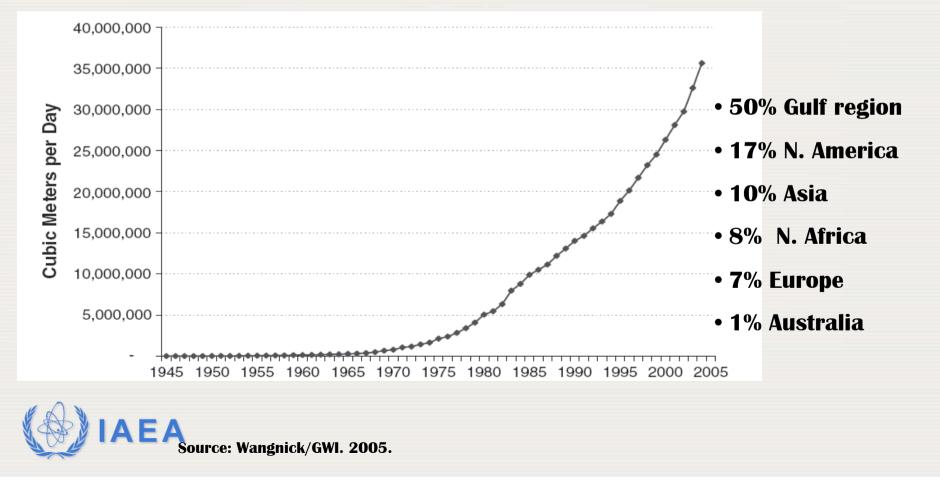
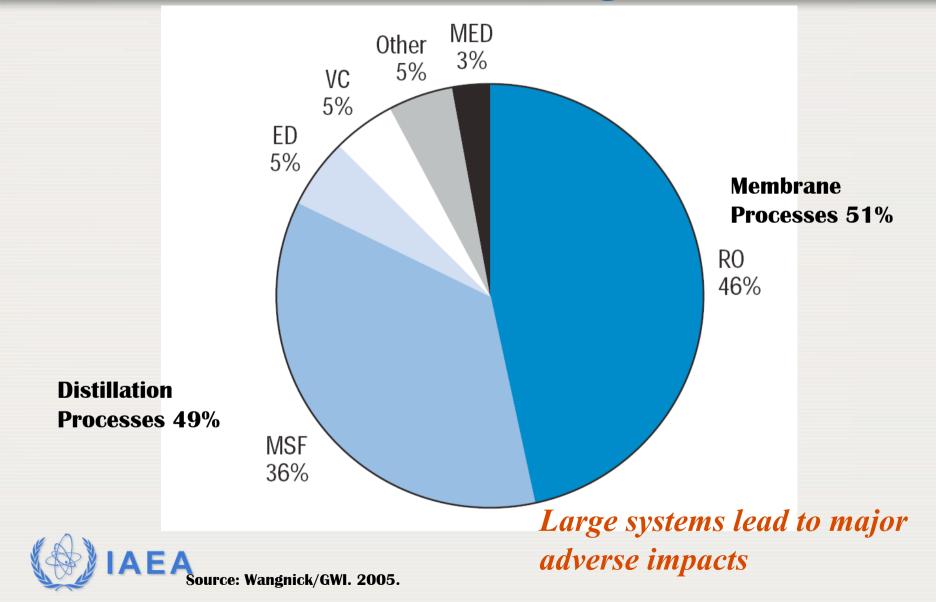
Technology and environmental assessment of desalination technologies

I. Khamis Department of Nuclear Energy

Contents


- Environmental impacts of nuclear desalination
- Economics
- Safety aspects
- Water quality and monitoring
- Conclusion


Growing interest in Environmental performance of desalination systems

- Desalination capacity is growing exponentially
- Current estimates are 50 million cubic meters of water production per day

