

2033-14

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation

11 - 15 May 2009

Calibration of an SSDL Facility

Costas Hourdakis Greek Atomic Energy Agency Athens Greece Joint ICTP-IAEA Advanced School on Dosimetry in Diagnostic Radiology & its Clinical Implementation

Calibration at an SSDL facility

Costas J. Hourdakis Greek Atomic Energy Commission Greece

> 11 – 15 May 2009 Miramare, Trieste, Italy

Calibration at an SSDL facility : General considerations

Diagnostic Radiology "sub-groups" :

- Conventional radiology dosimetry standards (air kerma K_i & air kerma rate K_{i,R} at 50 – 150 kV)
- Mammography dosimetry standards (air kerma K_i at 25 – 35 kV)
- Practical peak voltage

(tube high voltage at 22 - 150 kV)

What are going to discuss during this session :

- SSDL room design
- Dosimetry equipment
- Irradiation systems X-ray systems
- Diagnostic radiology standards
 - ▹ beam qualities
- Calibration procedures
- Uncertainties

Calibration at an SSDL facility

Room design Dosimetry equipment X-ray irradiation systems

Room design

- Radiation protection (staff and public)
- Enough space
- Lightning Air conditioning
- Hygiene
- Electrical power

Room design

•Scattered radiation

FIG 6.1 (IAEA, CoP, p 58) : Backscatter factor, B, as a function of the distance, d, from the surface of the backscattering wall. Radiation quality RQR 10, field size 600 mm by 600 mm.

Room design

common & good practice : horizontal beams (for air kerma standards & calibrations)

Environmental conditions

- stable temperature within the range 18°C to 24°C
- relative humidity should be below 80%

actions for rapid temperature changes temperature of the air inside any ionization chamber

Dosimetry equipment

The reference Kair values at various beam qualities are established at the SSDL, by the transfer reference ionization chamber

The reading of secondary standard is converted to the air kerma or the air kerma rate by means of the calibration coefficient as supplied by the PSDL or the IAEA.

 $N_{K,Q_{0},P_{0},T_{0},cond_{PSDL}}^{SSDL} = \frac{K^{PSDL}}{M_{Q_{0},P_{0},T_{0},cond_{PSDL}}^{SSDL}}$

Ionization chambers

The SSDL should have two reference-class ionization chambers

Table 5.2 Recommended specifications of detectors of a reference class dosimeter, by application (IAEA, CoP, p52)

Application	Type of detector	ctor kV Intrins. R	Respon.	Range of	Range of air kerma rate	
			error %	var. %	Unattenuated beam	Attenuated beam
General radiography	Cylindrical, spherical or plane-parallel	60 - 150	3.2	±2.6	1 mGy/s – 500 mGy/s	10 μGy/s – 5 mGy/s
Fluoroscopy	Cylindrical, spherical or plane-parallel (preferable)	50 - 100	3.2	±2.6	10 μGy/s – 10 mGy/s	0.1 μGy/s – 100 μGy/s
Mammography	Plane-parallel	22 - 40	3.2	±2.6	10 μGy/s – 10 mGy/s	
	•T1	aceability				
(A)	۰W	orking sta	ndard de	osimeter		
	EA					

Electrometer and chamber High voltage supply

At least, two electrometers, being capable of measuring charge and current

1. Charge scale calibration

$$N_C = \frac{C \,\Delta V}{\Delta M}$$

where C the capacitor, ΔM is the increment in the reading of the electrometer caused by a voltage increment ΔV

Electrometer and chamber High voltage supply

- 2. Alternatively : Calibration at PSDL at electrical units
- **3.** Alternatively : Calibration at PSDL at radiation beams

Conventional radiology (40 – 150 kV)

Mammography (20 - 40)

Conventional radiology

- 40 150 kV
- Ripple < 10% (CoP), but general <1%
- Display kV @ 1%
- Reflecting anode, < 270 angle
- Anode : Tungsten, W
- Hosting various filters Al, Cu
- IEC 12267 beam series, RQR, RQA, RQT, etc

