

2033-18

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation

11 - 15 May 2009

Phantoms, Dose and Image Duality

Mario de Denaro Ospedale Maggiore Trieste Italy Joint ICTP-IAEA Advanced School on Dosimetry in Diagnostic Radiology: and its Clinical Implementation 11 - 15 May 2009 - Miramare, Trieste, Italy

Phantoms, dose and image quality

Mario de Denaro

Medical Physics Department, Maggiore Hospital, Trieste, Italy Azienda Ospedaliero Universitaria "Ospedali Riuniti" di Trieste email: mario.dedenaro@aots.sanita.fvg.it

Ospedali Riuniti di Trieste

ACCREDITED FOR ORGANIZATION BY JOINT COMMISSION INTERNATIONAL

Phantoms

Test Objects

Examples of Physical Phantoms

PMMA mammography phantom CDRH abdomen/lumbar spine phantom

PMMA CT phantom

Suitable materials

Water
$$\begin{cases} Pro > similar energy dependence to a patien $Cons > heavy and difficult to fill$$$

PMMA
$$\begin{cases} Pro > easy to find and to use $Cons > some energy dependence$$$

Aluminium $\begin{cases} Pro > \text{ thin and easy to positioning} \\ Cons > \text{ significant energy dependence} \end{cases}$

Anthropomorphic Phantoms

Visual analysis

Tissue-equivalent materials containing abdominal and pelvic organs: stomach, gall bladder, urinary bladder, kidneys, rectum and sigmoid flexure

Anthropomorphic Phantom made by slices with holes where can be inserted TLD dosimeters to obtain well defined map of internal dosimetry

Computational Phantoms

Example of mathematical phantom "Adam" and "Eve".

From "CT-Expo": a tool for dose evaluation in Computed Tomography

Dose and image quality

Image quality must be related to dose

The increment of the Dose (e.g. higher tube loading) improve image quality

Phantoms to evaluate the image quality

Design to ...

.... measure specific parameters affecting the image quality

.... be imaged in the specific equipment submitted to evaluation

Image quality

Main parameters affecting image quality

> High contrast spatial resolution

> Low Contrast Detectability

> Noise

Spatial Resolution

DEFINITION

The ability to distinguish between two closely spaced objects on an image

NOISE

Affect the spatial resolution for low contrast detail

Image Contrast

Image Contrast can be quantified as the difference in percent between the image of an objet and the background C% = [(I1-I2)/I1] * 100

Phantoms for the measurement of <u>High Contrast Spatial Resolution</u>

Computed Tomography

Catphan 600 phantom

Increasing spatial frequency bars

Line Pair/cm	Gap Size	Line Pair/cm	Gap Size
1	0.500 cm	11	0.045 cm
2	0.250 cm	12	0.042 cm
3	0.167 cm	13	0.038 cm
4	0.125 cm	14	0.036 cm
5	0.100 cm	15	0.033 cm
6	0.083 cm	16	0.031 cm
7	0.071 cm	17	0.029 cm
8	0.063 cm	18	0.028 cm
9	0.056 cm	19	0.026 cm
10	0.050 cm	20	0.025 cm
		21	0.024 cm

Bead Point Source tungsten carbide diameter 0.28mm

Phantoms for the measurement of High Contrast Spatial Resolution

Mammography

Leeds TOR MAX

Phantoms for the measurement of Low Contrast Detectability

Computed Tomography

Phantoms for the measurement of Low Contrast Detectability

Mammography

Leeds TOR MAX

Low Contrast Detectability : Contrast Detail Curve

Image Noise

Noise decrease as tube loading increase

Noise ∞

250 mA/sec

Noise measurement

Uniform materials Test Objects

Water, PMMA, Acrylic,

The standard deviation of the image represent a suitable parameter to estimate the noise

Image Standard Deviation ∞

 $\sqrt{no. of incident photons}$

Noise measurement

-- WATER PHANTOM --