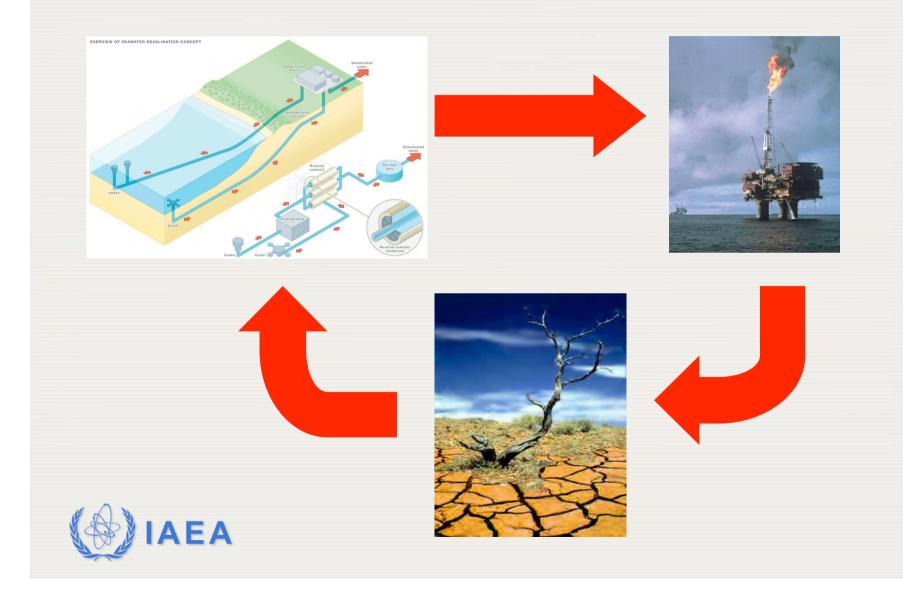
+ 60 Newcomer

Desalination Technologies

Main Environmental Issues

Despite major improvement,

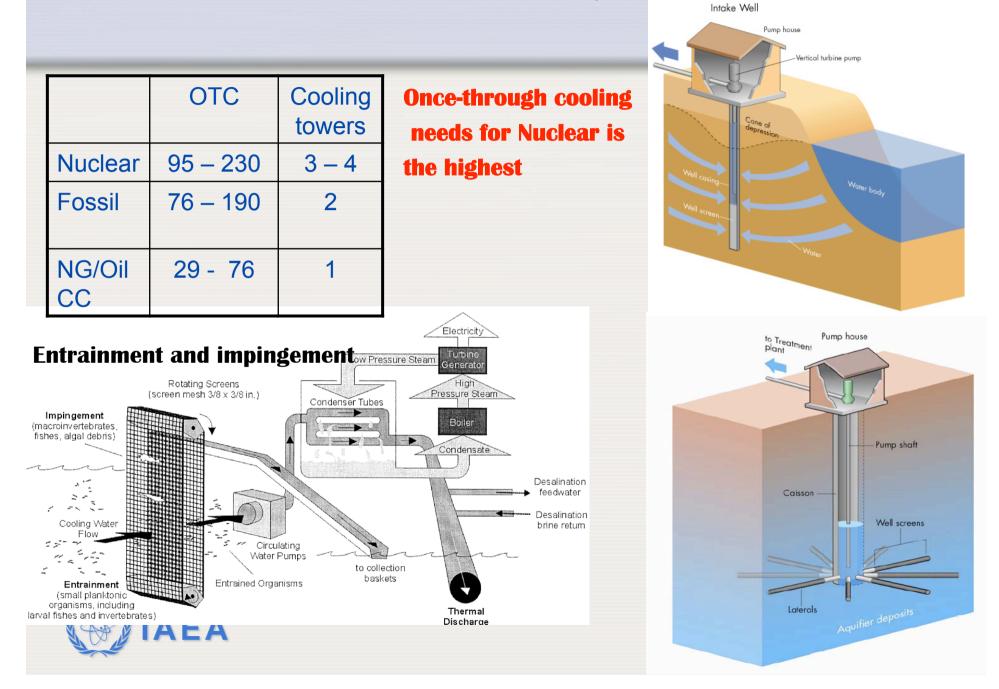
- Marine
- Coastal
- Atmospheric
- Socio-economic



'60s artist's rendering of a nuclear desalination plant. Source: ORNL

Co-location reduces impacts

Desalination's impact is complex


Marine impacts

Seawater is not just water. It is habitat and contains an entire ecosystem of phytoplankton, fishes and invertebrates.

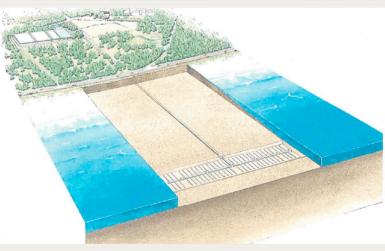
California Energy Commission, 2005

Source: S. Münster, Cosmography. 1598.

Direct and Indirect Intake systems

- Mitigation recommendation

Dry- and/or wet-cooling for Nuclear, and

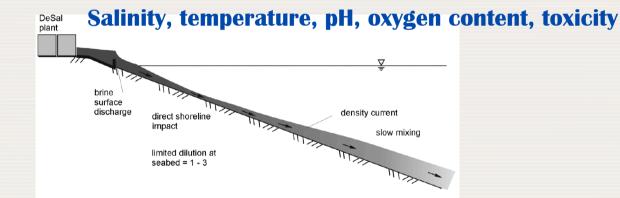

Source: Barker, 2007

Hybrid Cooling

Indirect intake systems for desalination, or

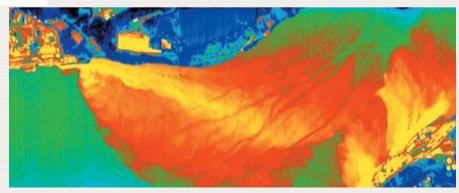
EA

Intake from areas with low biological activity


Source: Fukuoka District Waterworks Agency

Discharge

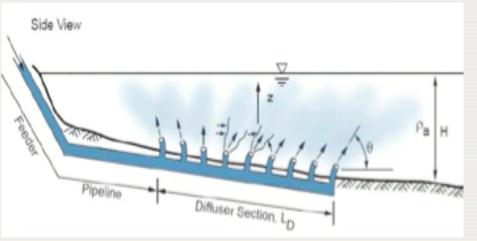
- Regulations


US Clean Water Act Section 403(c), Barcelona Convention, IAEA Safety Guide No. NS-G-3.2