Mammography

- $\bullet 22 40 \ kV$
- Ripple <1%
- Display kV @ 1%
- Reflecting anode, < 270 angle
- Anode : Mo, Rh
- Hosting various filters Mo, Rh
- IEC 12267 beam series, RQR-M, RQA-M

Calibration at an SSDL facility : Shutter & Apertures

- Fo : focal spot,
- S : X ray beam shutter
- A1 : aperture at X ray tube housing
- F: added filtration
- A2 : field limiting aperture
- M : monitor chamber
- A3 : further aperture
- HVL : aperture and Al holder (not permanent)
- P : reference distance from the focus

Monitor chamber

Use for :

- as a reference for K_i dermination
- corrections for the non-stability of X-ray output
- verification of X-ray performance (output)
- indication of beam on/off status

!!!

If used as reference of for corrections, sometimes causes more problems than solves : Careful use Hardens the X-ray beam : included in HVL measurement

The high stability of modern X ray generators does not necessarily require

Calibration at an SSDL facility : Filters and attenuators

Filters and attenuators

Filters : to modify the X-ray energy spectrum Measure the HVL Al and Cu : conventional Mo, Rh, Al : Mammography Purity > 99.9% Various thicknesses Good homogeneity Thickness : $\pm 10\mu m$ (conv) & $\pm 5\mu m$ (mammo)

!!! Combined filters :

harder material closer to focus (Cu - Al)

Attenuators : HVL measurements

Calibration at an SSDL facility : Filters and attenuators

Beam quality : X-ray energy, as characterized by HVL (mm Al)

HVL depends on :

- tube high voltage
- inherent (permanent) tube filtration
- added tube filtration
- X-ray system characteristics (tube ageing, tube anode, converter type, etc)

beam quality index (descriptor)

 HVL measurement

 Video

 Video

 Fo
 SA1 F
 A2 M A3
 HVL
 P

 2^{nd} HVL = d(1/4) - 1^{st} HVL

 $h = 1^{st} HVL / 2^{nd} HVL$

Acceptance limits

 K_{HVL}/K_0 : [0.485 – 0.515] HVL : IEC (CoP) value HVL_{SSDL}/HVL_{IEC} : [0.957 – 1.044]

 $h_{\text{measured}} - h_{\text{IEC}} < 0.03$

Calibration at an SSDL facility : Filters and attenuators

Beam quality : X-ray energy, as characterized by HVL (mm Al)

beam quality index (descriptor)

A *code* is given to the beam quality describing all above

Example : **RQR 5** means : 70 kV, 3mm Be inherent filtration, 2.70 mm Al added filtration, 1^{st} HVL = 2.58 mm Al, 2^{nd} HVL= 3.63 mm Al, h=0.71

each SSDL establishes its own "beam qualities" according to IEC standards

IEC 61267 : 2005 standard provides the radiation qualities for X-ray diagnostic radiology dosimetry

Radiation quality	Radiation origin	Material of an additional filter	Application
RQR	Radiation beam emerging from X ray assembly	no phantom	General radiography, fluoroscopy and dental applications (measurements free in air)
RQA	Radiation beam with an added filter	Aluminium	Measurements behind the patient (on the image intensifier)
RQT	Radiation beam with an added filter	Copper	CT applications (measurements free in air)
RQR-M	Radiation beam emerging from X ray assembly	no phantom	Mammography applications (measurements free in air)
RQA-M	Radiation beam with an added filter	Aluminium	Mammography studies

IEC 61267 : 2005 standard provides the radiation qualities for X-ray diagnostic radiology dosimetry

For the establishing the beam qualities :

- The appropriate kV applied
- The adequate added filtration found

in order for the actual (measured) HVL to comply with IEC values

RQR series : Conventional radiology unattenuated beams – calibrations free in air

Radiation quality	X ray tube voltage	First half-value layer	Homogeneity coefficient h
	kV	mm Al	
RQR 2	40	1.42	0.81
RQR 3	50	1.78	0.76
RQR 4	60	2.19	0.74
RQR 5 *	70	2.58	0.71
RQR 6	80	3.01	0.69
RQR 7	90	3.48	0.68
RQR 8	100	3.97	0.68
RQR 9	120	5.00	0.68
RQR 10	150	6.57	0.72

