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PRESENTATION OUTLINE

• Basic elements of crystallography and
X-ray diffraction  (XRD) theory

• Some advantages and peculiarities
of synchrotron radiation XRD (SRXRD)

• SRXRD from nanocrystalline and highly
deformed materials

PART  1

PART  2
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STRUCTURE & MICROSTRUCTURE

Al
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dhkl

(111)
λ
θΒ

λ = 2 dhkl sinθΒθΒ

ATOMIC PLANES AND DIFFRACTION CONDITION

Miller indices (hkl)

interplanar distance
(among hkl planes)
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2 sinhklMP PN d nθ λ+ = = Bragg Law

P

X-ray
beam

Diffracted
X-ray beam

X-ray 1

X-ray 2

(hkl) planes

ATOMIC PLANES AND DIFFRACTION CONDITION

hkl



6

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

(110)

Interplanar distance, dhkl
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ATOMIC PLANES AND DIFFRACTION CONDITION
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In diffraction conditions the scattered intensity is proportional to the
square of the sum of the amplitudes

(all atoms are ‘in phase’)

Coherent (diffraction):
I∝(1+1+1+1+1+1+1+1+1+1+1+1+1+1)2

Incoherent (reflection)
I∝12+12+12+12+12+12+12+12+12+12+12+12+12+12

λ = 2 dhkl sinθΒ

COHERENT vs INCOHERENT SCATTERING



8

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

For a perfect (infinite) crystal the reciprocal lattice is made  of infinitely small
points representing sets of planes of  Miller indices  hkl ( ↓ 2D projection)

000        001        002

001        101        201

002        102        202

DIRECT AND RECIPROCAL SPACE

The distance      from the 000 origin to a
hkl point is the inverse of the interplanar
distance

*
hkld

1
hklhkl

hkl

d d
d

∗∗ = =
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DIFFRACTION FROM A SINGLE CRYSTAL

hkld ∗

000

hkl

0s λ
s λ

2 sinhkldλ θ=  
Bragg law

0
hkl

s s d
λ λ

∗− =

Diffraction conditions correspond to
the scattering vector being
equal to: 

( )0s s λ−
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For a given wavelenght, the 
Bragg law sets a limit to the 
interplanar distances for
which diffraction is observed:

*sin 2 2 1d dθ λ λ= = ≤

2d
λ

∗ ≤

All points representing planes
that can diffract are inside a 
sphere of finite radius, 2/λ

(limiting sphere)

(000)

2 λ

(000)

RECIPROCAL LATTICE: DIFFRACTION CONDITIONS
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single crystal100

110

020120220

powder
(bulk polycrystalline)100

110

020120220

{100}

{110}

{020}{120}{220}

DIFFRACTION: SINGLE CRYSTAL AND POWDER
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DIFFRACTION: SINGLE CRYSTAL AND POWDER
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DEBYE-SCHERRER GEOMETRY

POWDER
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SRXRD POWDER GEOMETRY: A TYPICAL EXAMPLE
Parallel beam geometry at ID31  (ESRF)

ID31 Goniometer and 
nine-crystal analyzer    capillary holder / high temperature blower

X
-r

ay
de

te
ct

or
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TYPICAL LAB GEOMETRY: BRAGG-BRENTANO (POWDER)
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1) High brillance, much better counting statistics / shorter data 
collection time (à fast kinetics, in situ studies)
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SOME ADVANTAGES OF SRXRD

CuKα λ=0.15406 nm ESRF ID31 λ=0.0632 nm

M. d’Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.

Ball mille FeMo

24h < 1h
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2) With proper selection of optics, very narrow instrumental profile:
increased resolution and accuracy in the measurement of peak
position, intensity and profile width/shape.

Lab instrument: ID31 @ESRF: 
FWHM≈0.05-0.1° FWHM≈0.003-0.004°

SOME ADVANTAGES OF SRXRD
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3) Extending the accessible region of reciprocal space well beyond what
traditional lab instruments can make

λ1 λ2<λ1

SOME ADVANTAGES OF SRXRD
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CuKα λ=0.15406 nm ESRF ID31 λ=0.0632 nm

SOME ADVANTAGES OF SRXRD
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M. d’Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.

3) Extending the accessible region of reciprocal space well beyond what
traditional lab instruments can make

Ball mille FeMo
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4) Tuning the energy according to adsorption edges. Resonant scattering, 
control of fluerescence emission and depth of analysis.

SOME ADVANTAGES OF SRXRD
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X-RAY POWDER DIFFRACTION

• Crystal structure determination
(Powder diffraction structure solution and refinement)

• Phase Identification – pure crystalline phases or mixtures
(Search-Match procedures)

• Quantitative Phase Analysis (QPA) 

• Crystalline domain size/shape and lattice defect analysis
(Line Profile Analysis - LPA)

• Determination of residual stress field   (Residual Stress Analysis)

• Amorphous phase analysis (radial distribution function)

Most frequent applications of powder diffraction

• Determination of preferred orientations (Texture Analysis)
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Structure solution of heptamethylene-1,7-bis(diphenylphosphane oxide)

Structural formula
Ph2P(O)(CH2)7P(O)Ph2

B.M. Kariuki, P. Calcagno, K. D. M. Harris, D. Philp and R.L. Johnston, 
Angew. Chem. Int. Ed. 1999, 38, No. 6, 831-835.

STRUCTURE SOLUTION: WHY POWDER ?
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Structure solution/refinement of a complex triclinic organic compound (C24H16O7)
STRUCTURE SOLUTION & REFINEMENT: SRXRD

K. D. Knudsen et al., Angew. Chem. Int. Ed., 37 (1998) 2340

• Narrow peak profiles
• Large number of measurable peaks
• Accurate peak position/intensity
• X-ray energy tuning to adsorption edges
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Site occupancy in battery electrode material LaNi3.55Mn0.4Al0.3Co0.75)
J.-M. Joubert et al., J. Appl. Cryst. 31 (1998) 327

• Narrow peak profiles
• Large number of measurable peaks
• Accurate peak position/intensity
• X-ray energy tuning to adsorption edges

STRUCTURE SOLUTION & REFINEMENT: SRXRD
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Solving Larger Molecular Crystal Structures from Powder Diffraction Data by 
Exploiting Anisotropic Thermal Expansion, M. Brunelli et al., Angew. Chem. Int. Ed. 42, 2029, (2003)

90 K

130 K

160 K

• Narrow peak profiles
• Large number of measurable peaks
• Accurate peak position/intensity
• X-ray energy tuning to adsorption edges
• Anisotropic thermal expansion

STRUCTURE SOLUTION & REFINEMENT: SRXRD
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Phase identification is one of the first and most diffuse applications of 
powder diffraction, especially in industry for production, quality control and 
diagnostics, but also in research.
Each crystalline phase has its own pattern that can be used as a ‘fingerprint’

‘Fingerprints’ of unknown substances can be compared with those of known 
crystalline phases of a database  à Search-Match procedures

PHASE IDENTIFICATION
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PHASE IDENTIFICATION
The most powerful database is the PDF (Powder Diffraction File) by 
the ICDD (International Centre for Diffraction Data – www.icdd.com) 

PDF-2
Peak pos/int

PDF-4

full structural
information
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Automatic search-match procedures are based on peak position / intensity

PHASE IDENTIFICATION
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CuKα λ=0.15406 nm ESRF ID31 λ=0.0632 nm

MINOR PHASE IDENTIFICATION BY SRXRD
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M. d’Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.

Iron oxide traces in ball milled α-Fe powder
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QUANTITATIVE PHASE ANALYSIS  (QPA)

The pattern of a phase mixture is the WEIGHTED sum of the patterns 
corresponding to the constituent phases. The weight depends of the 
specific scattering power and absorption of each phase in the mixture.

Several techniques exists for a quantitative determination of the phase 
content:

• QPA with internal standard   

• QPA with “virtual standard” (RIR method)  

• QPA via the Rietveld method (virtual standard)   
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1kk
x =∑

Intensity of the i-th point in the pattern

( ), , ,2ci j k j k j k j bij k
y S I P yφ θ= ⋅ ⋅ +∑ ∑

Integrated Intensity
k-th peak of j-th phase

Scale factor
of j-th phase

Profile function
Background term

Using the normalization condition:                       (not obvious !!)

it is possible to calculate the weight fraction xj of the phase j in a 
polyphasic mixture as:

j j j
j

l l l
l

S v
x

S v
ρ

ρ
=

∑

THE RIETVELD METHOD

Preferred
Orientation

à J. Plasier
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Example: mixture of mineral phases in a ligand

RIETVELD-BASED QPA

2Th Degrees
6560555045403530252015

Sq
rt(

C
ou

nt
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140
130
120
110
100

90
80
70
60
50
40
30
20
10

0
-10
-20
-30

Lime CaCO3 26.28 %
Dolomite CaMg(CO3)2 9.49 %
Quartz 2.39 %
Gypsum 0.69 %
Bassanite 30.67 %
Anhydrite 22.34 %
Belite C2S 8.13 %
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Structural and electronic properties of noncubic fullerides A’40C60 (A’=Ba,Sr)
STRUCTURE SOLUTION IN MULTIPHASE SAMPLES

• Narrow peak profiles
• Large number of measurable peaks
• Accurate peak position/intensity
• X-ray energy tuning to adsorption edges

C.M. Brown et al., Phys. Rev. Let. 83 (1999) 2258 

ESRF BM161 λ=0.084884 nm
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Structural and electronic properties of noncubic fullerides A’40C60 (A’=Ba,Sr)

• Narrow peak profiles
• Large number of measurable peaks
• Accurate peak position/intensity
• X-ray energy tuning to adsorption edges

C.M. Brown et al., Phys. Rev. Let. 83 (1999) 2258 

STRUCTURE SOLUTION IN MULTIPHASE SAMPLES
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The long-range order typical of crystalline structures is absent in 
amorphous materials. However, a certain degree of short-range order is 
always present.
Diffraction can be used to measure the 
radial distribution function, i.e., the 
probability distribution to find an atom at 
a distance between r and r+δr taken from 
a reference atom. 

AMORPHOUS PHASE ANALYSIS
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amorphous bands typical of the glass

Mixture of (crystalline) corundum and amorphous silica

AMORPHOUS PHASE ANALYSIS

Diffraction can provide: 

• fraction of amorphous 
phase in mixtures

• degree of crystallinity
(e.g. in glass-ceramics or 
in polymers)



37

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

Structure of nanocrystalline materials using atomic Pair Distribution 
Function (PDF) analysis: study of LiMoS2.

V. Petkov et al., Phys. Rev. B 65 (2002) 092105

PAIR DISTRIBUTION FUNCTION: USE OF SRXRD

( ) ( ) 0: 4PDF G r r rπ ρ ρ   = −  
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2 0 3 0 4 0 5 0 6 0

 

2 θ   (d e g re e s )

Peak width:
à is inversely proportional to mean size of 
crystalline domains (D)
à increases for increasing lattice distortions 
(microstrain, e) produced by lattice defects 
(e.g., dislocations)

LINE PROFILE ANALYSIS

à LPA: second part of this lecture
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A ‘true’ powder has randomly oriented crystalline domains.
The diffracted intensity does not depend on the probing direction.

random orientation

θθ

θ

θ

θ

θ

ϕ

I

ϕfor any hkl

TEXTURE ANALYSIS
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If the grain (crystal) orientation is not random, the diffracted signal 
depends on the incident angle.

θθ

preferred orientation

ϕ

I

ϕ0° 180°

TEXTURE ANALYSIS
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The information can be reported on suitable maps: pole figures. 
The stereographic projection is adopted

ϕ

ψ

Two angles are used in the 
projection

TEXTURE ANALYSIS
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ϕ

ψ

ϕ

ψ

TEXTURE ANALYSIS

Eulerian cradle for stress/texture measurement: laboratory instrum.
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ψ

ω, 2θ

φ

Eulerian cradle for stress/texture measurement: Daresbury beamline 2.3

TEXTURE & STRESS ANALYSIS BY SRXRD
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random orientation preferred orientation

ϕ

ψ

Crystallographic texture: pole figures

TEXTURE ANALYSIS
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In general, texture can be quite complex. Several pole figures, for
different (hkl), may be required to understand the orientation

RD RD RD
(111) (200) (220)

TEXTURE ANALYSIS

Cold-rolled Ni for high-Tc superconducting wires
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Why residual stresses?
Example: residual stress by 
plastic flow in bending:

(a) loaded below elastic limit

(b) loaded above elastic limit

(c) unloaded

Shaded regions have been
plastically deformed

Source: B.D. Cullity “Elements of X-ray diffraction” II Edition.  Addison-Wesley. Reading (1978) 

RESIDUAL STRESS ANALYSIS
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Crystalline domains can be used as strain gauges
grain deformation lattice deformation

l
l

ε
∆

=
d

d
ε

∆
=

The deformation is measured along different directions, by tilting the sample. 
The in-plane strain is obtained by measuring d along off-plane directions.

