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PRESENTATION OUTLINE

PART 1

* Basic elements of crystallography and
X-ray diffraction (XRD) theory

» Some advantages and peculiarities
of synchrotron radiation XRD (SRXRD)

* SRXRD from nanocrystalline and highly
deformed materials
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STRUCTURE & MICROSTRUCTURE
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ATOMIC PLANES AND DIFFRACTION CONDITION
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ATOMIC PLANES AND DIFFRACTION CONDITION

MP+ PN =2d, ,sin0 =nA| Bragg Law

Diffracted
X-ray beam

(hkl) planes
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ATOMIC PLANES AND DIFFRACTION CONDITION

Interplanar distance, d,,
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For cubic materials: d,,, =
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COHERENT vs INCOHERENT SCATTERING

k = 2 dhk| SineB

Coherent (diffraction):
4 Toc(1+1+1+1+1+1+1+1+1+1+1+1+1+1)2

Incoherent (reflection)
Tocl2+12+12+12+ 12412412412+ 124124124124 12412

In diffraction conditions the scattered intensity is proportional to the
square of the sum of the amplitudes

(all atoms are 'in phase’)
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DIRECT AND RECIPROCAL SPACE

For a perfect (infinite) crystal the reciprocal lattice is made of infinitely small
points representing sets of planes of Miller indices hk/ (| 2D projection)

002 102 202

The distance d, from the 000 origin to a
hkl point is the inverse of the interplanar
distance

dez = ‘dez‘ = dL
hkl
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DIFFRACTION FROM A SINGLE CRYSTAL

Diffraction conditions correspond to
the scattering vector (s —s,)/A being

equal to:

A=2d,,, sinb
Bragg law
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RECIPROCAL LATTICE: DIFFRACTION CONDITIONS

For a given wavelenght, the
Bragg law sets a limit fo the
interplanar  distances  for
which diffraction is observed:

sinf = A/2d =Ad" [2<1

<=
A

All points representing planes

that can diffract are inside a

sphere of finite radius, 2/
(limiting sphere)
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single crystal
(bulk polycrystalline)
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DIFFRACTION: SINGLE CRYSTAL AND POWDER
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DEBYE-SCHERRER GEOMETRY

POWDER
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SRXRD POWDER GEOMETRY: A TYPICAL EXAMPLE

Parallel beam geometry at ID31 (ESRF)
ID31 Goniometer and

capillary holder / high temperature blower

*
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TYPICAL LAB GEOMETRY: BRAGG-BRENTANO (POWDER)
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SOME ADVANTAGES OF SRXRD

1) High brillance, much better counting statistics / shorter data
collection time (= fast kinetics, in situ studies)
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CuKa A=0.15406 nm ESRF ID31 1=0.0632 nm

M. d'Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.
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SOME ADVANTAGES OF
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XRD

2) With proper selection of optics, very narrow instrumental profile:
increased resolution and accuracy in the measurement of peak
position, intensity and profile width/shape.

— NIST (1)

— LL (2)
Birrningham (3)

—— Le Mans (4)
1515 (5}

—— ESRF (6)
NELE (7)

Lab instrument:
FWHM=0.05-0.1°

P. Scardi, University of Trento, March 2009

ID31 @ESRF:
FWHM=0.003-0.004°
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SOME ADVANTAGES OF SRXRD

3) Extending the accessible region of reciprocal space well beyond what
traditional lab instruments can make
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SOME ADVANTAGES OF SRXRD

3) Extending the accessible region of reciprocal space well beyond what
traditional lab instruments can make

Ball mille FeMo
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CuKa 2=0.15406 nm ESRF ID31 A=0.0632 nm

M. d'Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.
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SOME ADVANTAGES OF SRXRD

4) Tuning the energy according to adsorption edges. Resonant scattering,
control of fluerescence emission and depth of analysis.

Absorption

-ray energy (keV)
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X-RAY POWDER DIFFRACTION

Most frequent applications of powder diffraction

* Crystal structure determination
(Powder diffraction structure solution and refinement)

* Phase Identification - pure crystalline phases or mixtures
(Search-Match procedures)

* Quantitative Phase Analysis (QPA)
 Amorphous phase analysis (radial distribution function)

» Crystalline domain size/shape and lattice defect analysis
(Line Profile Analysis - LPA)

+ Determination of preferred orientations (Texture Analysis)

- Determination of residual stress field (Residual Stress Analysis)
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STRUCTURE SOLUTION: WHY POWDER ?

Structure solution of heptamethylene-1,7-bis(diphenylphosphane oxide)

Structural formula
Ph,P(O)(CH,),P(O)Ph,
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B.M. Kariuki, P. Calcagno, K. D. M. Harris, D. Philp and R.L. Johnston,
Angew. Chem. Int. Ed. 1999, 38, No. 6, 831-835.
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STRUCTURE SOLUTION & REFINEMENT: SRXRD

Structure solution/refinement of a complex triclinic organic compound (C,,H;,O-)
K. D. Knudsen et al., Angew. Chem. Int. Ed., 37 (1998) 2340

L .

ikl

10 15 20 25 30 35 40

:Lrllll .—.