RQR 5 : the reference radiation quality

RQT series : CT calibrations

Radiation	X ray tube Added filtration		Nominal first half-value	
quality	voltage		layer	
	kV		mm Al	
RQT 8	100	RQR 8 + 0.2 mm Cu	6.9	
RQT 9*	120	RQR 9 + 0.25 mm Cu	8.4	
RQT 10	150	RQR 10 + 0.3 mm Cu	10.1	

RQT 9 : the reference radiation quality

RQA series : Conventional radiology Attenuated beams – behind the patient

Radiation quality	X ray tube voltage	Added filtration	Nominal first half-value layer
	kV	mm Al	mm Al
RQA 2	40	4	2.2
RQA 3	50	10	3.8
RQA 4	60	16	5.4
RQA 5*	70	21	6.8
RQA 6	80	26	8.2
RQA 7	90	30	9.2
RQA 8	100	34	10.1
RQA 9	120	40	11.6
RQA 10	150	45	13.3

RQA 5 : the reference radiation quality

RQR-M series : Mammography unattenuated beams – calibrations free in air

Radiation quality	X ray tube voltage	Nominal first half-value layer
	kV	mm Al
RQR-M 1	25	0.28
RQR-M 2*	28	0.31
RQR-M 3	30	0.33
RQR-M 4	35	0.36

Mo Anode, Mo added tube filtration (Mo/Mo)

RQR-M 2 : the reference radiation quality

TABLE 6.7 (CoP, p 78) : MAMMOGRAPHY RADIATION QUALITIES WITH A RHODIUM FILTER AT THE IAEA DOSIMETRY LABORATORY.

Radiation quality	Tube potential	Added filtration	First half-value layer	Homogeneity coefficient
	kV	mm	mm Al	
Mo anode				
Mo/Rh-28	28	0.025 Rh	0.417	0.82
Mo/Rh-32	32	0.025 Rh	0.449	0.84
Rh anode				
Rh/Rh-25	25	0.025 Rh	0.362	0.78
Rh/Rh-30	30	0.025 Rh	0.444	0.76
Rh/Rh-35	35	0.025 Rh	0.504	0.78
Rh/Rh-40	40	0.025 Rh	0.548	0.78
Rh/Rh-30x	30	0.025 Rh + 2 Al	0.814	0.94
Rh/Rh-35x	35	0.025 Rh + 2 Al	0.883	0.92

RQR-M series : Mammography Attenuated beams – behind a phantom

Radiation quality	X ray tube voltage	Added filtration	Nominal first half-value layer	
	kV	mm Al	mm Al	
RQA-M 1	25	2	0.56	
RQA-M 2	28	2	0.60	
RQA-M 3	30	2	0.62	
RQA-M 4	35	2	0.68	

Standards for calibration of non invasive X-ray tube voltage measuring instruments (kVp-meter)

High voltage divider

AEA

KRAMER, H.-M., SELBACH, H.-J., ILES, W.J., The practical peak voltage of diagnostic x-ray generators, Br. J. Radiol. **71** (1998) 200-209.

Alternative options :

A non-invasive device is employed, which measures the practical peak voltage and has been calibrated by another SSDL or other laboratory

Use of a non-invasive high-voltage measuring device possessing an analogue and/or a digital output : kV vs time

Calibration Procedures

This section applies to all diagnostic dosimeters except those with a CT ionization chamber and KAP ionization chamber

Prior the calibration :

- Acclimatization
- Warm-up and polarizing voltage application
- Positioning both chambers at the same distance
- Pre-irradiation
- Zeroing
- Measurement of leakage current

Reference point of detector

Focus to Reference point distance = 1000 mm (1 m)

X-ray beam must cover the detector totally

Field size at least 1,5 times larger than the cross-section of detector BUT not too wide to hit room's walls and floor

"substitution method"

repetitive measurements at inter-changed positions *Example* :

3 readings with reference & then 3 with the user's 3 readings with reference & then 3 with the user's 3 readings with reference & then 3 with the user's

10 readings of each chamber

any tube output, temperature, or other variations to be spread at both chambers

!!! the **Side by Side method**

is **NOT** recommended by the IAEA CoP **!!!**

- heal effect
- inhomogeneities of X-ray beam
- scattered radiation
- radiation incident angles
- etc

For calibration ...