h

2θψθψ

ψ
h

2θθ

RESIDUAL STRESS ANALYSIS
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( )2
1 22 ½ sinhkl hkl hkl SS Sψ ψε ψ σ< >= + “sin2ψ formula”

0.0 0.2 0.4 0.6 0.8 1.0

-1.4
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-1.0

-0.8

-0.6

-0.4

<ε
ψ
> 

(x
10

-6
)

sin2ψ

σ11=σ22=σ||,  σ12=σ13=σ23=σ33=0

and if no gradient and no texture are present, then:

If the stress field is plane and rotationally symmetric:

slope related to 
the average 

in-plane stress 

σ P
σ P

1 2,   ½hkl hklS S

X-ray elastic constants (XECs)

RESIDUAL STRESS ANALYSIS



49

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

RESIDUAL STRESS GRADIENT BY SRXRD
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Possible geometries for through-thickness stress mapping
RESIDUAL STRESS GRADIENT BY SRXRD
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PRESENTATION OUTLINE

• Basic elements of crystallography and
X-ray diffraction  (XRD) theory

• Some advantages and peculiarities
of synchrotron radiation XRD (SRXRD)

• SRXRD from nanocrystalline and highly
deformed materials

PART  1

PART  2



53

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

P. Scardi, University of Trento, March 2009       - © Do not copy – Do not reproduce

Two typical cases of study
NANOCRYSTALLINE & HEAVILY DEFORMED MATERIALS
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DIFFRACTION PATTERN FROM A POLYCRYSTALLINE

According to Bragg’s law, peaks are δ-functions (infinitely narrow)
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Actually, Bragg peaks from real (nanocrystalline ) materials are broadened
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Integral Breadth (area/intensity) as a measurement of peak broadening
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I dθ θ

θ
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L :  effective crystalline domain size  (L ≈ 1 – 200 nm)  

Paul Scherrer (1890–1969)

Scherrer formula
(1918)cosL

λ
θ

=
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Edge dislocation in a crystalline nanograin

STRAIN BROADENING: DISLOCATIONS
Lattice defects may also cause line broadening: e.g., dislocations
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Dislocation “visibility” depends on the viewing direction (d*
hkl)

à line broadening anisotropy

*
hkld *

hkld

STRAIN BROADENING: DISLOCATIONS
Lattice defects may also cause line broadening: e.g., dislocations
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Dislocation “visibility” depends on the viewing direction (d*
hkl)

à line broadening anisotropy

*
hkld

*
hkld

‘invisible’

Lattice defects may also cause line broadening: e.g., dislocations

STRAIN BROADENING: DISLOCATIONS
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Heuristic approach:  differentiate Bragg’s law (with λ = constant):

( ) ( ) ( )0 2 sin 2 cosd dθ θ θ= ∆ + ∆

Introducing the strain: d dε = ∆

( ) ( ) ( )2 2 tan 2 tand
d

θ θ ε θ
∆

∆ = − = −

MICROSTRAIN EFFECT IN POWDER DIFFRACTION
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A uniform strain, gives a shift in diffraction peak position:

ε

ε

( ) ( )2 2 tanθ ε θ∆ = −

Residual strain/stress analysis

MICROSTRAIN EFFECT IN POWDER DIFFRACTION
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( ) 1/ 222 2 tanβ θ ε θ≈

Non-uniform strain gives a distribution pL(ε) . Mean strain can be zero 
(e.g. in a powder), even if a microstrain (r.m.s. strain) is present:

( )
1/ 21/ 2 22 d dε = ∆

ε

2θ

2θ

ε

( ) ( )2 2 tanθ ε θ∆ = −

MICROSTRAIN EFFECT IN POWDER DIFFRACTION
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( ) 1/ 222 2 tan
cosL
λ

β θ ε θ
θ

≈ +

Combined effects – domain  size and lattice distortions

ε

ε

2θ

2θ

2θ

ε

macrostrain

macrostrain
+

microstrain

SIZE - STRAIN EFFECT IN POWDER DIFFRACTION
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Combined  effects  – domain  size  and lattice distortions

( ) ( )* 2 cosdβ β θ θ λ = ⋅ 

INTEGRAL BREADTH METHODS
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( )* *1 2d e d
L