* Narrow peak profiles
* Large number of measurable peaks
* Accurate peak position/intensity

- X-ray energy tuning to adsorption edges
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STRUCTURE SOLUTION & REFINEMENT: SRXRD

Site occupancy in battery electrode material LaNij; ssMn, 4Aly 5C04 75)
J.-M. Joubert et al., J. Appl. Cryst. 31 (1998) 327

0 ————r——r—p—

A = 1.49050 A
KN\

)

00.0 UTI UTE 0'.3 0?4 0?5_‘_[)?6_‘_ 0.7 00.0 Ul,l Ul.i U',S Ul.4 - _Ol.S 0..6 ]
30000 % =080138 & 1 A =1.49050 A Fia. 1. The crystal structure of LalNic: the large spheres are La on site
40000 Kni b 1{e): the small spherca are MNi om sites 2{c) and 3(g).
200007 Atom  Site x ¥ r B {:‘;l.:]l Occupancy
20000 (atoms site ')
10000} 7 (100) 201) La l{a) O 0 0 206 (2) 1
(201) (102) (210 :
e Cuovaml i A K AL 2T N 2 13 23 00 238(2) 166 (2)
T O , I Mn 0.07 (1)
' L 1 1 A i e 'l 1 i i i i h] H'D32 {4}
0 12 14 16 18 20 22 24 26 28 20 30 2942] 50 Co 0.24 (1)
2009 ‘ Ni gl 12 0 12 197(2) 1.89(3)
Mn 0.33 (1)
. Al 0.267 (6)
Narrow peak pr'OfIIZS Co 0.51 (1)

Large number of measurable peaks
Accurate peak position/intensity

X-ray energy tuning to adsorption edges
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STRUCTURE SOLUTION & REFINEMENT: SRXRD

Solving Larger Molecular Crystal Structures from Powder Diffraction Data by
Exploiting Anisotropic Thermal Expansion, m. Brunelli et al., Angew. Chem. Int. Ed. 42, 2029, (2003)

Figure 3. View of the arrangement of the four 9-ethylbicyclo[3.3.1]nona-
9-ol molecules to form a hydrogen-bonded tetramer. The O-H--O
hydrogen bonds are shown with dashed lines: O(12)-O(108) 2.825(4),
0(44)-0(76) 2.761(4), O(76)-0(12) 2.804(4), O(108)-O(44) 2.869(4) A.
The crystallographic ¢ direction is perpendicular to the plane of the
Figure. O red, C blue, H gray.

* Narrow peak profiles

* Large number of measurable peaks

* Accurate peak position/intensity

- X-ray energy tuning to adsorption edges

* Anisotropic thermal expansion
P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce
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PHASE IDENTIFICATION

Phase identification is one of the first and most diffuse applications of
powder diffraction, especially in industry for production, quality control and
diagnostics, but also in research.

Each crystalline phase has its own pattern that can be used as a 'fingerprint’
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'Fingerprints’ of unknown substances can be compared with those of known
crystalline phases of a database > Search-Match procedures

P. Scardi, University of Trento, March 2009 © Do not copy — Do not reproduce
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PHASE IDENTIFICATION

The most powerful database is the PDF (Powder Diffraction File) by
the ICDD (International Centre for Diffraction Data - www.icdd.com)

EIE_ ICDD DDYiew+ - PDF-4 + 2006 RDB
File Edit Tools Window Help

=8

!_E!] PDF Card - 04-001-2097

File Edit d-Spacings Tools Help
- E:|2D|3D|&’b|§|
-d-Spacings

[Wavelength | Fixed 5lit Intensity |

|

PDF-2 .ICuKal 1.540568 Lll - o)

Inkensity——— |28.5491 [3.124
. 33,0829 |2.7055
Peak pOS/mf 47,4586 |1.913
IV Fixed slit 56,3453 |1.6315
59,094 |1.562
69,4222 |1,3527
76,7043 |1.2414
[ variable Slit 70,0546 |1.2099
83,4376 |1,1045
95,4167 |1.0413
1072806 |0,9565
[ Integrated 114.7472|0,9146

EI?.SSSS 0.9018
4

o i
P

3

Intensity

20 30 49 S0 &0 70 80 o0 100 110 120 13D
2A

[ =N = ) =) e e ) P e e e

(=00 T SR T, g N V) N N Tl O RS
olula{={mimlulofm|=miol-

-
4

| 04-001-2097 (Fixed Sit Intensity)|
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aktomic Coordinates (21—

i TYDB:IB LI! Atom | Mum | WhckofF | Symmetry

P D F = 4 | 4a |m-3m 0.0 0.0 0.0

full structural origine||
information

[5G Symmetry Operators (48] [ Anisotropic Temperature Factors (0)
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|
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PHASE IDENTIFICATION

&
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Intensityl Counts)
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1E-0BTE> Flucrapalile - Cab{PO4)3F

