

2033-9

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation

11 - 15 May 2009

Collecting and Interpreting Patient Dose Data

Peter Homolka EFOMP IAEA Training Course on Medical Physics in Diagnostic Radiology May 11 – 15 2009, Trieste, Italy

Collecting & interpreting patient dose data Patient dose audit methods

Peter Homolka

Center for Biomedical Engineering & Physics Medical University of Vienna, Austria

Scope and purpose of dose audits

• Dose audits are usually conducted

- To get an idea of radiological practice
- To compare doses applied to those typically applied in other countries/hospitals
- To estimate collective doses to the population from medical use of radiation
 - Does necessitate a reliable assessment of examination numbers, what is often more difficult than assessing dose values
- To define DRLs
- To verify DRLs und eventually update values and examinations
- To check compliance with DRLs
- To locate institutions which need help in optimization
- As part of a quality control program
- To improve imaging in healthcare
- To create dose awareness

Average doses – typical doses

- A typical dose for a standard examination is the dose a "standard patient" will most likely receive
- Definition of a standard patient is necessary
- Average dose (= average calculated from patient doses collected in the audit) from need not be dose to a standard patient
- → concordance of collectives
- This should be kept in mind when comparing doses from different regions/member states

Patient dose audits

Internal audits

- Systematic determination of patient doses for standard examinations in a single hospital/radiological office
- To be used internally for optimisation and justification
- Usually carried out by an internal auditor (medical physicist, etc.)
- If there is no internal capacity (equipment, manpower) the audit can be carried out or supported by external expert
- → internal audit is understood in a way, that the data from the audit is for internal use, the audit itself may be performed by or in close cooperation with an external person

• External/regional audits

- e.g., audit covering a member state, a province of a member state, or a geographical region (European dose audit, e.g.)
- Dose audit is performed by external auditor
- This auditor may be from a regulatory body
- May rely on data from internal audits

Internal dose audits

- Determination of patient doses for typical standard examinations and procedures should be performed regularly
 - Only for standard procedures? What about high dose procedures, that are difficult to standardize?
 - Determination of individual versus "average" dose
- Experience with external audits show, that in many cases where unusually high patient doses are used, users are not aware of their typical doses
 - \rightarrow dose assessment creates dose awareness
- Knowing the doses applied is the key to optimization

Internal dose audits

 Internal dose audits should be orientated on dose reference (guidance) levels (BSS)

- Dose should not be regarded irrespective of image quality – optimally dose audit would go hand in hand with image quality audit if applicable
- Interpretation of dose audit results and feedback to clinicians is crucial

Dose audit methodology

Dose to phantoms or patient doses

- TRS 457 (CoP) describes dosimetry in diagnostic radiology with phantoms and patients
- In dose audits, can phantoms be used?
 - Depends on the reason why the dose audit is carried out
 - Depends, whether it is an internal or external audit
- CT: Doses are actually defined in a phantom (C_W, "CTDI", and P_{KL,CT}, "DLP") but from patients' scans
 → they are regarded as patient doses
 - Phantom doses are doses with a phantom used to simulate the patient to drive AEC → phantom used determines dose level by it's attenuation

Phantoms

- "Dose assessments with phantoms cannot provide a direct estimate of the average dose for a given patient population ... it is important therefore that any measurements with phantoms are supplemented by measurements made on patients" (CoP, Appendix VII)
- Comment: need not be measurements on patients, any method to derive patient dose data is o.k. (actually, calculation of K_i from patient exposure data would be preferred)
- Only exemption: mammography, here MGD determined with a phantom is advised

Phantoms can only be used for external audits if the scope of the audit is to compare doses between institutions/member states/regions . . .

- Phantom doses are different to patient doses and should only be compared to phantom doses
- In internal audits patient doses are measured, therefore phantom doses are not advised

• Exemptions:

- Mammography
- In case Dose Reference Levels or doses to which local doses are to be compared for the examination of interest are specified as dose to phantom

Phantom versus patient doses

Patient to phantom dose

Mean values or quartiles

- Evaluation methodology depends on survey
- Internal audit (one hospital or even one x-ray room)
 - Question to be answered: what is the "typical" dose to a patient undergoing examination/intervention X?
 - Typically, a small numbers of patients/examinations (10 to 100) will be available, all taken with the same equipment
- Regional audit
 - Many different hospitals participated
 - Different types of equipment
 - Question to be answered: which dose do we usually work with? What is the dose our hospitals should be able to produce images with, that they find of good diagnostic quality?
- \rightarrow data evaluation (later)