- Discharge characteristics

Direct discharge. Source: Bleninger and Jirka, 2008

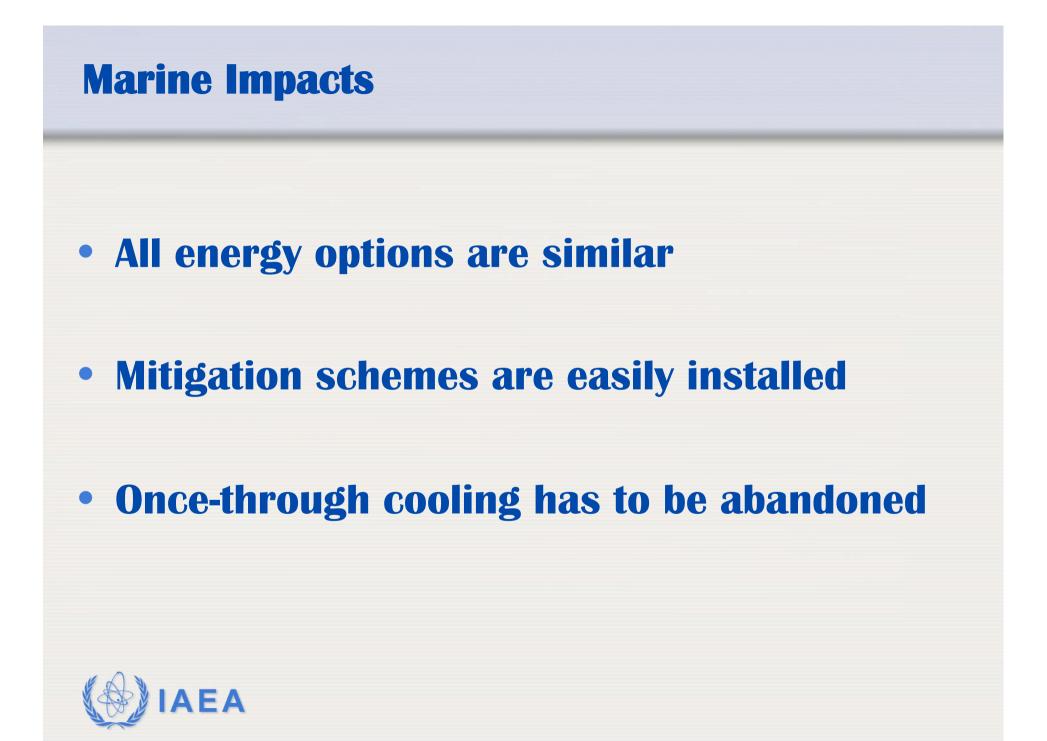
EA



Mitigation recommendations

Commercial use of the discharged brine,

Dilution with multi-port diffusers in biologically insensitive areas...



...and environmentally sound intakes!

Discharge diffusers. Source: USEPA 1991

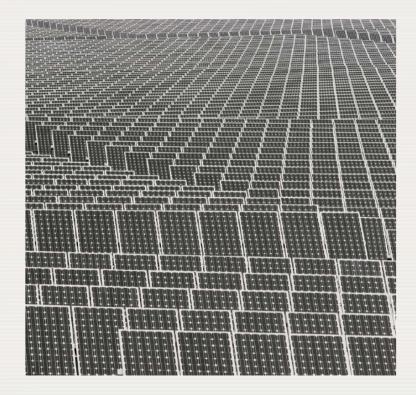
Coastal Impact

Land use and visual impacts

Aquifer contamination
Construction impact
Noise impact

Method	Area needed for a 1GW power plant
Solar (photo voltaic)	20 – 50 km²
Windmill	50 – 150 km²
Biomass (including bio-alcohol/oil)	4000 - 6000 km ²
Nuclear	1 - 4 km ²

Source: IAEA; WEC, 2007


Desalination facilities of 100 000 m3/day would require

- 0.2 km²
- 12 to 510 MW of installed power requiring co-located power generation

Serpa (P) solar power plant

Palm Springs (US) wind farm

Paluel (F) nuclear power plant

In conclusion of Coastal Impacts

- Nuclear Desalination
 - is best for large water production
 - economy of scale is a big advantage
- Coastal impact for large-capacities nuclear desalination is lower than any other option

Atmospheric Impacts

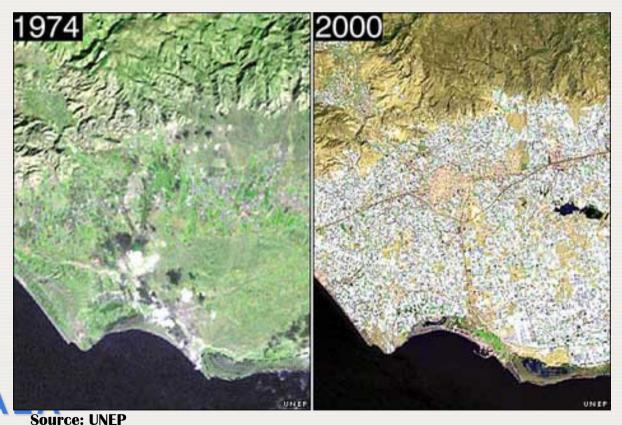
Carbon Dioxide Release

- for 100,000 m3/day desalination plant

Power Source	CO2 Released (tons)
Coal	200 to 900
Natural Gas	100 to 200
Wind	0.02 to 0.2
Nuclear	0.02 to 0.2

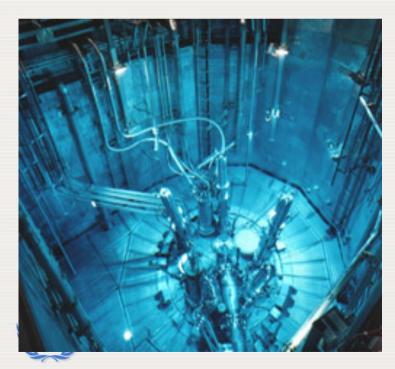
Development stimulus

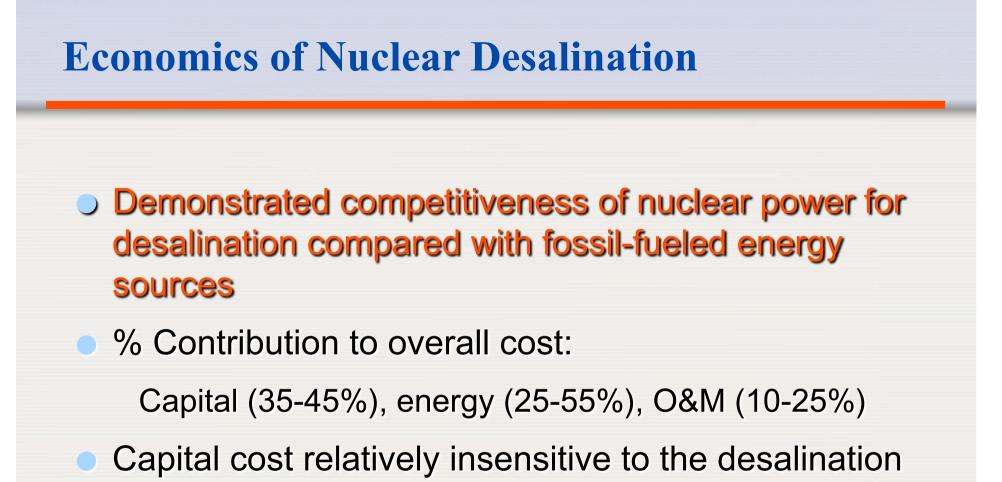
- energy availability
- water availability


Aqtau, 1961

Aqtau, 1975

Changes in the land use, development of new industries


- population relocation, social disturbance
- environmental justice


Public acceptance

- safety
- public health
- environmental impacts

- component
- Desalination costs range: \$0.40 1.90 / m³

Economics of Nuclear Desalination

- MSF costs systematically higher than RO or MED
- RO economically favorable for less stringent drinking standards (e.g. WHO, <1000 ppm TDS)
- Costs higher with smaller reactors ("economy of scale" effect)
- RO and MED costs are, in general, comparable

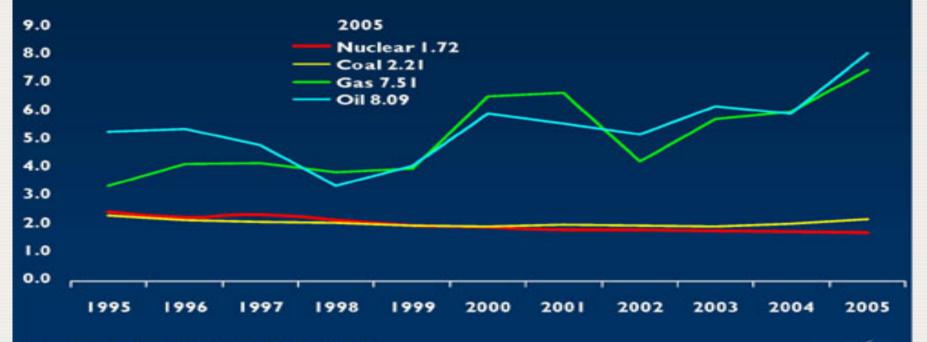
Economics of nuclear desalination

- Results are site specific.
- Nuclear desalination costs:
 - RO: 0.5 to 0.94 \$/m3
 - MED: 0.6 to 0.96 \$/m3
 - MSF: 1.18 to 1.48 \$/m3
- Comparing to current prices of oil: all nuclear options are economically competitive.

Economic target of nuclear desalination costs:

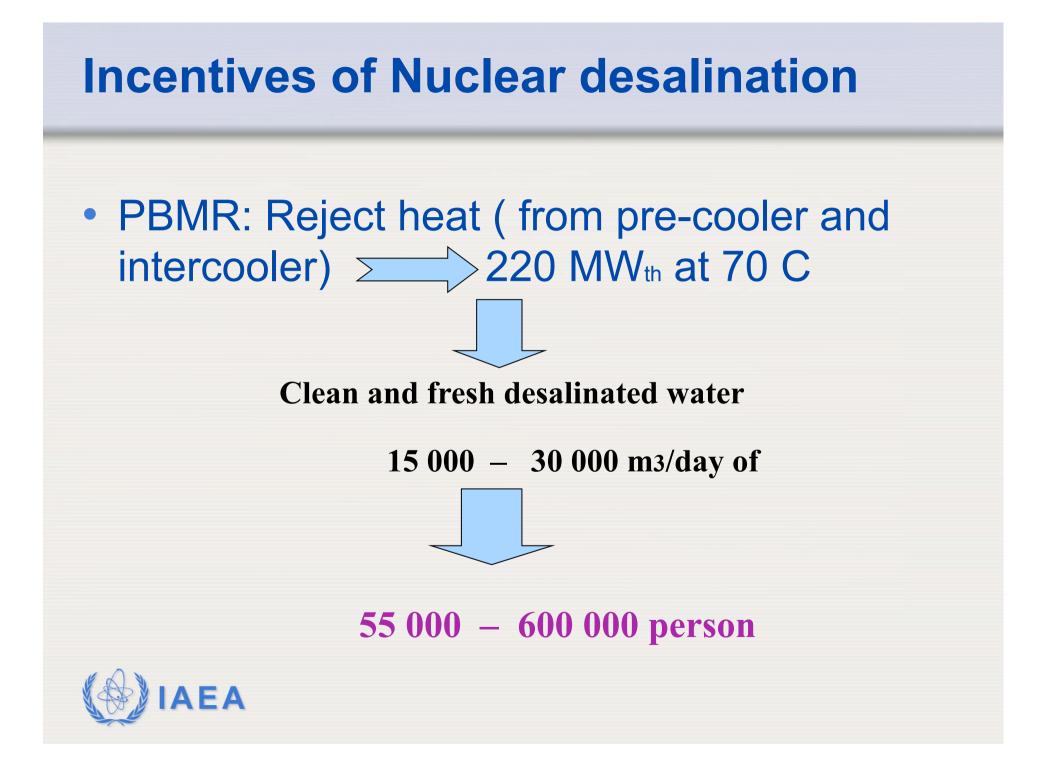
0.4-0.6US\$/m³ depending on the region

Electricity cost (US cent/kWh) in Europe


	MIT 2003	France 2003	UK 2004	Chicago 2004	Canada 2004	EU 2007
Nuclear	4.2	3.7	4.6	4.2 - 4.6	5.0	5.4 - 7.4
Coal	4.2		5.2	3.5 - 4.1	4.5	4.7 - 6.1
Gas	5.8	5.8-10.1	5.9, 9.8	5.5 - 7.0	7.2	4.6 - 6.1
Wind onshore			7.4			4.7 - 14.8
Wind offshore			11.0			8.2 - 20.2

Costs of Fuel & OM in the US

U.S. Electricity Production Costs


1995-2005 (Averages in 2005 cents per kilowatt-hour)

Production Costs = Operations and Maintenance Costs = Fuel Costs

Source: Global Energy Decisions Updated: 6/06

Incentives of Nuclear desalination-cont.

To produce 130 000 m3/day of desalinated water using 1000 MWe PWR

Total revenue (Cogeneration 90% electricity +10% water) :

- Electricity: 6771.6 M\$
- Water: 888.59 M\$

Using MED

• Total: 7660 M\$

Total revenue from 100% for electricity alone: 7166.8 M\$

Net benefit of ND: 493.2 M\$ ~ 7% more

Incentives of Nuclear desalination-cont.

Using RO even better:

- Increased availability (more water)
- No lost shaft power as in MED
- Considerable fraction of energy will be recovered.

Revenue: -From electricity: 7026.72 M\$ -From Water: 672 M\$

Total: 7700 M\$

Net benefit: 532 M\$~ 7.5% more

Economics of Nuclear Desalination-DEEP

Specify Case and Configuration Data								
Projec	t: My Site			Case:	My Case			
— Wat	ter Plant Capacity ——					_		
Total Capacity: 100000 m3/d		Feed Salinity 35000 ppm		Feed Temperature 30	degC			
			Inter	rest Rate	5% F	Purchased Electricity Cost 0.06	\$ / kWh	
	Power Plant Dat	a	Distillation Plant Data Rev			Re	verse Osmosis Plant Data	Pipeline Transport Option
	Thermal Power 1	200 MWt	Energy Recov		verv Fraction N/A %	🔽 Transport cost		
		600 MWe	Maximum Bri	ine	110 degC		atio (optional) N/A %	50 Distance (kms)
	FuelCost		Heating Stea	m Temperature	0 degC	- Design Flux	· · · · ·	O Power (MWe)
S		50 \$/boe	Specific Cons	truction Cost	1000 \$/(m í	245		
-			-			· Specific Cor	nstruction Cost N/A \$/(m3/d)	1 scc (M\$/km)
- Firs	t, select a coupling configu					-	Configuration Switches Steam Source	7 o&m (% of scc)
NU	NUCLEAR STEAM TURBINE	MED NSC+MED	MSF NSC+MSF	RO NSC+RO	MED-RO	MSF-RO	• Extraction / Condensing	
CL	NUCLEAR GAS TURBINE	NBC+MED	NBC+MSF	NBC+RO	NBC+MED-RO	NBC+MSF-RO	C Backpressure	Carbon Tax Option
E	NUCLEAR GAS TORBINE	NH+MED	NH+MSF	NBC+RO	NBC+MED-RO	NDC+MDF-RO	- Indiana	🔽 Carbon Tax
R	NOCLEAR HEAT		ועח+ויוסר					0.5 CO2 emission (t/MWh)
	STEAM CYCLE - COAL	COAL+MED	COAL+MSF	COAL+RO	COAL+MED-RO	COAL+MSF-RO		50 Carbon tax (\$/t)
F	STEAM CYCLE - OIL	OIL+MED	OIL+MSF	OIL+RO	OIL+MED-RO	OIL+MSF-RO	— Thermal Vapor Compression —	
S S	GAS TURBINE / HRSG	GT+MED	GT+MSF	GT+RO	GT+MED-RO	GT+MSF-RO	C Yes	
L	COMBINED CYCLE	CC+MED	CC+MSF	CC+RO	CC+MED-RO	CC+MSF-RO	• No	
	FOSSIL HEAT	FH+MED	FH+MSF					
R							🗖 Backup heat source	
N	RENEWABLE HEAT	RH+MED	RH+MSF		esalination Type:	MSF 🔽		
	STAND-ALONE RO			SA-RO	Power Source:	CC 🔽		
					 	, _		
	Name: New CC+MSF					Compose	O.K. (Cancel