© Do not copy — Do not reproduce

A1-14BE= Arorhile - CallRS R0

A
E6-DMEE

= Quanz low - Si0&

T
50

Automatic search-match procedures are based on peak position /

P. Scardi, University of Trento, March 2009
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MINOR PHASE IDENTIFICATION BY SRXRD

Iron oxide traces in ball milled a-Fe powder
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CuKa 2=0.15406 nm ESRF ID31 A=0.0632 nm

M. d'Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.
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QUANTITATIVE PHASE ANALYSIS (QPA)

The pattern of a phase mixture is the WEIGHTED sum of the patterns
corresponding to the constituent phases. The weight depends of the
specific scattering power and absorption of each phase in the mixture.

Several techniques exists for a quantitative determination of the phase
content:

- QPA with internal standard
* QPA with "virtual standard” (RIR method)

* QPA via the Rietveld method (virtual standard)

P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce
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THE RIETVELD METHOD

Intensity of the i-th point in the pattern

Vei :ZijZk[k,j '¢k,j (29)'Pk,j T Vpi

/ \ Preferred Background term

Orientation

Scale factor Profile function
of j-th phase Integrated Intensity

k-th peak of j-th phase

Using the normalization condition: Z X, =1 (not obvious Il)

it is possible to calculate the weight fraction x; of the phase j in a
polyphasic mixture as:

. = 5,PV,
J
ZZ:SZP ¥ - J. Plasier
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RIETVELD-BASED QPA

Example: mixture of mineral phases in a ligand

SN
o

Lime CaCO3 26.28 %
Dolomite CaMg(CO3)2 9.49 %
Quartz 2.39 %
Gypsum 0.69 %
Bassanite 30.67 %
Anhydrite 22.34 %
Belite C2S 8.13 %

‘ n
y ‘»,"y’\r. A J/ A ’ ’ VY / "‘\‘*'v\ /“" &\‘"\\’Wv)‘\(’l“.., Wi M .

AAMMA At o ]

A

- /\r\Af\/\ ﬂh A [\[\ M AA[\J\/\/MAMA Jas M

V) W \ud

A, AN NS W P WS
y ' - Pt

A A

WWVV‘WVVW’VWVW VV‘\I"V‘

vW [ ”VVW vvv W Sy TR VV W gy Www MA\/’A\/

..l..lu.::ul' i i f X .u..m.l

| | [
| ‘HI‘I ‘II IIW h ‘+‘ WI‘ IIWIIWI J ‘IIII lelll I‘ . ‘“H

\‘IH NFI il‘“ h H ‘I\’I

LWL
[
" d‘ “h i hm

Illh

30 35 40 45 50 55 60

2Th Degrees

P. Scardi, University of Trento, March 2009 © Do not copy — Do not reproduce



P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce

STRUCTURE SOLUTION IN MULTIPHASE SAMPLES

Structural and electronic properties of noncubic fullerides A',,C,, (A'=Ba,Sr)
C.M. Brown et al., Phys. Rev. Let. 83 (1999) 2258

} BBl ESRF BM161 A=0.084884 nm

Intensity (arb. units)

JJMJJMIJM}Mm

‘—1'4‘ \l-— —'T—\-—--’hr—-'-vﬂ

5 10 15

FIG. 2. Final observed (points) and calculated (solid line)
synchrotron x-ray powder diffraction profiles for BayCg, at
205 K in the range 4° to 70° (A = 0.84884 A). The lower
panels show the difference profiles and the ticks mark the
positions of the Bragg reflections of BasCg [majority phase:
86.1(2)%. lower IIIOHt] Ba;Cy [minority phase: 11.8(1)%.
middle], and BayCy [minority phase: 2.1(1)% upper most].
Some sharp peql-,u originating from a nonfulleride phase were
excluded from the refinement.

nits)

Intensity (arb. u

Narrow peak profiles
Large number of measurable peaks
Accurate peak position/intensity

X-ray energy tuning to adsorption edges
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STRUCTURE SOLUTION IN MULTIPHASE SAMPLES

Structural and electronic properties of noncubic fullerides A',,C,, (A'=Ba,Sr)
C.M. Brown et al., Phys. Rev. Let. 83 (1999) 2258

TABLE I. Refined parameters for orthorhombic BayCg, obtained from Rietveld refine-
ment of the synchrotron x-ray powder diffraction data at 295 K (space group [mmm,
Ryp = 5.3%. Reyp = 2.6%). The cell constants are @ = 11.6101(2). b = 11.2349(2), and
¢ = 10.8830(2) A. and the weight fraction of the Ba,Cg phase is 86.1(2)%. The weight
fractions of the minority phases, BagCg and BayCg are 11.8(1)% and 2.1(1)%, respectively.
The cell constants of cubic BagCg (space group /m3) and BayCg, (space group Pm3n) are
11.1959(2) and 11.338(1) A. respectively.