Carrying out a patient dose audit

- Select equipment / examination(s)
- Select methodology
- Ensure you have
 - staff (med phys + radiology)
 - dosimetry equipment
 - traceable calibration
- Plan audit & allow plenty of time
 - Time frame of internal audit: typically several months
 - Time frame for external (regional audit): typically one year
 - Time for data collection: several months
 - Plan plenty of time for support to clinics do not assume they are familiar with assisting in a dose survey, especially if you plan a survey in CT and fluoroscopy/interventional

Quality Assurance of Dose Data

- Exam specification
- Data sampling
 - Patient inclusion/exclusion criteria
 - Especially important in interventional procedures
- Plausibility checks of data
- Feedback & analysis of results

Exam Specification

- Terminology may not be consistent between departments, or may be inexact
- Can only compare 'like with like'
- Common problem areas
 - Barium enema/small bowel enema
 - Nephrostogram/nephrostomy
 - CT lung cancer staging (inc/not inc liver)

Sample Sizes

- Patient dose data has inherent uncertainties which increase with exam complexity
- Minimum number of patients 10 50
- Variations in patient size must also be accounted for
 - Restrict weight range (can reduce sample size by up to a half)
 - Correct data for patient size

Size Correction (Newcastle method)

- Changes in dose due primarily to automatic increase in exposure factors
- Dependant on AEC program/set-up
- Test by exposing increasing thicknesses of tissue equivalent slabs & recording DAP
- Carried out for different fluoroscopy & acquisition modes

Size correction (Vienna method)

- Exponential regression
- Evaluation of regression curve at weight of "average patient"
- Easier, but estimation of patient-to-patient variation is a little more difficult

Feedback of Data

- Collecting data only 1 stage of process
- Regular feedback required, preferably with DRLs
 etc for comparison
- Comparisons with other departments, including relevant technique factors useful
- Patient dose data may be linked with equipment QA measurements
 - Optimally automatically recorded to a data base or within the DICOM header of the image in case of digital images

Data evaluation and interpretation

Internal (local) audit Question to be answered: what is the "typical" dose to a patient undergoing examination/intervention X?

Dose to the average patient

- Determination of typical dose
- Estimation of patient-to-patient variation
- Estimation of combined uncertainty budget
- The more data on each patient exposure has been collected, the easier optimization and interpretation may be later
 - Better, to collect all relevant technique factors, not only these necessary to calculate dose

Uncertainties and dose variations

Example: chest

- The more complex the examination/intervention, the larger patient to patient variations are expected
- Every dose data point has an uncertainty
- Should be considered when comparing doses to doses of others, or reference levels

Number of patient dose data necessary depends on dose variation

Example "chest" is from the uncertainty tutorial

Uncertainties and dose variations

expanded combined uncertainty: ~40%

- Example: MCU in children
 - Data shows 1 ½ orders of magnitude variation
- Does it make sense to consider dose age relationship in this data?
- Number of patient dose data necessary depends on dose variation → more patients necessary here
- How many for <25% combined expanded uncertainty?
 - Approx. 5% in 1 sigma for std of mean from patient to patient variation → 200 patients
 - With 200 patients, a trend of dose with age should be visible → more sophisticated statistical analysis → actually, less patient data needed

 Can reference levels be applied for individual examinations?

Same example, more data

- Estimation of uncertainties using confidence limits
- Approximately same results on uncertainties as before
- See also uncertainty tutorial

Interpretation

How do the doses compare to reference levels?

- If they exceed the reference values, is this significant
 - Uncertainty budget!
- Still, if doses are close to DRLs, optimization might still be indicated
 - Remember, 3rd quartiles are not optimum values
 - histograms & inter-quartile distances
- Is the patient to patient variation within an acceptable range? Is there a systematic deviation, e.g. between day/night or do same teams use significantly higher doses than others
 - \rightarrow identification of training needs for staff

Data evaluation and interpretation

External (regional) audit:

Question to be answered: which dose do we usually work with? What is the dose our hospitals should be able to produce images with, that they find of good diagnostic quality?

Dose distributions and histograms

- Distributions of average patient doses
- Provide a good understanding of dose range applied
- Help identify institutions needing support in optimizing technique factors

Typical dose distributions

- "... even now, order of magnitude variations in patient doses are possible for the same diagnostic examinations " CoP, Appendix VII
- Numerous examples can be found in the literature:

