Climate change impact on water resources in several regions of the world. A European, Asian and African case study using CHyM hydrological model. Problems and challenges

E. Coppola ⁽¹⁾

L. Mariotti ^(1,2), X. Gao ⁽³⁾, ES.Im ⁽¹⁾, and F. Giorgi ⁽¹⁾

(1) The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
(2) National Climate Center of CMA, China,
(3) CETEMPS, University of L'Aquila, Italy
(coppolae@ictp.it)

Temperature and Precipitation mean change

•Accurate assessment of the potential impacts of climate change on societies and ecosystems requires regional- to local-scale climate change information

•However, information about fine-scale climate change and its uncertainties is currently very sparse due to the lack of a coordinating framework

•Fine-scale climate factors (topography and land cover) modulate regional and local climate changes and dictate impacts on various sectors, including water resources

•We are starting the framework using the ICTP-based RegCNET network (Giorgi et al, 2006), the RegCM3 RCM (Pal et al. 2007), and the CMIP3 AOGCM ensemble (Meehl et al. 2007). We cover the geographic uncertainty dimension with six continental-scale domains (North and Central America, South America, Europe, Africa, Central Asia, and South and East Asia) at 25 km grid spacing, a state-of-the-art resolution for long-term RCM experiments. Regional Climate Change (RCC) Hyper-Matrix framework (Giorgi et al., EOS, 2008)

LIFE

CHyM: Drainage network test

ÎM

CHyM: Drainage network test

N.F.	35 147	Ø 1368	1390	1522	1365	1413	1437	1437	1498	153Ø	1561	1729	179Ø	181Ø	181Ø	185Ø	1813	1906	193Ø	
TA 3	1630 <mark>154</mark>	Ø 1425	1347	1290	133	1406	1415		1435				1637		1678	1756	1766	1840	1895	
The second	1577 <mark>157</mark>	7 1480	1384	1273	1316			14Ø9	14Ø9	1453	1474				1630	1630	158Ø		1825	14
anon:	1568 <mark>15</mark> 6	8 1488		1310	1289	1325		1360		1385	1 297			1579	156Ø		1537		1611	
12	1524 144	3 1443				1285	1325			1344	1349	1 81		1470			15 17	1528	1595	
190	1440 141	2 14 2	1397	1388		1/2	1286			1350	1346	136					15	1557	1570	
5	, 125 145	453	1453	1362	1263	1 199	1279				1381	1360	1371		1490	1602	1604	16Ø4	1580	12 19
and a second	1445 <mark>14</mark> 3	2 1401	1325	1325	1285	14	1279	1280	1326			139	1375		1453	1588	1596	1550	1550	- Th
a	1380 138	233	1292	292	1290	1287		1279	129Ø	1348		1414	1395	1386	1375	1410		1423	1439	21/2
Re l	1437 131	11298	1298	195	1295	1292	1288		1277	1300	1078 1078	1368	1395	1393	1351	1074	1360		1310	
	1003 136	0 1424	1351	1318	1297	1297	1292	1286				1268	1265		1295	1274	1289	1224	1307	
	1450 145	0 1521	1487	1399	1270	1204	1290					1261	1257	1257	1252	1247	1251		1365	
-1	1435 147			1473	1360	1320						1257	1255	1251	1251	1248	1244	1276	1370	
-	1580 <mark>160</mark>	7 1619		1552	145		112					1252	1249		1245	215	1244	1252	1300	
A.	1545 162	2	1645	1587	1548	1508	1462			1295		1255	1246		1744	1244	1244	1243	127Ø	
2	1570 <mark>157</mark>	<mark>Ø</mark> 1646	1690			1548		1457	144Ø	1360	1344				243	1243	1243	1243	1251	
	1591 162	8 1628	1676	1715	1697	1638	1545		15Ø9			1354	1289	1246	1244	1243	1243	1242	1242	
.6.6	1656 <mark>17</mark> 8	2 1702	1690	1700	1759	1714	1657	1581	1512	1512	1458	142Ø	1379	1348	1745	1244	1245	1245	1242	
	1676 171	3 1726	1726	17ØØ	1714	1742	1723	1648	1552	1552	15Ø8	1462	1437	1428	137,	1282	1266	1266	1244	
	ทห		N			NE		E			SE		S			รห		v		
				-		1	19		4						6					9

IIII

P

DEM Smooting Algorithm 1 (DSA1)

DEM Smooting Algorithm 2 (DSA2)

CHyM: DEM pit correction

CETEMPS Hydrological Model Preprocessor

Flow Direction Map - 6633 of 6633 no-flow points were corrected.