Biso/-jlz
Atom x/a v/b z/e (B, Bra. Baz)
Ba(1) 0.5 0.2034(2) 0.0 1.9(1), 2.9(2). 0.9(1)
Ba(2) 0.2488(1) 0.5 0.0 2.7(1), 3.7(2). 0.6(1)
C(11) 0.3005(2) 0.0 0.0652(1) 0.16(8)
C(12) 0.0 —~0.063 83(4) 0.3206(2) 0.16(8)
C(13) 0.10014(6) —~0.127 86(7) 0.2798(2) 0.16(8)
c(2n 0.2003(1) —0.6388(4) 0.2389(1) 0.16(8)
C(22) 0.12373(7) ~0.2710(2) 0.106 82(6) 0.16(8)
C(23) 0.06187(4) ~0.3105(2) 0.0 0.16(8)
C(31) 0.2240(2) —0.2070(1) 0.06600(3) 0.16(8)

C(32) 0.06187(4) ~0.231401) 0.2137(1) 0.16(8) FIG. 3. Projection of the body centered orthorhombic struc-
C(33) 0.2622(2) —0.10345(6) 0.13199(8) 0.16(8) ture of BayCg on the [110] basal plane. The two sets of
crystallographically distinct barium ions, Ba(l) (m2m site)
and Ba(2) (2mm site) are depicted as dark and light grey
spheres, respectively. The hexagon C(21) and pentagon C(23)

Narrow peak pr'ofi les White spheres. o 10 By e depesd
Large number of measurable peaks

Accurate peak position/intensity

X-ray energy tuning to adsorption edges
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AMORPHOUS PHASE ANALYSIS

The long-range order typical of crystalline structures is absent in
amorphous materials. However, a certain degree of short-range order is

always present.

Diffraction can be used to measure the
radial distribution function, i.e., the
probability distribution to find an atom at
a distance between r and r+5r taken from
a reference atom. Amorphous 10

Y

o0

tJd

-

Intensity (arbitrary units)

Az P(r) (arbilrary units)

1 R L

4
(Sin 8Yi (nm)”’

=
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AMORPHOUS PHASE ANALYSIS

Mixture of (crystalline) corundum and amorphous silica

p
s
—
=
o
n

Diffraction can provide:

* fraction of amorphous
phase in mixtures

- degree of crystallinity
(e.g. in glass-ceramics or
in polymers)

amorphous bands typical of the glass
P. Scardi, University of Trento, March 2009
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PAIR DISTRIBUTION FUNCTION: USE OF SRXRD

Structure of nanocrystalline materials using atomic Pair Distribution
Function (PDF) analysis: study of LiMoS,.
V. Petkov et al., Phys. Rev. B 65 (2002) 092105

:47rr[p(r)—p0]

TABLE L Strucrural parmwters for MoS,. Space group 15
P6;/mme. Mo 15 at [3 3- 4} and S at [1 ._h}.

FDF Raetveld Single crystal®

a (&) 3.169(1) 3.168(1) 3.1604(
c(A) 12.32441) 12.322{1) 12.295(
z 0.623(1) 0.625(1) 0.629(1)

A
L
A
&

)
)

*MMMW

PIE

FIG. 2. Expenimental (dots) and fitted (solid line) PDF’s for
LivoS, (a) and MoS, (b). Note the different scale between (a) and
FIG. 4. Projection down the ¢ axis of the crystal structures of {(b). The first two peaks in the PDF’s are labeled with the cormre-

hgxagoual MoS; {up) and triclnic L1M052. (down). The large black_ spondmg atomic pairs. The expenmm’ral data are shown in an ex-
circles are Mo atoms and the small gray circles are the S atoms. L1

atoms are not shown for the sake of clarity. panded scale in the insets.
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LINE PROFILE ANALYSIS

= Peak width:

t - is inversely proportional to mean size of
crystalline domains (D)
- increases for increasing lattice distortions
(microstrain, e) produced by lattice defects
(e.g., dislocations)

20
20 (degrees)

> LPA: second part of this lecture
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TEXTURE ANALYSIS

A 'true’ powder has randomly oriented crystalline domains.
The diffracted intensity does not depend on the probing direction.

= 17 &\
= N=E/\~=

[ —

=N Z |

W=
S S

for any hk/ random orientation
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TEXTURE ANALYSIS

If the grain (crystal) orientation is not random, the diffracted signal
depends on the incident angle.

Il
Il

!
I

iy

(T
I

preferred orientation

P. Scardi, University of Trento, March 2009
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TEXTURE ANALYSIS

The information can be reported on suitable maps: pole figures.
The stereographic projection is adopted

Two angles are used in the
projection
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TEXTURE ANALYSIS
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TEXTURE & STRESS ANALYSIS BY SRXRD

b

1
o

,ﬁ\ X
-,

Eulerian cradle for stress/texture measurement: Daresbury beamline 2.3

43
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TEXTURE ANALYSIS

Crystallographic texture: pole figures

random orientation preferred orientation
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TEXTURE ANALYSIS

In general, texture can be quite complex. Several pole figures, for
different (hkl), may be required to understand the orientation

iy (220)

Cold-rolled Ni for high-Tc superconducting wires
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RESIDUAL STRESS ANALYSIS

Why resudual stresses?

