

2033-11

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation

11 - 15 May 2009

Dosimetry for CT (1): Basic Dosimetry

Claire-Louise Chapple Freeman Hospital Newcastle UK Joint ICTP-IAEA Advanced school on Dosimetry in Diagnostic Radiology: And its Clinical Implementation 11 - 15 May 2009; Miramare, Trieste, Italy

Dosimetry for CT (1) Basic Dosimetry

Claire-Louise Chapple

Regional Medical Physics Department Freeman Hospital Newcastle upon Tyne, UK

Reminder

- Rotating fan-beam of X-rays
- 3d imaging
- High dose to patient
- Increasing number of applications

CT terminology I

Axial scanning

- 1 rotation of beam followed by stepwise couch movement
- Helical/spiral scanning
 - Continuous table movement & beam rotation

CT terminology II

- Increment distance moved by couch (axial scanning)
- Nominal (or irradiated) slice width selected width of X-ray beam / detectors used
- Reconstructed slice width slice width used for 3d image reconstruction
- Pitch table movement relative to nominal slice width (helical scanning)

Computed Tomography Dose Index

- Applies to single axial scan only
- Dose measured on axis of scanner using pencil ionisation chamber

Computed Tomography Dose Index

- Applies to single axial scan only
- Measured on axis of scanner using pencil ionisation chamber
- Calculated as integral of air kerma along chamber divided by nominal slice thickness
- Several different versions!!

Dose quantities used

- C _{a,100} measured in air, integrated over 100mm
- C_w weighted value of central & peripheral values in PMMA phantom
- ⁿC_{a,100}/_nC_w normalized to unit tube current-time product
- C_{vol} takes account of helical pitch or axial scan spacing

Phantoms for CT dosimetry

- Cylindrical PMMA phantoms with holes for pencil chamber
- 32 cm body phantom
- 16 cm head phantom

Equipment for CT measurements

- CT ionization chamber and electrometer calibrated for CT beam qualities
- Chamber support stand
- Thermometer & barometer
- CT head & body phantoms

Methodology for CT measurements in air

- Position chamber in stand so beyond couch
- Adjust couch position so chamber along axis of scanner and beam centred at central point of chamber
- Record 3 dose measurements for single axial scan at selected parameters (no couch movement)
- Record all data + temperature & pressure

Data to record

- Tube voltage
- Beam filter
- Tube loading (tube current & rotation time)
- Nominal slice width
- Measure for all clinical tube voltage / filter / slice widths

Methodology for CT measurements in phantoms

- Position phantom on couch (use head rest if appropriate)
- Position chamber in central position in phantom
- Adjust couch position so chamber centred as before
- Record 3 dose measurements for single axial scan at selected parameters (no couch movement)
- Record all data + temperature & pressure
- Repeat for peripheral positions (north, south, east & west)

Calculation of C_{a,100}

$$C_{a,100} = \frac{1}{NT} \overline{M} N_{P_{\text{KL}},Q_0} k_Q k_{\text{TP}}$$

 \overline{M} : mean value of dosimeter readings k_{TP} : correction factor for temperature and pressure N_{P_{KL},Q_0} :dosimeter calibration coefficient k_Q : beam quality correction factor

NT : nominal width of irradiating beam

Normalized C_{a,100}

$${}_{n}C_{a,100} = \frac{C_{a,100}}{P_{It}}$$

P_{lt}: tube loading for 1 complete rotation

Values vary with tube voltage Some variation with nominal slice width May vary with beam filter

Calculation of C_w

$$C_{\text{PMMA,100,c}} = \frac{1}{NT} \overline{M}_{c} N_{P_{\text{KL}},Q_{0}} k_{Q} k_{\text{TP}}$$

$$C_{\text{PMMA,100,p}} = \frac{1}{NT} \overline{M}_{\text{p}} N_{P_{\text{KL}},Q_0} k_Q k_{\text{TP}}$$

$$C_{\rm W} = \frac{1}{3} \left(C_{\rm PMMA,100,c} + 2 C_{\rm PMMA,100,p} \right)$$

$$_{n}C_{W} = \frac{C_{W}}{P_{It}}$$

Sources of uncertainty

- Measurement scenario
- Precision of reading
- Precision of tube loading indicator
- Precision of chamber & phantom positioning
- Phantom construction
- Chamber response in phantoms

Typical uncertainties

Patient dosimetry

Patient dose assessed in terms of

- C_{vol}
- P_{KL,CT}
- Derived from phantom measurements & patient scan parameters
- No direct measurements on patients
- Collect technique data for at least 10 patients (restricted size range)

Data to be collected for each patient

- Tube voltage;
- Beam filter type;
- Slice thickness;
- Use of tube current modulation techniques;
- Couch movement between axial rotations or per helical rotation;
- For each axial scan series in the examination procedure: the total tube loading for the scan series (might be obtained from the tube loading(s) for each axial rotation);
- For each helical scan series in the examination procedure: the total tube loading for the series (might be obtained from the average tube current and total scan time).

Calculation of dose quantities for a series of specific patient examinations I

- For the given patient examination divide the procedure into one or more axial and/or helical scan sequences obtained with the same scan settings
- For each scan sequence obtain the measured value of ${}_{n}C_{W}$ for the recorded patient exposure conditions, selecting measurements obtained with the head or body phantom as appropriate

$$_{n}C_{VOL} = _{n}C_{W}\frac{NT}{l}$$

N is the number of simultaneously obtained tomographic slicesT the nominal slice thicknessl is the distance moved by the couch per scanner rotation

Calculation of dose quantities for a series of specific patient examinations II

Calculation of C_{vol}

 $C_{VOL} = {}_{n}C_{VOL} P_{IT} P_{IT}$ is mAs / rotation for scan

 $C_{VOL} = {}_{n}C_{w}P_{IT}$ P_{IT} is effective mAs / slice for scan

Calculation of dose quantities for a series of specific patient examinations III

 $P_{KL,CT} = l_n C_{VOL} P_{ITtot}$

l is the distance moved by the couch per scanner rotation

P_{ITtot} total mAs/scan (= mA x total scan time)

NB Units mGy cm

Calculation of dose quantities for a series of specific patient examinations IV

- The air kerma-length product for the complete examination is obtained by adding together the contributions from the individual scan sequences
- Using the results from all patients in the sample, calculate the mean value of the CT air kerma-length product for the complete examination

Sources of uncertainty

- Measurement scenario
- Uncertainty in measurement of _nC_w
- Precision of tube loading indicator
- Whether or not displayed quantities include any mA modulation

Typical uncertainties

P_{KL,CT} : 9 -15%

