
[m3/s] .
time => | [[]]]]i] .

M n ,
/\J \ / \\\ } % 1000 Residual [m*/s] 1000

-1000C
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Step 3: combine both uncertainty PDF’s ey
to generate a “new-and-improved” more ;:
complete PDF for forecasting (Q,): E | ‘ ‘ ‘”‘ M” ‘ | ‘ ‘ ‘ ‘ ‘ ‘ |
1L |
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Q; [m?/s]
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Significance of Weather Forecast Uncertainty
Discharge Forecasts

2004 Brahmaputra Discharge

Corrected Forecast Ensembles

Forecast Ensembles
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Overview:

Technological improvements !
in flood forecasting

I.  Future improvements: remotely-sensed river discharge
- Dartmouth Flood Observatory
- GRACE satellite system

II. Multi-Model or Post-processing: Pros and Cons




CFAB Project: Improve flood warning lead time

Problems:

1. Limited warning of upstream
river discharges

2. Precipitation forecasting in
tropics difficult

Good forecasting skill derived from:

1. good data inputs: ECMWF weather forecasts, satellite rainfall

2. Large catchments => weather forecasting skill “integrates” over large spatial
and temporal scales

3. Partnership with Bangladesh’s Flood Forecasting Warning Centre (FFWC)
=> daily border river readings used in data assimilation scheme
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Satellite-based River Discharge Est

Bob Brakenridge, Dartmouth Flood Observatory, Dartmouth College

Measured Discharge at Piketon

Measurement Reach —— Calibration Target —— Estimated Discharge
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http://www.dartmouth.edu/~floods/

River Watch

*Day/Night Flood detection on a near-daily basis regardless of cloud cover.
*Measurement of river discharge changes; current flood magnitude assessments
Immediate map-based prediction of what is under water

*Access to rapid response detailed mapping as new maps are made

*Access to map data base of previous flooding and associated recurrence intervals.




Application to the Ganges and Brahmaputra Rivers

Brahmaputra floodwave isochrons

Utility of River Watch discharge estimates to flood forecasting:
1) Calibration of ungauged subcatchments outflow and routing
2) Operational improvements through data assimilation

-- blending of enKF, 4DVAR, and “quantile regression”




MODIS sequence of 2006 Winter Flooding

2/24/2006 C/M: 1.004 3/15/2006 C/M: 1.029 3/22/2006 C/M: 1.095




Objective Monitoring of River Status:
The Microwave Solution

The Advanced Microwave Scanning
Radiometer - Earth Observing System
(AMSR-E) is a twelve-channel, six-
frequency, passive-microwave radiometer
system. It measures horizontally and
vertically polarized brightness temperatures
at 6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8
GHz, 36.5 GHz, and 89.0 GHz.

AMSR-E

Spatial resolution of the individual
measurements varies from 5.4 km at 89
GHz to 56 km at 6.9 GHz.

AMSR-E was developed by the Japan
Aerospace Exploration Agency (JAXA)
and launched by the U.S. aboard Aqua in
mid-2002.




One day of data collection
(high latltudes reV131ted most frequently)
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Example: Wabash River near Mount Carmel, Indiana, USA
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Gravity Recovery And Climate Experiment (GRACE)

-

Slide from Sean Swenson, NCAR '\ts X <% V& ~




Northern India Time Series

Northern India CSR RLD4
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=== GRACE

GRACE catchment-integrated soil moisture estimates useful for:
1) Hydrologic model calibration and validation

2) Seasonal forecasting
3) Data assimilation for medium-range (1-2 week) forecasts

Slide from Sean Swenson, NCAR



Conclusions

Further Advances:

1 Data assimilation of new satellite-derived products:
-- Dartmouth Flood Observatory river discharge estimates
-- GRACE integrated catchment soil moisture
-- QSCAT and TMI soil moisture estimates (Nghiem, JPL)

Expansion of multi-model approach (78 member multi-model)

Daily-updated seamless weather-to-seasonal flood forecasting:

-- utilizing short-, medium-, monthly-, and seasonal ensemble
forecasts




Multi-Model or Post-
processing: Pros and Cons

Tom Hopson - NCAR
Martyn Clark - NIWA
Andrew Slater - CIRES/NSIDC




Question:

How best to utilize a multi-model simulation
(forecast), especially if under-dispersive?

a) Should more dynamical variability be searched
for? Or

b) Is it better to balance post-processing with multi-
model utilization to create a properly dispersive,
informative ensemble?




Outline

Explore this question using multi-model simulations for the French
Broad River, NC of MOPEX

. Multi-mmodel: Framework for Understanding Structural Errors
(FUSE)
Pre-calibration results => under-dispersive
Calibration procedure

Introduce Quantile Regression (“QR”; Kroenker and Bassett,
1978)

Discussing of Question -- how best to utilize multi-model




FUSE: Framework for Understanding Structural Errors
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Clark, M.P., A.G. Slater, D.E. Rupp, R.A. Woods, J.A. Vrugt, H.V. Gupta, T. Wagener, and L.E. Hay (2008)
Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences
between hydrological models. Water Resources Research, 44, \W00B02, doi:10.1029/2007WR006735.



Define development decisions: upper layer architecture
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Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences
between hydrological models. Water Resources Research, 44, \W00BO02, doi:10.1029/2007WR006735.



Define development decisions: lower layer / baseflow
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Define development decisions: percolation
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Define development decisions: surface runoff
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Build unique models: combination 1
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Build unique models: combination 2
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Build unique models: combination 3
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Example: French Broad River

Before Calibration => underdispersive

raw data
600
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I

- 10 ’ 400
= | 3 300
— \ | Q
o 6 5 |

200

100

41 71 101 131 161 9 13 17 21 25 29 33 37
Days Interval

Black curve shows observations: colors are ensemble




Our approach: Quantile
Regression (QR)

Discharge versus 24hr "Persistence" Forecast

! I I

Benefits

1) Less sensitivity to
outliers

2) Works with
heteroscedastic
errors

3) Optimally fit for
each part of a
(non-gaussian)
PDF

>
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4) “flat” rank

_ histograms
Persistence [mm/day]




obs Model
PDF

Probability

Discharge

Regressor set for each quantile:

1) - 78) All individual 78 model
simulations

79) ensemble mean

80) ensemble standard deviation
81) ranked ensemble member
(sorted ensemble that
corresponds to quantile being fit)

Calibration Procedure

Use QR to perform a fit on 78 quantiles individually (recall:
78 FUSE models simulations).

For each of quantile:

Perform a “climatological” fit to the data
=> simulation always as good as “climatology”

Starting with full regressor set, iteratively select
best subset using “forward step-wise cross-
validation”

— Fitting done using QR
— Selection done by:
a) Minimizing QR cost function
b) Satisfying the binomial distribution
=> Verification measures directly inform
the model selection

3) 2nd pass: segregate forecasts into differing
ranges of ensemble dispersion, and refit models
=> forcing skill-spread utility




Example: French Broad River

Before Calibration After Calibration
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Black curve shows observations: colors are ensemble




Rank Histogram Comparisons

Raw full ensemble After calibration
raw data

80
60
40

20

O

5 9 13 17 21 25 29 33 37 5 9 13 17 21 25 29 33 37
Interval Interval

After quantile regression, rank histogram more uniform
(although now slightly over-dispersive)




What Nash-Sutcliffe implies

about Utility

Nash-Sutcliffe (blue), Probability of Usage (black)
14
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Frequency Used for
Quantile Fitting of Method I:

[a—
o

o0

Probability/(unit measure)

Ensemble Mean=0%
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olo Forecast

I‘.PDF

Discharge

Probability

Take home message:

For a “calibrated ensemble”, error
variance of the ensemble mean
is 1/2 the error variance of any
ensemble member (on average),
independent of the distribution
being sampled
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What Nash-Sutcliffe implies
about Utility (cont)

-- degredation with increased ensemble size

Sequentially-averaged FUSE models (ranked
based on NS Score) and their
resultant NS Score

Notice the degredation of NS with
increasing # (with a peak at 2 models)

For an equitable multi-model, NS
should rise monotonically

Maybe a smaller subset of models
would have more utility? (A
contradiction for an under-dispersive
ensemble?)

Nash-Sutcliffe Score

20 40 60
# Models Combined




What Nash-Sutcliffe implies
about Utility (cont)

...using only top 1/3 of models

... earlier results ...
To rank and form ensemble mean ...

Initial Frequency Used for Reduced Set Frequency
Quantile Fitting: Used for Quantile Fitting:

Bast Modal=75%

Ensemble Mean=0% Ensemble Mean=32%

=Appears to be significant gains in the utility of the ensemble
after “filtering” (except for drop in StDev) ... however “proof is in the pudding” ...
—Examine verification skill measures ...




Skill Scores

SS . Aforc o Aref
Aperf o Aref
Single value to summarize

performance.

Reference forecast - best naive guess;
persistence, climatology

A perfect forecast implies that the
object can be perfectly observed

Positively oriented — Positive is good



Skill Score Comparisons
between full- and “filtered” FUSE
Points: ensemble sets

-- quite similar results
for a variety of skill scores

-- both approaches give
appreciable benefit over
the original raw multi-model
output

| GREEN -- full calibrated multi-model
01  BLUE -- “filtered” calibrated multi-model
| Reference -- uncalibrated FUSE set

-- however, only in the
CRPSS is there improvement
of the “filtered” ensemble set
over the full set

Skill Score

—post-processing method ‘
fairly robust RMSE
—=More work (more

CRPSS

filtering?)!



Question revisited:

How best to utilize a multi-model simulations (forecast),
especially if under-dispersive?
a) Should more dynamical variability be searched for? Or
b) Is it better to balance post-processing with multi-model

utilization to create a properly dispersive, informative
ensemble?

“Answer’: adding more models can lead to decreasing skill of
the ensemble mean (even if the ensemble is under-
dispersive)

Further, quantile-regression-based calibration is fairly robust
and can do a lot with just a single model (not shown),
especially if a variety of approaches are utililized.
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Rank Probability Score NCAR
for multi-categorical or continuous variables

1

CD

fcst

X

n

n—1 ;(CDch,i o CDFobs,i )2

RPS =

NCAR/RAL - National Security Applications Program
Meeting with John Pace 28-29 May 2008 NCAR, Boulder, CO 46



Continuous scores: MSE

] & Attribute:
MSE =— Z (yl. — xl.)z measures
n - accuracy

Average of the squares of the errors: it measures the magnitude of
the error, weighted on the squares of the errors

it does not indicate the direction of the error

Quadratic rule, therefore large weight on large errors:
-> good if you wish to penalize large error

-> sensitive to large values (e.g. precipitation) and outliers; sensitive to
large variance (high resolution models); encourage conservative forecasts
(e.g. climatology)

=> For ensemble forecast, use ensemble mean

Slide from Barbara Casati



OBSERVATION

Scatter-plot and
Contingency

Does the forecast detect correctly

able

temperatures above 18 degrees ?

PRAHA TEMPERATURE
scatter-plot, T > 18
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Slide from Barbara Casati

1

25 30

1

18

Brier Score

y = forecasted event occurence
o = observed occurrence (0 or 1)
| = sample # of total n samples

=> Note similarity to MSE



Density

Conditional Distributions

Conditional histogram and
conditional box-plot

Temperatures 2003-2007 Scandinavia
Conditional Histogram
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Slide from Barbara Casati
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Scatter-plot and Contingency Table

Does the forecast detect correctly
temperatures above 18 degrees ?

PRAHA TEMPERATURE
scatter-plot, T > 18
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OBSERVATION

Does the forecast detect correctly
temperatures below 10 degrees ?

PRAHA TEMPERATURE
scatter-plot, T< 10
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Discrimination Plot

— Decision
Threshold

T —

Outcome _
= No

— QOutcome
=Yes

Hits

False
Alarms ~

0.0 0.2 0.4 0.6 0.8 1.0
Probability Forecast

Slide from Matt Pocernic



Receiver Operating Characteristic (ROC) Curve
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