. I Example: residual stress by
e (.‘Oln{]]'{ﬁﬁl{}l]
| Wr/m plastic flow in bending:

—= i

3
r SOE NS I

= (a) loaded elastic limit

(b) loaded elastic limit

(c) unloaded

Shaded regions have been
plastically deformed

Source: B.D. Cullity "Elements of X-ray diffraction” IT Edition. Addison-Wesley. Reading (1978)
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RESIDUAL STRESS ANALYSIS

Crystalline domains can be used as strain gauges
grain deformation lattice deformation

827 - g:%d

The deformation is measured along different directions, by tilting the sample.
The in-plane strain is obtained by measuring d along off-plane directions.

A

; h RV
h ;

=
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RESIDUAL STRESS ANALYSIS

If the stress field is plane and rotationally symmetric:

G11=022=0||, 012=013=023-033~ of _ O

and if no gradient and no texture are present, then:

<g, >= (2S1hkl + 18, sin’ 1/1)65 “sin®y formula”

hkl hkl
Sy, 8!

©
LN

o
o

X-ray elastic constants (XECs)

o
o

<¢ > (x10°)
>

1 v 1

slope related to
the average
in-plane stress

—
N
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RESIDUAL STRESS GRADIENT BY SRX

Residual stress in diamond coated components: multiple wavelength XRD

‘compression. ‘compression

=215 A

residual strain (x1 03 )
residual strain (x1 03 )

27(024) TiC | (220) diamond
70 0.2 ) . . =07 02 04 06
sinzq/

4-tension : -

4

ah =168 /& l ———) Diamond 4— -6.57(1) GPa

=> [T = -1.36(2) 6Pa

residual strain (x1 03 )

a-Ti (121)- - a-Ti(C) ® +68(7) MPa
0.6 0.8 1

ity - = .97(10) MPa
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RESIDUAL STRESS GRADIENT BY SRXRD

Possible geometries for through-thickness stress mapping

Example of XRD pattern
i energy-dispersive mode

01

Alumina 113
° Zirconia 1

e

—— Theoretical
\ —o— Alumina

é%Jmlna 104

=6=  Alumina 110

boo

== :{ 902 flnina 024

#  Alumina 116

% Alumina 006
%" Zirconia 0

——* Alumina 012

T T T
100 200 300

Depth (um)
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PRESENTATION OUTLINE

PART 1

* Basic elements of crystallography and
X-ray diffraction (XRD) theory

» Some advantages and peculiarities
of synchrotron radiation XRD (SRXRD)

* SRXRD from nanocrystalline and highly
deformed materials
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NANOCRYSTALLINE & HEAVILY DEFORMED MATERIALS
Two typical cases of study

IR RIN  Cerium oxide powder from xerogel

1=0.15406 nm

Intensity (counts)

Intensity (counts)

60 80 100 120
20 (degrees)

ESRF-ID3! | Ball milled Fe-1.5%Mo

=
o
o

2=0.0632 nm .

-
(&)
o

x10° counts)

=
o
T

(
-
o
o

Intensity (x10° counts)

1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 164
20 (degrees) |

Intensity

0 3I0 I 4I0 I 5I0 I 6I0 I 7I0 I 8I0 I 9I0 I 100
20 (degrees)
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DIFFRACTION PATTERN FROM A POLYCRYSTALLINE

According to Bragg's law, peaks are d-functions (infinitely narrow)

cerium oxide
(CeO,) powder

a0=0.5411 nm

=>
=

7))

-

Q

e

=

Ll
60 80 100 120 140
20 (degrees)
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DIFFRACTION PATTERN FROM A POLYCRYSTALLINE

Actually, Bragg peaks from real (nanocrystalline ) materials are broadened

[®]
[®]

. cerium oxide pm
C (CeOz) powder &
' a.=0.5411 nm @

o000 0 oo 9o

g
9
o
o
o

o
g

80 100 12
20 (degrees)
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DIFFRACTION PATTERN FROM A POLYCRYSTALLINE

Integral Breadth (area/intensity) as a measurement of peak broadening

¢ cerium oxide
| (CeO,) powder

1 2,=0.5411 nm

80 100 12
20 (degrees)

Integral _ Scherrer formula
Breadth L cosO (1918)

L . effective crystalline domain size (L #1- 200 nm) 56
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STRAIN BROADENING: DISLOCATIONS

Edge dislocation in a crystalline nanograin
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STRAIN BROADENING: DISLOCATIONS

“Lattice defects may also cause line broadening: e.g., dislocations

Dislocation "“visibility" depends on the viewing direction (d",)

- line broadening anisotropy
P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce
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STRAIN BROADENING: DISLOCATIONS

‘invisible'

Dislocation "“visibility" depends on the viewing direction (d",)