INPUT to DEEP

Case identification and site characteristics

Required water plant capacity at site

Desalination plant type

Performance Input

Cost Input

Economic parameters input data

Performance Calculation

Cost Calculation

Economic Evaluation

The Various energy options considered in DEEP

RC	Energy source	Abbreviation	Description	Plant type
1	Nuclear	PWR	Pressurised light water reactor	Co-generation plant
2	Nuclear	PHWR	Pressurised heavy water reactor	Co-generation plant
3	Fossil – coal	SSBC	Superheated steam boiler	Co-generation plant
4	Fossil oil - gas	SSBOG	Superheated steam boiler	Co-generation plant
5	Fossil	GT	Open cycle gas turbine	Co-generation plant
6	Fossil	СС	Combined cycle	Co-generation plant
7	Nuclear	HR	Heat reactor (steam or hot water)	Heat-only plant
8	Fossil	В	Boiler (steam or hot water)	Heat-only plant
9	Nuclear	GTMHR	Gas turbine modular helium reactor	Power plant
10	Fossil	D	Diesel	Power plant
11	Nuclear	SPWR	Small PWR	Co-generation plant

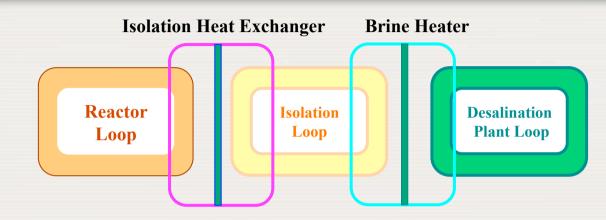
The desalination processes considered in DEEP

Process	Abbreviation	Description
Distillation	MED	Multi-Effect Distillation
	MSF	Multi-Stage Flash
Membrane	SA-RO	Stand-Alone Reverse Osmosis
	C-RO	Contiguous Reverse Osmosis
Hybrid	MED/RO	Multi-Effect Distillation with Reverse Osmosis
	MSF/RO	Multi-Stage Flash with Reverse Osmosis

Safety of Nuclear Desalination

Safety level of ND

- Safety issues of ND are similar to NPP.
- Safety: mainly dependent of nuclear plant, the design of coupling technology, and transient interactions between the two plants.
- Additional **specific safety considerations** for the coupling schemes between the reactor and the desalination plant (DP):
- Issues related to environment, shared resources, and siting...etc.


Safety in nuclear desalination

Usual safety barriers are:

- Fuel matrix
- Fuel cladding
- Primary circuit
- Reactor containment system
- Coupling through additional HX i.e. increase in the number of usual safety barriers that are standard in a NPP.

COUPLING

Coupling dictates specific safety considerations :

- Prevent the transfer of radioactive materials from NPP to DP
- Minimize the impact of thermal desalination system on the nuclear reactor
- Protect the public and environment against radiation hazards that may be released from the ND system.
- Specific requirements as dictated by the National Regulatory Body.
- Backup heat or power source (NPP in refuelling).

Safety implications of Coupling of NP to DP

• Thermal (MSF, MED): NP and DP have effect on each other.

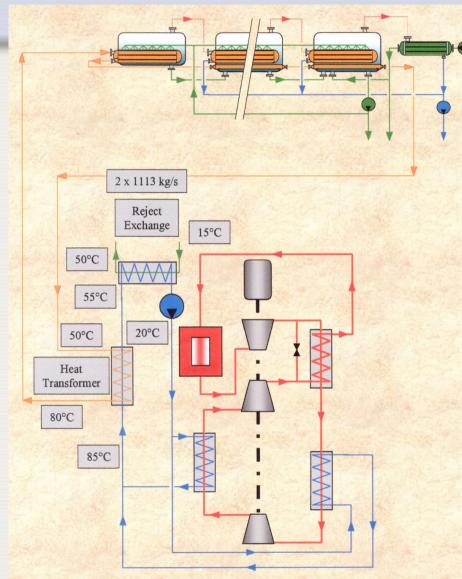
 Contiguous (RO, VC): No thermal coupling, only electric from the grid

 If contiguous system draws part or all of its feedwater from the condenser cooling water discharge of NP (as in preheat of RO), Safety should be evaluated.

Additional Safety concern

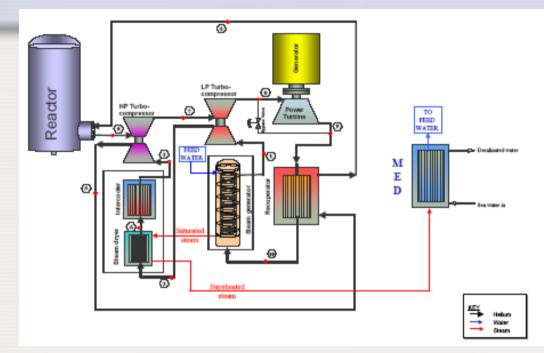
Resist pressure from the ND on the NP

- Safety culture is to exist and to be placed above production capability.
- Availability of alternate sources of thermal or electrical energy in case of reactor shutdown



How can Nuclear Power Plants be used for the production of fresh water?

- Existing and planned nuclear power stations could be used to produce fresh water using the surplus of
 - Waste heat
 - MED desalination plants
 - GT-MHR, through a flash tank using intercoolers reject heat
 - HRT, using steam extractions
 - PWR, using low pressure steam extraction
 - AP1000, using condenser reject heat
 - FPU, using condenser reject heat
 - through MSF desalination plants
 - BWR, through a flash tank using turbine steam extractions
 - Electricity
 - though RO desalination plants
 - Any plant (e.g., CANDU-6)
 - A combination of heat and electricity
 - PHWR: steam extraction to MSF and electricity to RO


Coupling of the GT-MHR to a plant MED

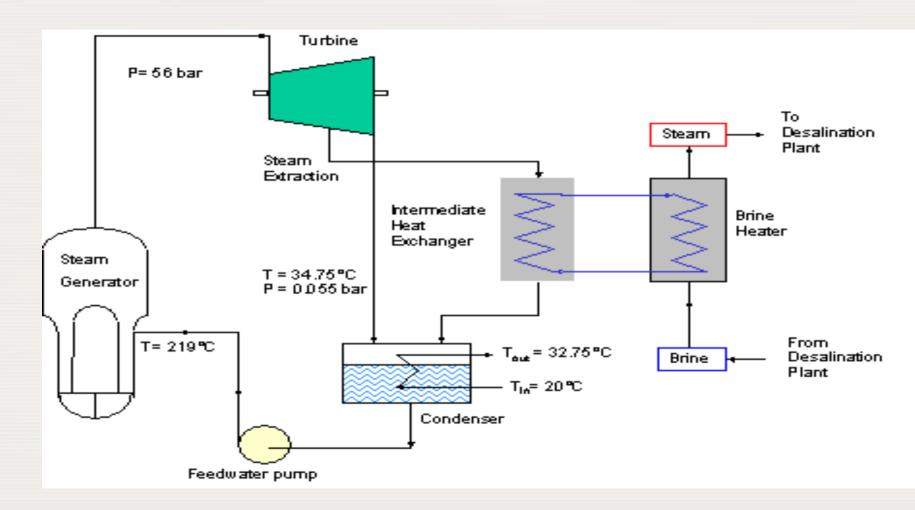
- The higher the temperature of the circuit extraction of heat, more water can be produced
- Coupling Alternatives:
 - through a flash tank
 - using hot water
- For 1 single MED, coupling through a flash tank is more efficient
- For 2 MED, coupling through hot water is more efficient

HTR – MED (Micanet)

HTR / Desalination Process Coupling Scheme

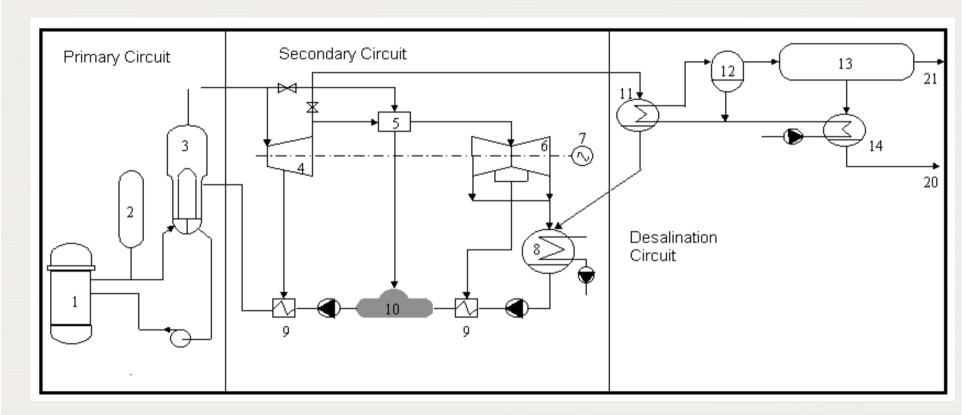
HTR coupled to MED Results (similar results for MSF)			
Steam interface data HTR to MED	35.8 kg/s	70°C	0.3 bar
Desalinated water produced	27200 m³/day (<u>~</u> 90 Hm³/year)		
Electric power produced	122 MWe		

Water Demand


- Estimated water shortage in the Mediterranean region
 ≈ 3700 Hm³/year
- Current desalination projects in Spain: more than 600 Hm³/year

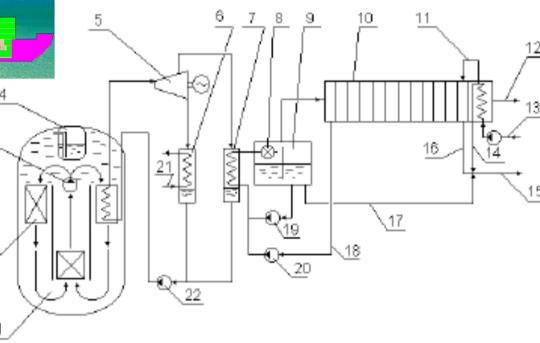
Proposed Scheme

1 HTR unit coupled with MED or MSF plant


- Typical water and electricity demand for a middle-sized town
- (population \approx 50.000)
- Water production and efficiency improves using excess of electricity for RO plant

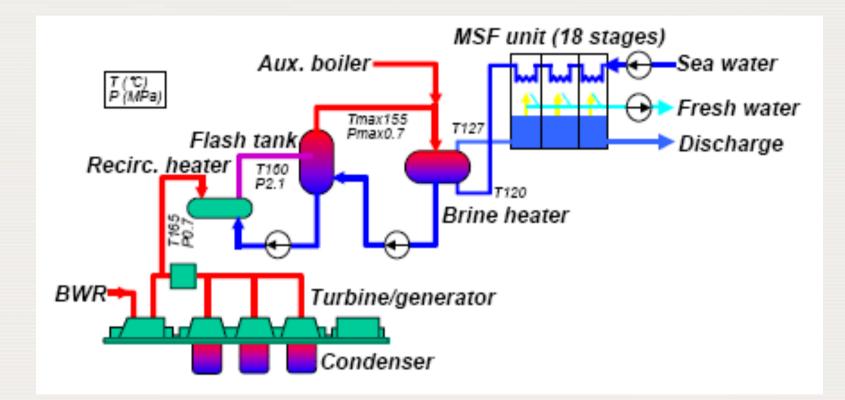
Conventional coupling of PWR NPP with MED

AP1000 coupled to the MED through the condenser



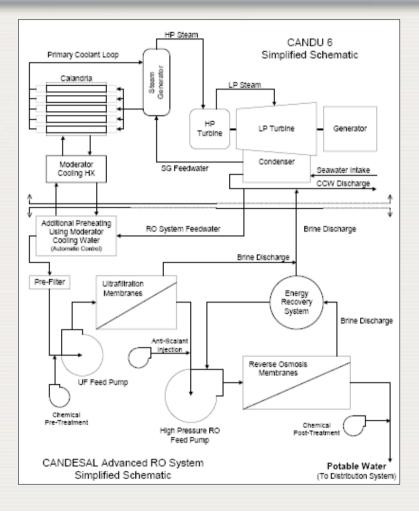
The higher the pressure in the condenser, the greater amount of water can be produced, but power generation is reduced.

Coupling of Floating Power unit FPU and MED



1 – nuclear reactor; 2 – steam generator; 3 – primary pump; 4 – pressurizer; 5 – turbogenerator; 6 – turbine condenser; 7 – condenser-heat exchanger of distillation plant; 8 – throttle; 9 – flash tank; 10 – multi effect distillation plant; 11 – feed makeup; 12 – product water; 13 – seawater intake; 14 – reject cooling water; 15 – brine outfall; 16 – brine discharge; 17 – flash tank blowdown; 18 – preheated water makeup; 19 – intermediate recirculation pump; 20 – makeup pump; 21 – cooling seawater; 22 – feed pump

*Floating Power Unit, Modular Reactor Russian pressurized water of 2 x 150 MW


BWR coupled to MSF (*Kashiwazaki-Kariwa Unit 1*)


Coupling in CANDU-6 * and RO

* Canadian Reactor of 600 MW pressurized water moderated by heavy water

Coupling PHWR* with MSF- RO (Kalpakkam, India)

* Indian Reactor of 170 MW pressurized water moderated by heavy water

Water quality and monitoring

WHO Guideline for Drinking-Water Quality (Vol. 1, Chapter 9, page198, 2004)

Recommended annual dose limit from radionuclides present in the drinking water = 0.1 mSv/year

- Estimated lifetime risk of stochastic health effect: 10E-5

- Average global background radiation exposures : 2.4

Populations in areas with 10 times naturally high background radiation are without any health consequences

Water quality and monitoring

ALLOWED TRITIUM LEVELS IN DRINKING WATER

Country	Tritium limit (Bq/l)
Finland	30000
Australia	76103
Canada	7000
EU	100
Kazakhstan	7700
Switzerland	10000
United States	740
WHO	10000

Water quality and monitoring

- Desalinated water quality: in compliance with national and international regulations (WHO)
- Radiological limits for drinking water: based on consumption of ~2 litres per day
- Standards: according to the ALARA principle
- Monitoring for radioactivity and conductivity: batch monitoring, intermediate loop and product stream water.

Water quality and monitoring-cont.

National regulatory body:

- Closed loop between NPP and DP with pressure boundary.
- Limits on discharge of radioactivity to environment.
- Continuous monitoring of leakages
- Criteria for environmental release of desalted water
- Protection against radiation hazards due to discharge of brine and cooling water.

Nuclear desalination is:

Feasible, safe, economically competitive, and benign to environment.

....Thank you for your attention