β = + ⋅

( ) ( )* 2 cosdβ β θ θ λ = ⋅ 

INTEGRAL BREADTH METHODS
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LIMITATIONS OF TRADITIONAL 

METHODS OF LINE PROFILE ANALYSIS

LINE PROFILE ANALYSIS
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Peak profiles tend to overlap: difficult to obtain integral breadths
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Modern approach to LPA relies on peak profile fitting for
• Pattern decomposition
• Background separation
• Deconvolution / convolution with instrumental profile component
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Whole Powder Pattern Fitting
(Voigt profile function, background, IP)

Although simple and flexible profile fitting is substantially arbitrary and 
controversial: no reason for adopting a given analytical shape !!!
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( )* *1 2d e d
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PROFILE FITTING AND LINE PROFILE ANALISYS 

MARQX software:  Y.H. Dong & P. Scardi J. Appl. Cryst. 33 (2000) 184
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INTEGRAL BREADTH METHODS: LIMITATIONS

What is the meaning of L, 
the ‘size’ value given by the Scherrer formula  ??

( )2
cosL
λ

β θ
θ

=

L ≠ D

5 nm

D
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INTEGRAL BREADTH METHODS: LIMITATIONS

In most cases nano powders have a distribution of sizes (and shapes)
g(

D
)

D

4

3

1
V

ML L
K Mβ

   →   < > =

( )i
iM D g D dD= ∫

Distribution ‘moments’

Kβ, a shape factor, generally function of hkl (4/3 for spheres)

M1à mean
M2 - M1

2 à variance
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INTEGRAL BREADTH METHODS: LIMITATIONS
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• Peak overlapping à requires profile fitting with
arbitrary profile functions

INTEGRAL BREADTH METHODS: MAIN LIMITATIONS

• Effective domain size, L à real information is the 
size distribution

• Microstrain e is not a constant à microstrain distribution
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• Peak overlapping à profile fitting with
arbitrary profile functions

INTEGRAL BREADTH METHODS: MAIN LIMITATIONS

• Effective domain size, L à real information is the 
size distribution

• Microstrain e is not a constant à microstrain distribution

• Line broadening effects do not simply “add” as in the 
Williamson-Hall formula

( )* *1 2d e d
L

β = + ⋅

‘size’ ‘strain’
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Physical Model

Modelling of the experimental pattern based on 
physical models of the microstructure and lattice defects:

WHOLE POWDER PATTERN MODELLING - WPPM
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P.Scardi & M. Leoni,  Acta Cryst.  A 57 (2001) 604. P.Scardi & M. Leoni,  Acta Cryst.  A 58 (2002) 190
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Microstructural 
Parameters

Diffraction
Pattern

WPPM
Physical Model

WHOLE POWDER PATTERN MODELLING

How does it work ??

Modelling of the experimental pattern based on 
physical models of the microstructure and lattice defects:
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DIFFRACTION LINE PROFILE: CONVOLUTION OF EFFECTS

The diffraction peak is a convolution (   ) of profile components : 

instrumental profile (IP), domain size (S), microstrain (D), faulting (F), 
anti-phase domain boundaries (APB), stoichiometry fluctuations (C), 
grain surface relaxation (GSR), etc. 

⊗

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ...IP S D F APB C GRSI s I s I s I s I s I s I s I s= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

h  =   g                ⊗ f

What is the difference between convolution and sum of effects ??

Instrument Specimen-related
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DIFFRACTION LINE PROFILE: CONVOLUTION OF EFFECTS

2θ 2θ2θ

⊗

g profile, slit (box) function; f profile, bell-shape function (e.g. gaussian)

( ) ( ) ( )= ⊗IP SI s I s I s
Example: consider instrument (IP) and domain size (S): 

( ) ( )( )= −∫ IP SI s I t I s t dt
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the Fourier Transform of I(s) is the product of  
the FTs of the single profile components 

( ) ( ) 2e hkliL sLI s C dLπ ⋅
∞

−∞

∝ ⋅ ∫

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ...IP S D F APB C GRSI s I s I s I s I s I s I s I s= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

The diffraction profile results from a convolution of effects:

WPPM :  HOW DOES IT WORK ??

P. Scardi & M. Leoni J. Appl. Cryst. 39 (2006) 24  - P. Scardi & M. Leoni, Acta Cryst. A58 (2002) 190

{ } { } { }( ) ...IP S D F F APB
i pV hkl hklhkl hkl hkl

i
C A T A A A iB A= =  ⋅  ⋅  ⋅ +  ⋅  ⋅ ∏

instr. profile lattice defects / straindomain
size/shape
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( ) ( ) ( ) ( )2 2 21 exp ln2 exp 2IP
pV s sT L k L k Lπ σ π σ= − ⋅ − ⋅ + − ⋅          Instrumental profile 

 

Ai(L) EXPRESSIONS (ANALYTICAL OR NUMERICAL FORM) 

Domain size effect: µ, σ   
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 Anti-Phase Domains: γ  
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WHOLE POWDER PATTERN MODELLING

Microstructural 
Parameters

Diffraction
Pattern

WPPM
Physical Model

WPPM : based on physical models of microstructure and lattice defects

• Diffraction profiles are modelled directly in terms of relatively few
microstructural parameters:  µ, σ - ρ, Re - α, β - γ …

• No arbitrary profile functions (Voigt, pseudo-Voigt, Pearson VII, etc.) 

More Theory:  see REFERENCES
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NANOCRYSTALLINE & HEAVILY DEFORMED MATERIALS

WPPM 

APPLICATIONS
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Nanocrystalline cerium oxide:
growth kinetics of a xerogel

WPPM APPLICATIONS: NANOCRYSTALLINE CERIA
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WPPM APPLICATIONS: NANOCRYSTALLINE CERIA
Xerogel obtained by vacuum-drying: broad diffraction lines of nanocrystalline fcc phase
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Evolution of line profiles during isothermal treatment: 300°C, 350°C, 400°C

High temperature blower on ID31 at ESRF

WPPM APPLICATIONS: NANOCRYSTALLINE CERIA
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Nucleation during the heating stage: mean domain size initially decreases, 
before the grain growth starts

WPPM APPLICATIONS: NANOCRYSTALLINE CERIA
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Heat treated 1h @ 400°C
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Heat treated 1h @ 400°C
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Highly-energy mechanical grinding
ball-milled Fe-1.5%Mo 

WPPM APPLICATIONS: NANOCRYSTALLINE CERIA
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NANOCRYSTALLINE Fe-1.5%Mo POWDER 
Planetary ball mill  - process modelling & production
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M. d’Incau,. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.
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Ball milled Fe1.5Mo (Fritsch P4) – data collected at ESRF – ID31  λ=0.0632 nm
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dislocation density/domain size vs. morphology  
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Ball milled Fe1.5Mo (Fritsch P4) – data collected at ESRF – ID31  λ=0.0632 nm
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Ball milled Fe1.5Mo (Fritsch P4) – data collected at ESRF – ID31  λ=0.0632 nm
In addition to mean values, WPPM provides the size distribution

NANOCRYSTALLINE Fe-1.5%Mo POWDER 

M. d’Incau,. M. Leoni & P. Scardi, J. Materials Research 22 (2007) 1744-1753.
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PM2K  SOFTWARE  - email to: Paolo.Scardi@unitn.it
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Diffraction Analysis of Materials Microstructure
E.J. Mittemeijer & P. Scardi, editors.
Berlin: Springer-Verlag, 2004.

Powder Diffraction: Theory and Practice
R.E. Dinnebier & S.J.L. Billinge, editors.

Cambridge: Royal Society of Chemistry, 2008.
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MCX - A new beamline for Materials Characterization by XRD at ELETTRA (Trieste, Italy) 
G. Paolucci, E. Busetto, A. Lausi, J. Plasier (Sincrotrone Trieste), P.Scardi (Univ. Trento & INSTM)

Examples of typical applications
• Residual stress and texture analysis in thin films by multiple wavelength XRD

Exchangeable sealed cabinets 
for different experimental stations 

Removable 
cylindrical 

mirror

Double crystal monochromator: 
pseudo channel cut system 
with bent second crystal

Cylindrical pre-mirror

Source:  
ELETTRA bending magnet

Be-window

Slits

C-filter an Be-window assemby

• Surface analysis by grazing incidence XRD and reflectivity 
• Medium-low energy (3.5÷20 keV) anomalous scattering XRD
• Line Profile Analysis (e.g., nanocrystalline, highly defected materials)
• Non-ambient studies (controlled atmosphere, high temperature kinetics)
• Surface mapping by microdiffraction (diffraction on small area) 

MCX
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International Doctoral School in International Doctoral School in 
Materials Science & EngineeringMaterials Science & Engineering

About 10  new positions per year
one bursary specific to MCX / ELETTRA

University of Trento

Information and applications:
http://www.mse.unitn.it

Paolo.Scardi@unitn.it


