

2033-5

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation

11 - 15 May 2009

Selection of Instrumentation

Costas Hourdakis Greek Atomic Energy Agency Athens Greece Joint ICTP-IAEA Advanced School on Dosimetry in Diagnostic Radiology & its Clinical Implementation

Selection of Instrumentation

Costas J. Hourdakis Greek Atomic Energy Commission Greece

> 11 – 15 May 2009 Miramare, Trieste, Italy

Instrumentation : categorization

General categories :

Dosimeters :

equipment for the measurement of air kerma, air kerma length, air kerma area and/or air kerma rate.

kVp-meters :

equipment for the measurement of tube high voltage invasively or non-invasively.

Timers, mAs-meters, etc : Are not included in the CoP

equipment for the measurement other parameters of exposure parameters, like exposure time (ms), tube current time exposure product (mAs), etc

Instrumentation : categorization

Depending on the application there are various instrument categories and modes of operation

- Conventional diagnostic radiology (50-150 kV)
- Mammography
- Radiographic mode (accumulated integrating "dose")
- Fluoroscopic mode ("dose" rate)
- Cine mode (pulsed "dose")

air kerma length product (CT, dental panoramic)
air kerma area product (Angiography, fluoroscopy)

Contents

What are we going to discuss in this topic...

Instrumentation

> Ionization chambers, CT chamber, KAP meter, TLDs, solid state detectors

Dosimeter characteristics

➤ response, energy dependence, ...

- Choice of instruments for different applications
- kVp-meters

Instrumentation : Ionization chambers

Cylindrical (e.g. Radcal) Parallel Plate (e.g. PTW) Spherical (e.g. A3 Exradin)

1-polarizing electrode;
2-measuring electrode;
3-guard ring;
4-entrance window;
5-stem

Instrumentation : Semiconductor – solid state detectors

Advantages

- produce large signals from modest amounts of radiation
- rigid and robust
- do not require pressure correction
- convenience to use

Disadvantages

- energy dependant
- directional, positioning & angular dependency
- ageing effects (?)

Compensation

- use of multi element ST
- use of movable filters
- compensation and processing of signals

Instrumentation : CT chambers

CT chamber is often called a **pencil chamber** because its active volume is a thin cylinder 100 mm in length or sometimes longer

Partially irradiated (10% of its active volume) Air kerma-length product, P_{KL}

!!!

The response of the active volume must be uniform along its entire axial length
Calibration procedures **Instrumentation : Transmission chambers - KAP meters**

the detector mounted on the tube housing is "transparent" to X rays

Partially irradiated Air kerma-area product, P_{KA}

$$\mathbf{P}_{\mathbf{K}\mathbf{A}} = \mathbf{K} \bullet \mathbf{A} = \mathbf{K} \bullet (\mathbf{a} \bullet \mathbf{b})$$

 P_{KA} is the same at any distance from focus

Instrumentation : Transmission chambers - KAP meters

 P_{KA} is the same at any distance from focus

$$\mathbf{P}_{\mathrm{KA1}} = \mathbf{P}_{\mathrm{KA2}} = \mathbf{P}_{\mathrm{KA3}} = \dots$$

$$\mathbf{P}_{\mathbf{K}\mathbf{A}\mathbf{1}} = \mathbf{K}_{\mathbf{1}} \bullet \mathbf{A}_{\mathbf{1}} = \mathbf{K}_{\mathbf{1}} \bullet (\mathbf{a}_{\mathbf{1}} \bullet \mathbf{b}_{\mathbf{1}})$$

$$P_{KA2} = K_2 \cdot A_2 = K_2 \cdot (a_2 \cdot b_2) =$$

$$K_1(d_1/d_2)^2 \cdot (a_1 \cdot d_2/d_1) \cdot (b_1 \cdot d_2/d_1) =$$

$$K_1 \cdot (a_1 \cdot b_1) = P_{KA1}$$

So, the P_{KA} recorded by the KAP meter is the same to P_{KA} on patient therefore, the energy imparted to patient in "known".