1st step : the reference value of air kerma is determined with the SSDL reference ionization chamber

2nd step : the user's detector is exposed to identical conditions

3rd step : the calibration coefficient calculated as the ratio of air kerma K to user detector's readings (corrected)

Calibration at an SSDL facility : CoP for calibrations with monitor chamber

reference chamber

$$K_i^{ref} = M_Q^{ref} \mathbf{k}_{\mathrm{TP}} \cdot N_{K,Q_0} \cdot k_{Q,Q_0}$$

$$\left(\frac{K_i^{ref}}{m^{mon} \cdot k_{TP}}\right)^{ref}$$

user's chamber

 $\frac{M_Q^{user} \cdot k_{TP}}{m^{mon} \cdot k_{TP}}$

$$N_{K,Q}^{user} = \frac{\overline{\left(\frac{K_i^{ref}}{m^{mon} \cdot k_{TP}}\right)^{ref}}}{\overline{\left(\frac{M_Q^{user} \cdot k_{TP}}{m^{mon} \cdot k_{TP}}\right)^{user}}}$$

$$\left(\frac{M_{Qi}^{user} \cdot k_{TP}}{m^{mon} \cdot k_{TP}}\right)^{user}$$

$$V_{K,Q}^{user} = N_{K,Q}^{ref} \left(\frac{\left(M \ k_{\mathrm{TP}} \right)_{Q}^{ref}}{\left(m \ k_{\mathrm{TP}} \right)_{Q}^{ref}} \right) \left(\frac{\left(m \ k_{\mathrm{TP}} \right)_{Q}^{user}}{\left(M \ k_{\mathrm{TP}} \right)_{Q}^{user}} \right)$$

Calibration at an SSDL facility : CoP for calibrations without a monitor chamber

reference chamber

 $K_i^{ref} = M_Q^{ref,mean} \cdot \mathbf{k}_{\mathrm{TP}} \cdot N_{K,Q_0} \cdot k_{Q,Q_0}$

user's chamber

 $M_Q^{user,mean} \cdot k_{TP}$

$$N_{K,Q}^{user} = \frac{K_i^{ref}}{M_Q^{user,mean} \cdot k_{TP}}$$

In both cases (with or without monitor chamber)

$$k_Q^{user} = \frac{N_{K,Q}^{user}}{N_{K,Q_0}^{user}}$$

Calibration at an SSDL facility : Uncertainties

Calibration uncertainties consists of two parts :

- Measurements with the reference chamber for K_i^{ref} calculation
- Measurements with the user's chamber

Example :

Diagnostic dosimeters - Nk	Type A	Type B
	%	%
Measurements of Kair by SSDL chamber		
Nk from PTB	NR	0.99
Nk stability	0.50	NR
Electrometer accuracy	NR	0.00
Scale reading / resolution	NR	0.00
Current measurements	0.01	0.02
Uniformity of Xray beam	0.02	0.58
Difference in X ray spectra (HVL)	NR	0.50
Positioning in same distance	0.02	0.12
Temperature & Pressure	0.07	0.08
Electrometer Built-In timer	*	*
Leakage current	NR	0.00
Recombination loss	NR	0.00

Measurements with User's chamber		
Shuter timer accuracy	*	
Shutter timer reproducibility	*	
Ionization / Dose measurements stability	*	
Positioning in same distance	NR	0.35
Uniformity of radiation beam (for different chamb)	0.00	0.00
Temperature & Pressure	0.17	0.38
Difference in Temperature at two places	NR	0.00
Leakage current	NR	0.00
Radiation background	NR	0.00
Electrometer accuracy	NR	NR
Humidity	NR	0.00
Recombination loss	NR	0.00

Reproducibility of Kair meas with SSDL instrument	0.30	
Reproducibility of meas with USER instrument	0.50	
Scale reading / resolution for USER instrument	*	0.01
Kair to R (exposure) relation		0.00

1.78

%

%

IAEA	QUADRATIC SUM	0.80
	COMBINED UNCERTAINTY	1.95
	EXPANDED UNCERTAINTY	3.90