CHyM: DEM pit correction

CETEMPS Hydrological Model Preprocessor

1367 1367 -4434 1467 1463 1468 1475 1467 1467 1465 1363 1352 1368 +4 🛯 🖌 🖓 🖓 🖓 🖓 🖓 🖓 1390 1408 1465 1464 1461 1475 1485 1485 1500 1516 1522 1525 1458 1318 26 4300 1300 4328-4395-1440 1482 1482 1489 +## 1296 4997 1297 4980 1408 1412 1427 1388> 1268 1368 1398 1298 1298 1298 4860 1879 4840-1860-1870 1870 1870 4868 1876 1366 1468 1465 1467 1368 1363 1363 4982 4984 1468 1465 1469 1362 488 बिद्ध फिर्ड 19हर 18हर 17हर 17हर 17हर 17हर 18हर 18हर 17हर 17हर 18हर 18हर 18हर 18हर 18हर 18 1560 1983 19/2 1744 1787 1784 1784 1903 1935 1986 1988 1988 1990 1890 1980 4102 1565 1662 1765 4727 4700 4797 1727 1680 1367 1617 4920 1853 1955 1986 1985

Flow Direction Map - 6633 of 6633 no-flow points were corrected.

movie

CHyM: DEM pit correction

CETEMPS Hydrological Model Preprocessor

Flow Direction Map - 6633 of 6633 no-flow points were corrected.

movie

11644

Î

E. Coppola, B. Tomassetti, L. Mariotti, M. Verdecchia and G. Visconti, Cellular automata algorithms for drainage network extraction and rainfall data assimilation, Hydrological Science Journal, 52(3), 2007

TIRI

Earth System Physics, The Abdus Salam International Centre for Theoretical Physics

17 89677 48337 47096 60866 54616 68375 62136 65896

Po river (Italy) (1 km resolution; 110945.0 km2 drained area) 5 years RegCM-ERA40 simulation 1995-2000 3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Niger - Volta river (West-Africa)(9.5 km; Niger 2494084 km2, Volta 434235 km2 drained area)

3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Han-Kum-Nakdong river (Korea)(740 m; Han 19678 km2, Nakdong 15848 km2, Kum 6769 km2 drained area)

3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Yellow – Yangtze river (China)(5.7 km, Yellow river 360431km2, Yangtze 564594 km2)

1 years RegCM-ECHAM5 A1B scenario simulation 1961-2071

RegCM-ERA40

RegCM-ECHAM 25km A1B scenario 1950-2100

Temperature

PREC RegCM ECHAM (2071/2100- 1961/90) change % (MAM)PREC RegCM ECHAM (2071/2100- 1961/90) change % (SON)

Precipitation

Earth System Physics, The Abdus Salam International Centre for Theoretical Physics

PREC ReaCM ECHAM (2071/2100- 1961/90) change % (DJF) PREC ReaCM ECHAM (2071/2100- 1961/90) change % (JJA)

A1B scenario simulation

-100

-75 -50

movie

-100 -75

-50

-25

Station annual discharge cycle

•Shift of the spring peak toward the early part of the season

•Decrease of runoff during the summer months (Jul. and Aug.)

Increase of the autumn runoff

RegCM-ECHAM 50km A1B scenario 1950-2100

Precipitation

-20 -40 -60 -20 -40 -60

-80

20 10 5

> -10 -20 -40 -60

A1B scenario simulation

Annual discharge at the river mouth

•Decrease of runoff during in the second rainy season

RegCM-ECHAM 20km A1B scenario 1950-2100

A1B scenario simulation

movie

Annual discharge cycle at the river mouth

No big change is found neither in the annual mean discharge nor in the discharge timing

RegCM-fvGCM 20km A2 scenario 1950-2100

China

A2 scenario simulation

MJJAS precipitation change 2071-1961

movie

Annual discharge at the river mouth

Shift of the OCT-NOV peak toward the early part of the summer for the Yellow river and from summer to spring for the Yangtze river

Summary

Effects of climate change on precipitation are reflected in runoff changes in a highly non-linear way

Snow dominated climate change scenarios seem to show a shift in the peak discharge toward the early part of the year

Western African monsoon dominated areas seem to show an increase of runoff during the first rainy season

Runoff change in monsoon regions like Korea is weak

Thanks !

Sun and the

Laizhou Wan

2 May

m

