

2033-13

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation

11 - 15 May 2009

X-ray Spectra and Beam Qualities

Donald McLean IAEA Vienna Austria Joint ICTP-IAEA Advanced school on Dosimetry in Diagnostic Radiology: And its Clinical Implementation 11 - 15 May 2009; Miramare, Trieste, Italy

X ray spectra and beam qualities

Donald McLean

Dosimetry and Medical Radiation Physics Section Division of Human Health

Establishing radiation qualities

- General importance of X ray spectra in diagnostic radiology
- Standard radiation qualities RQR
- Standard radiation qualities RQA and RQT
- Standard mammography radiation qualities RQR-M, RQA-M and others

General beam qualities

- The X ray beam quality or spectral composition has effects on
 - Patient entrance dosimetry
 - Image contrast
 - Dosimetry instrumentation response
 - Calculation of dosimetric parameters

- Computer simulation
- Spectral measurement
- Beam quality measurement with the 1st & 2nd HVL

Factors that effect spectral shape: Tube voltage

X_Ray Spectra	Simulator				
File About					
-X-Ray Parameters	Turnantan	Filters		Equivalent Thickness	
l arget Material:		13 AL	2.600	Narrow Beam	123
Target Angle:	12 🗨			C Broad Beam GO	
KVp:	120			Select Material	~
HV Waveform: Const	ant Potential 👤	 Ch	ange Filters	Sample Material : 1 - H Data File: Linnen.dat	
Spectrum 1	Spectrum 2	Spectrum 3			5 120 150
Spectrum 4	Spectrum 5	Spectrum 6			
Target Angle: KVp: Waveform: Filter Material AL	12 degrees 120 Constant Po	2.600 mm.	400,000 350,000 300,000 <u>5</u> 250,000		

How many photons are used in radiation medical?

Nuclear medicine photons

- A lung scan used 240 MBq of 99mTc: That is 240,000,000 photons released per second in all directions!
- However at 75 cm the number of this reduces to 34 photons per second per mm².

X-ray photons

•A chest X-ray procedure of 110 kVp, 3 mAs produces 15,770,000 photons at 75 cm per mm².

How many photons do you produce per day?

Tube filtration

Total filtration equals the inherent filtration plus the added filtration

EA

Factors that effect spectral shape: Total filtration

Factors that effect spectral shape: Target angle

Target angles: 12 degrees 16 degrees 30 degrees 45 degrees

Radiation qualities for calibrations of diagnostic dosimeters

Radiation quality	Radiation origin	Material of an additional filter	Application
RQR	Radiation beam emerging from X ray assembly	no phantom	General radiography, fluoroscopy and dental applications (measurements free in air)
RQA	Radiation beam with an added filter	Aluminium	Measurements behind the patient (on the image intensifier)
RQT	Radiation beam with an added filter	Copper	CT applications (measurements free in air)
RQR-M	Radiation beam emerging from X ray assembly	no phantom	Mammography applications (measurements free in air)
RQA-M	Radiation beam with an added filter	Aluminium	Mammography studies

established according to IEC 61267

Characterization of radiation quality series RQR

Radiation quality	X ray tube voltage	First half-value layer	Homogeneity coefficient h
	kV	mm Al	
RQR 2	40	1.42	0.81
RQR 3	50	1.78	0.76
RQR 4	60	2.19	0.74
RQR 5*	70	2.58	0.71
RQR 6	80	3.01	0.69
RQR 7	90	3.48	0.68
RQR 8	100	3.97	0.68
RQR 9	120	5.00	0.68
RQR 10	150	6.57	0.72
	$h = H \sqrt{1/H}$	/12 (4.36 = 2 nd	H\/I) 13

Determining the added filtration needed to establish a beam quality

 Position overlay so that edges are parallel with the curve axis Position overlay so that corners and centre are on the attenuation curve.

EA

Standard radiation qualities RQA and RQT

- RQA series represent simulations of the radiation field behind a patient
- RQT series simulate the unattenuated beam used in CT

RQT series					
Radiation quality	X ray tube voltage	Added filtration	Nominal first half- value layer		
	kV	mm Cu	mm Al		
RQT 8	100	0.2	6.9		
RQT 9*	120	0.25	8.4		
RQT 10	150	0.3	10.1		
			16		

RQA beam

Radiation quality	X ray tube voltage	Added filtration	Nominal first half-value layer
	kV	mm Al	mm Al
RQA 2	40	4	2.2
RQA 3	50	10	3.8
RQA 4	60	16	5.4
RQA 5*	70	21	6.8
RQA 6	80	26	8.2
RQA 7	90	30	9.2
RQA 8	100	34	10.1
RQA 9	120	40	11.6
RQA 10	150	45	13.3

Remote controlled Filter Wheel

Filter wheel with 15 positions, loaded with auxiliary filters for RQR- (identical to RQA-) and RQT-beam qualities

position securing wedge

RQC – 'engineer' spectra*

Beam quality	HVL mm Al	Relative intensity
RQA3	3.76	53.7
exit with 20 cm water	4.18	1.0
RQC3	4.44	24.4

Beam quality	HVL mm Al	Relative intensity
RQA5	6.74	10.7
exit with 20 cm water	6.17	1.0
RQC5	8.44	3.5

* Not used in TRS 457

Standard radiation qualities RQR-M and RQA-M

- The most commonly mammography was achieved using Mo targets and Mo filters
- However significant numbers of units use Rh targets and filters
- More recently with the advent of digital mammography the tube voltage used has increased and new target and filter materials are now used

Mammography spectra

Radiation qualities for calibrations of diagnostic dosimeters

Radiation quality	Radiation origin	Additional filter	Application
RQR-M Mo target	Radiation beam emerging from x-ray assembly	no phantom	Mammography applications (measurements free in air)
RQA-M Mo target	Radiation beam with an added filter	Aluminium	Mammography studies

RQR-M and RQA-M series

Radiation quality	X ray tube voltage	Nominal 1st HVL
Mo target		
	kV	mm Al
RQR-M 1	25	0.28
RQR-M 2*	28	0.31
RQR-M 3	30	0.33
RQR-M 4	35	0.36

Radiation qualit	X ray tube voltag	Added filtratio	Nominal 1 st HVL
У	e	n	
Mo target	kV	mm Al	mm Al
RQA-M 1	25	2	0.56
RQA-M 2	28	2	0.60
RQA-M 3	30	2	0.62
RQA-M 4	35	2	0.68

Standard radiation qualities RQR-M and RQA-M

- The most commonly mammography used Mo targets and Mo filters (Mo/Mo)
- However significant numbers of units use Mo/Rh & Rh/Rh
- More recently with the advent of digital mammography the tube voltage has increased and new target and filter materials are used e.g. W/Ag & W/Al
- PTB now provides a full range calibrations up to 50 kV

Thank you for your attention

Standard radiation qualities RQR

- IEC standards have been established to standardise the calibration of diagnostic detectors.
- Establishing the exact beam conditions is important for dosimetry laboratories involved in calibration
- RQR qualities simulate most entrance beams used in diagnostic radiology