- line broadening anisotropy
P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce
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MICROSTRAIN EFFECT IN POWDER DIFFRACTION

Heuristic approach: differentiate Bragg's law (with A = constant):

0=2Adsin(6)+2d cos(6)A(6)

Introducing the strain: & =Ad/d

A(20) = —Ztan(Q)%d =—2¢tan(0)
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&% MICROSTRAIN EFFECT IN POWDER DIFFRACTION

o = Do
SERE e
L3

A uniform strain, gives a shift in diffraction peak position:

A(20)=—-2¢tan(0)

=—p Residual strain/stress analysis

61
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&% MICROSTRAIN EFFECT IN POWDER DIFFRACTION

o = Do
SERE e
L

Non-uniform strain gives a distribution p,(¢). Mean strain can be zero
(e.g. in a powder), even if a microstrain (r.m.s. strain) is present:

(o) =((aatay’)

A(20)=-2¢tan(0) —  B(20)~2(e*)" tan6

1/2

J\

20

P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce




P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce

SIZE - STRAIN EFFECT IN POWDER DIFFRACTION

Combined effects - domain size and lattice distortions

~ LCATQJF2<82>U2 tan 0

B(20)

macrostrain

macrostrain

+ '
: : it IR
microstrain T T ] //\
20
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INTEGRAL BREADTH METHODS

Combined effects - domain size and lattice distortions

8858

Calculate B for each diffraction peak:

B(20)~—2

Lcos0
| B(d")=pB(20)-cos0/1 ]

3

+ 2<82>1/2 tan 0

]

A~
92
e
-
>
Q
2
4000
=
=
7P
-
)
e
=

3

o )
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INTEGRAL BREADTH METHODS

Combined effec‘rg%- domam suze and la’r’nce dlSTOI"TIOﬂS

0.30 W||||amson Hall (WH) ploT

0,25

0,20
0,15

0,10 -

0,05 = ,8(29)-cos9/)~]

0,00 , , , | , | , | , |
0 6 8 10 12

d* (nm™) [ =2sin6/ ]

P. Scardi, University of Trento, March 2009 © Do not copy — Do not reproduce




P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce

LINE PROFILE ANALYSIS

LIMITATIONS OF TRADITIONAL

METHODS OF LINE PROFILE ANALYSIS
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INTEGRAL BREADTH METHODS: LIMITATIONS

Peak profiles tend to overlap: difficult to obtain integral breadths

o
=]
=]
=]

counts)

(=Y

[=]

[=]

o
|

/ \Qtensity (

L
(=1
o

~~
92
el
-
>
@)
&)
N
>
=
7P
-
)
et
£

60 80 100 120 140
20 (degrees)
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ITTING AND LINE PROFIL

ANALISYS

Whole Powder Pattern Fitting ]
(Voigt profile function, background, IP)

(o]
o
o
o

B0 80 100 120 140
20 (degrees)
MARQX software: Y.H. Dong & P. Scardi J. Appl. Cryst. 33 (2000) 184

Modern approach to LPA relies on peak profile fitting for

» Pattern decomposition
- Background separation
- Deconvolution / convolution with instrumental profile component

Although simple and flexible profile fitting is substantially arbitrary and
controversial: no reason for adopting a given analytical shape Il
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INTEGRAL BREADTH METHODS: LIMITATIONS

What is the meaning of L,
the 'size’ value given by the Scherrer formula ??

A
L cosO

B(20)=

L 2D
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INTEGRAL BREADTH METHODS: LIMITATIONS

In most cases nano powders have a distribution of sizes (and shapes)

Distribution 'moments’

M, = j D'g(D)dD

M, =2 mean
M, - M ? = variance

KB, a shape factor, generally function of hkl (4/3 for spheres)
70
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INTEGRAL BREADTH METHODS: LIMITATIONS

M
L — <L>,= L—;tD

K, M,

Example: lognormal distributions of spheres, g(D) (mean u, variance o)

For little asymmetrical or narrow distributions For broad, asymmetrical distributions
0,20

<D>=M1=8.8nm ; <D>=M1=8.8nm
<L>v=M4/(KsM3)=8.6nm

<L>v=Ma/(Ks M3)=19.5nm

u=2.13 ¢=0.3 \M—Z o=0. 6

25 30 35 15 20 25 30 35 40
D (nm)
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INTEGRAL BREADTH METHODS: MAIN LIMITATIONS

* Peak overlapping - requires profile fitting with
arbitrary profile functions

- Effective domain size, L = real information is the
size distribution
- Microstrain e is not a constant > microstrain distribution
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INTEGRAL BREADTH METHODS: MAIN LIMITATIONS

» Peak overlapping = profile fitting with

arbitrary profile functions

- Effective domain size, L = real information is the

size distribution

* Microstrain e is not a constant = microstrain distribution

* Line broadening effects do not simply "add” as in the
Williamson-Hall formula

ﬁ(d*):%we-d*

JAN )
Y Y

size' ‘strain’

P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce




P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce

WHOLE POWDER PATTERN MODELLING - WPPM

Modelling of the experimental pattern based on
physical models of the microstructure and lattice defects:

Diffraction m Microstructural

~
o
S
S

Nanocrystalline cerium oxide
from xerogel, 1h @ 400°C

~~
(7]
e
C
)
O
&)
N—"
>
=
7))
C
O]
-
£

60 80 100 120 140
20 (degrees)
M. Leoni, R. Di Maggio, S. Polizzi & P. Scardi, J. Am. Ceram. Soc. 87 (2004) 1133.

P.Scardi & M. Leoni, Acta Cryst. A 57 (2001) 604. P.Scardi & M. Leoni, Acta Cryst. A 58 (2002) 190 74
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WHOL

~
o
S
S

Nanocrystalline cerium oxide
from xerogel, 1h @ 400°C

~~
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e
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>
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60 80 100 120 140
20 (degrees)
M. Leoni, R. Di Maggio, S. Polizzi & P. Scardi, J. Am. Ceram. Soc. 87 (2004) 1133.

P.Scardi & M. Leoni, Acta Cryst. A 57 (2001) 604.P.Scardi & M. Leoni, Acta Cryst. A 58 (2002) 190 5
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&5 WHOLE POWDER PATTERN MODELLING

o =
SERE e
L

Modelling of the experimental pattern based on
physical models of the microstructure and lattice defects:

Diffraction WPPM

Microstructural

Pattern Physical Model l Parameters

How does it work ?2?
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@ DIFFRACTION LINE PROFILE: CONVOLUTION OF EFFECTS

The diffraction peak is a convolution (&) of profile components :

instrumental profile (IP), domain size (S), microstrain (D), faulting (F),
anti-phase domain boundaries (APB), stoichiometry fluctuations (C),

grain surface relaxation (6SR), etc.

](s):llp (S)®1S(S)®]D(S)®]F(S)®]APB (S)@]C (S)®]GRS (S)
—— - —~ =

h=g ® f

Instrument Specimen-related

What is the difference between convolution and sum of effects ??
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45 DIFFRACTION LINE PROFILE: CONVOLUTION OF EFFECTS

Example: consider instrument (IP) and domain size (S):
](s) — (S) ®1I°(s)

v

1(s)=j1”°(t)15(s—t)dt

g profile, slit (box) function; f profile, bell-shape function (e.g. gaussian)

20 20 20
P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce




P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce

WPPM : HOW DOES IT WORK ??
The diffraction profile results from a convolution of effects:
](s) = (S)®1S(S)®]D(S)®]F(S)®]APB (S)@]C (S)®]GRS (S)

the Fourier Transform of I(s) is the product of
the FTs of the single profile components

v

C:HAZ:T;;.AS > Al > Ul A B g ) AL <

{ hkl)
instr. profile  domain lattice defects / strain

size/shape
P. Scardi & M. Leoni J. Appl. Cryst. 39 (2006) 24 - P. Scardi & M. Leoni, Acta Cryst. A58 (2002) 190
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A(L) EXPRESSIONS (ANALYTICAL OR NUMERICAL FORM)

T (L)=(1-k) 'eXp(—ﬂ'Z .o’/ ln2) +kexp(2m-0,L)  Instrumental profile

Domain size effect: u, o o T ETem

ol N —— WPPM ]

In(L-K°)-pu-@B-n)c’ i .
AS(L)iHCErf‘C[ n( ) H ( n)G ]Ml,?:n I 3

n ’ S st ]
n=0 9 \/5 2M, Y Tmﬁh\ |
0 [l ‘ ‘ =

2 4 . 6 10 12
Grain diameter fznm)

Dislocation (strain) effect: p, Re, (Eh_kl) ............................................................................

1 2= #2 *
A{thl}(L) =CXp [—§ﬂ|b| Chklpd{hkl} Lf (L/Re ):l
Ehk1=A+B'h2k2+k2l2+l2h2 =A+B-H

Faul’rinq: a (def) B (’rwin) ...............................................................................

1, » I,
5L 7270

A5, (D) =(1-3a—2B+30)
L L
4 Iz,
Anti-Phase Domains: y ~
2y (A +[k])- L
dy, (17 +k+1%)
P. Scardi, University of Trento, March 2009

Bl (L)=-0, T BJ(3-68 120~ +1207)
B

A{//i[/:ﬁ (L) = exp[
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a7 WHOLE POWDER PATTERN MODELLING

o = Do
SERE e
L

+ Diffraction profiles are modelled directly in ferms of relatively few
microstructural parameters: u,o -p,Re - a, B - y ..

- No arbitrary profile functions (Voigt, pseudo-Voigt, Pearson VII, etc.)

WPPM : based on physical models of microstructure and lattice defects

Diffraction WPPM

Microstructural

‘E’
Pattern Physical Model Parameters

More Theory: see REFERENCES
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a3 NANOCRYSTALLINE & HEAVILY DEFORMED MATERIALS

WPPM
APPLICATIONS
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WPPM APPLICATIONS: NANOCRYSTALLINE CERIA

Nanocrystalline cerium oxide:
growth kinetics of a xerogel
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WPPM APPLICATIONS: NANOCRYSTALLINE CERIA

i b <D>=2.25(10) nm
0.8-
: 0.6

0.4-

0.2-

20 (degrees)

P. Scardi, University of Trento, March 2009 © Do not copy — Do not reproduce

P. Scardi & Leoni, ECS Transactions, 3(9) (2006) 125.




P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce

WPPM APPLICATIONS: NANOCRYSTALLINE CERIA

Evolution of line profiles during isothermal treatment: 300°C, 350°C, 400°C

High temperature blower on ID31 at ESRF

1000 2000 3000 4000 5000
time (s)
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WPPM APPLICATIONS: NANOCRYSTALLINE CERIA

Nucleation during the heating stage: mean domain size initially decreases,
before the grain growth starts

=
N

o
1 L

O ®

(x - <D>/Dmax

I
L 1

o
e

Ar AN Ar-
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WPPM APPLICATIONS: NANOCRYSTALLINE CERTA

Heat treated 1h @ 400°C

Intensity (counts)
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M. Leoni & P.Scardi, in Diffraction Analysis of
20 40 60 80 100 120 140 Materials Microstructure. E.J. Mittemeijer &
20 (dCF‘CQS) P. Scardi, editors. Berlin: Springer-Verlag. 2004
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WPPM APPLICATIONS: NANOCRYSTALLINE CERIA

Heat treated 1h @ 400°C
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WPPM APPLICATIONS: NANOCRYSTALLINE CERIA

Highly-energy mechanical grinding
ball-milled Fe-1.5%Mo
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NOCRYSTALLINE Fe-15%Mo POWD

Planetary ball mill - process modelling & production

P - ‘
-

N i - “‘

A - =

9
L LW A~A
o o w

NN
o u

1,51

Mean Energy [x107 J/

-
o

M. d'Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.
P. Scardi, University of Trento, March 2009 - © Do not copy — Do not reproduce




P. Scardi, University of Trento ar ch 2009 © Dg not co — Do not re roduce

NANOCRYS TALLINE Fe-1.5%Mo POWDER
all milled Fel.5Mo (Fritsch P4) - data collected at ESRF - ID31 2=0.0632 nm
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NANOCRYSTALLINE Fe-15 OWDER

all milled Fel.5Mo (Fritsch P4) - data collected at ESRF - ID31 1=0.0632 nm
dislocation density/domain size vs. morphology
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NANOCRYSTALLINE Fe-15 OWDER

all milled Fel.5Mo (Fritsch P4) - data collected at ESRF - ID31 2=0.0632 nm
dislocation density/domain size vs. morphology

(a)
Dislocation cell structure
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Fig. 15. Schematic model of dislocation structure evolution at different stages during severe plastic ﬂ _I_ p > pcritica.l
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80 100 120 Fig. 11—(a) through {d) A schematic drawing of nanocrystalline ferrite
formation by ball milling.
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NANOCRYSTALLINE Fe-15 OWDER

| Ball milled Fel.5Mo (Fritsch P4) - data collected at ESRF - ID31 2=0.0632 nm
In addition to mean values, WPPM provides the size distribution
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PM2K SOFTWARE - email to: Paolo.Scardi@unitn.it
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Diffraction Analysis of Materials Microstructure

E.J. Mittemeijer & P. Scardi, editors. —)
Berlin: Springer-Verlag, 2004.

Powder Diffraction
Theory and Practice

Powder Diffraction: Theory and Practice
<4——  R.E. Dinnebier & S.J L. Billinge, editors.
Cambridge: Royal Society of Chemistry, 2008.
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MCX - A new beamline for Materials Characterization by XRD at ELETTRA (Trieste, Italy)
G. Paolucci, E. Busetto, A. Lausi, J. Plasier (Sincrotrone Trieste), P.Scardi (Univ. Trento & INSTM)

Exchangeable sealed cabinets
for different experimental stations

Double crystal monochromator:
pseudo channel cut system
with bent second crystal

Removable Cylindrical pre-mirror

cylindrical
mirror

|

Source:
ELETTRA bending magnet

C-filter an Be-window assemby

Examples of typical applications

* Residual stress and texture analysis in thin films by multiple wavelength XRD
» Surface analysis by grazing incidence XRD and reflectivity

* Medium-low energy (3.5+20 keV) anomalous scattering XRD

* Line Profile Analysis (e.g., nanocrystalline, highly defected materials)

* Non-ambient studies (controlled atmosphere, high temperature kinetics)

» Surface mapping by microdiffraction (diffraction on small area)
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University of Trento

International Doctoral School in
Materials Science & Engineering

About 10 new positions per year
one bursary specific to MCX / ELETTRA

Information and applications:

http://www.mse.unitn.it

Paolo.Scardi@unitn.it
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