Instrumentation : Transmission chambers - KAP meters

KAP meters use :

- fluoroscopy,
- general radiography
- dental radiography equipment

Provide useful information for

- patient doses
- comparative studies between procedures and personnel

Instrumentation : TLDs

TLDs are available in various forms (e.g. powder, chips, rods, ribbons, etc.) and made of various materials.

Most commonly used in medical applications are based on lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti)

but other materials like LiF:Mg,Cu,P, Li2B4O7:Mn, CaSO4:Dy and CaF2:Mn

Instrumentation : TLDs			application, energy dependence or response, etc					
TL material	Form	Glow peak	Emmission maximum	Z _{eff}	Relative sensitivity	Linear range	Fading	Annealing
		°C	nm			Gy		
LiF:Mg,Ti	Powder, chips, rods, discs	210	425	8.14	1	5x10 ⁻⁵ to 1	<5% per year	400°C, 1 h + 80°C, 24 h
LiF:Mg,Ti,Na	Powder, discs	220	400	8.14	0.5		NA	500°C, 0.5 h
LiF:Mg,Cu,P	Powder, discs	232	310(410)	8.14	15-30	10 ⁻⁶ to 10	<5% per year	240°C, 10 min
Li ₂ B ₄ O ₇ :Mn	Powder	210	600	7.4	0.15-0.4	10 ⁻⁴ to 3	5% in 2 months	300°C, 15 min
Al ₂ O ₃ :C	Powder, discs	250	425	10.2	30	10 ⁻⁴ to 1	3% per year	300°C, 30 min
CaSO ₄ :Dy	Powder, discs	220	480(570)	15.3	30-40	10 ⁻⁶ to 30	7-30% in 6 months	400°C, 1 h
CaF ₂ :Dy	Powder	200(240)	480(575)	16.3	16	10 ⁻⁵ to 10	25% in 4 weeks	600°C, 2 h
BeO	Discs	180 to 220	330	7.13	0.7-3	10 ⁻⁴ to 0.5	7% in 2 months	600°C, 15 min
		!!!						
 annealing process 								
• fa			ading					
() IAEA ·e •a			nergy response accuracy - calibration					

Response - Sensitivity (nC/mGy) : Charge (signal) collected per radiation unit

In general, the larger the active volume the more sensitive (higher response) Response is the reciprocal of calibration coefficient.

Example : for image intensifier entrance $K_{i,R}$ Radcal 20x5-30 flat chamber (30cm³ p-p) more appropriate than A3 Exradin (spherical 3.6cm³)

Leakage : Any signal appeared in the absence of radiation Leakage (noise) : < 1% of signal (NSR<1%)

Example : to measure K_i=100 μGy (instantaneous accumulative dose) PTW 77337 : Sensitivity=0.04 pC/μGy; Leakage=0.02pC/s ; measuring time 10s; Signal=4pC, noise (leakage)=0.2pC; NSR=5%

Energy response : Difference response in beam qualities

It is determined by N_K or/and k_Q by calibration at PSDL or SSDL It should be less than 5% at all X-ray energy range (20-40kV or 50-150kV)

Examples :

ionization chamber

conventional radiology

Energy response : Difference response in beam qualities

It is determined by N_K or/and k_Q by calibration at PSDL or SSDL It should be less than 5% at all X-ray energy range (20-40kV or 50-150kV)

Examples :

Energy response : Difference response in beam qualities

It is determined by N_K or/and k_Q by calibration at PSDL or SSDL It should be less than 5% at all X-ray energy range (20-40kV or 50-150kV)

Examples :

mammography

ionization chamber

Energy response : Difference response in beam qualities

It is determined by N_K or/and k_Q by calibration at PSDL or SSDL It should be less than 5% at all X-ray energy range (20-40kV or 50-150kV)

Examples :

mammography

solid state

Air Kerma rate dependence of response

Energy dependence of response

Saturation coefficient

Entrance window : Depending on the application

General radiography : thicker windows (plastic, PMMA, acrylic etc) acceptable Mammography : thin windows required

Temperature & pressure corrections : Ionization chambers, vented : $k_{TP} \longrightarrow k_T$ Solid State detectots : $k_{TP} = 1.00$ TLDs : $K_{TP} = 1.00$

$$P_{P} = \frac{P_0 \cdot T}{P \cdot T_0} = \frac{P_0 \cdot (273.2 + \theta)}{P \cdot (273.2 + \theta_0)}$$

Physical characteristics : Robust, dimensions, purpose and frequency of use

IEC 61674 : 1997 standard provides the requirements for the DR dosimeters' performance

IEC 61767 dosimeter performance characteristics						
Influence quantity	Minimum rated ranges	Reference conditions	Limits of variation			
Intrinsic error, air kerma Intrinsic error, air kerma rate	> 100 μGy > 100 μGy/s	reference	± 5% ± 5%			
Radiation quality of unattenuated beam (GR)	50 – 150 kV W anode, 2,5mmAl filtration	RQR5	± 5%			
Radiation quality (Mammo GR)22 - 40 kV Mo anode, Mo filtration		RQR-M2	± 5%			
Air kerma rate	as stated by the manufacturer	as at calibration	± 2% ª			
Incident radiation angle	± 5°	reference angle	± 3%			
Field size	minimum : manufacturer specification max : 35 cm x 35 cm	as at calibration	± 3%			
Air pressure	80 kPa – 106,0 kPa	101.3 kPa	± 2%			
Temperature	15 – 35 °C	20 °C	± 3%			
Operating voltage	-15% to +10%	Nominal	± 2%			
Electromagnetic compatibility	IEC 61000-4	Without EM	± 5%			

TABLE 5.2. RECOMMENDED SPECIFICATIONS OF DETECTORS OF A REFERENCE CLASS DOSIMETER, BY APPLICATION.

	Type of detector	kV	I.E.	Resp	Range of air kerma rate	
Application			% 0	Var %	Unattenuated beam	Attenuated beam
General radiography	Cylindrical, spherical or plane-parallel	60 - 150	3.2	±2.6	1 mGy/s – 500 mGy/s	$10 \ \mu Gy/s - 5 \ mGy/s$
Fluoroscopy	Cylindrical, spherical or plane-parallel (preferable)	50 - 100	3.2	±2.6	10 μGy/s – 10 mGy/s	0.1 μGy/s – 100 μGy/s
Mammography	Plane-parallel	22 - 40	3.2	±2.6	10 μGy/s – 10 mGy/s	
Computed tomography ¹⁾	Cylindrical (pencil type)	100 - 150	3.2	±2.6	0.1 mGy/s – 50 mGy/s	
Dental radiography	Cylindrical or -plane- parallel	50 - 90	3.2	±2.6	1 μGy/s – 10 mGy/s	

¹⁾ The dosimeters must have no greater variation in their sensitivity than $\pm 3\%$ along the active length.

General radiography

Free in air & with phantoms IC small volume (3cm³) Solid state detectors

On patients : TLDs

General radiography

Free in air & with phantoms IC small volume (3cm³) Solid state detectors

On patients : TLDs

Fluoroscopy

Free in air & with phantoms IC chambers of suitable design for positioning Solid state detectors

KAP meters

Mammography

Free in air & with phantoms IC chambers with thin windows Solid state detectors appropriate for mammo measurements

On patients

Average Glandular Dose deduced computationally from K_i

CT

Free in air & with phantoms Pencil type ionization chamber

On patients

Patient doses deduced computationally from K_{LP}

CT air kerma index ${}_{n}C_{W}$ is used in combination with the scan parameters to calculate the CT air kerma index ${}_{n}C_{VOL}$

Dental

Bitewing projections IC small volume (3cm³) Solid state detectors

For panoramic projections : pencil type (CT) chamber array of TLDs

Using phantoms and On patients TLDs computationally from K_i

Invasive measurement of PPV using a high voltage divider

kVp-meter calibration : effect of tube voltage & added filtration

Thank you for your attention

Use a suitable instrument for optimizing "dosimetry"

