BASICS ON THERMAL DESALINATION

9.00 Introductions

9.15 Desalination Market

- General views of the desalination market

-General views of the desalination market **Rising standards of living**

Rising Worldwide Population

000 m3 per caput –General views of the desalination market

World population - over 10 billion by 2050

Increasing pressure on the environment

 Recent statistics indicates that currently
2.3 billion people live in water stressed areas.

I.7 billion live in water scarce areas with less than 1,000 cubic meters per person per year.

Contracted capacity in ME&A

By technology

By water type

Proportions of the processes (seawater)

-General views of the desalination market

Growth of Desalination

Growth > 25% per year for past 5 years

Growth of Desalination

Technology trends since 1970

Energy prices reverse desal trends

- Thermal processes are likely to continue to dominate the industry in the Gulf region over the next decade. This is due to potential of cogeneration of power and water
- MED is gaining market share (from 15% to 21 % share of thermal market in new projects)
- Outside Gulf region, RO is dominant

* Water Desalination Report and Global Water Intelligence

Forecast desalination capacity by region – future projects (2006-2010)*

* Water Desalination Report

-General views of the desalination market forecast desalination capacity by process – future projects (2006-2010)*

* Water Desalination Report

Top 10 countries in terms of proposed capacity (2006 – 2010)*

Country	Rank (2004)	Rank (2010)
Saudi Arabia Spain USA Algeria Kuwait	2 6 3 9 4	1 2 3 4 5
UAE	1	6
Libya	7	7
Bahrain	14	8
China	12	9
Qatar	8	10 * WDR

Overview of desalination technologies

Overview of thermally driven technologies

Multi stage flash

Dominant technology world-

Overview of thermally driven technologies

Multi stage flash

Cross Tube

Overview of thermally driven technologies

Multi stage flash

Overview of thermally driven technologies Multiple effect desalination

Evolved from small installation

To relatively large unit size

Overview of thermally driven technologies Multiple effect desalination

Evolved from small installation

To relatively large unit size

Overview of thermally driven technologies Multiple effect desalination With Thermo compression

Overview of desalination technologies Reverse osmosis

Dominant technology when power plant is not associated to desalination

SWRO technology process features

In practise there are many hurdles

RO technology is extremely sensitive to :

- Sea water quality and site location
- Pollutants (oil, hydrocarbons) and bio-fouling
- Microelements in seawater (i.e Boron) which presence is totally irrelevant for thermal technologies

RO technology so far has demonstrated limited operational tolerance and deep understanding of engineering and water bio-chemistry aspects

In particular the critical components leading to operational problems in the past have been the pre-treatment

Technologies and differences : some rule of thumb

- Cost effect : SWRO CAPEX and OPEX are greatly affected by :
 - seawater TDS
 - Potable water quality

Cost effect : Thermal CAPEX and OPEX are only partially affected by :

- seawater TDS
- And practically not affected by potable water quality up to TDS of 25 ppm

1/ Potable water quality

Product quality obtained by different processes Distillation 5 - 30 mg/l **Electrodialysis** \geq 300 – 400 mg/l **Reverse Osmosis** 100 - 500 mg/l(*)

(*) less if second pass Ex. ASHKELON < 40 mg/l, FUJAIRAH = 94 mg/l

Market segmentation

The market segmentation

DOMAINE D'UTILISATION DES DIFFERENTES TECHNIQUES DE DEMINERALISATION EN FONCTION DE LA SALINITE DE L'EAU A TRAITER

Salinité de l'eau à traiter en mg/l (pm)

Thermal desalination plants evolution history

Desalination plant Basic Mass Balances

Desalination plant Basic Mass Balances

Regardless of the type of process adopted desalination transforms seawater into concentrated brine and distillate (or permeate) by using energy :

$$n = \text{Mass flow rate} (\text{kg} / \text{sec})$$

Definition of concentration factor : ratio between blowdown and seawater salt concentration

 \boldsymbol{W}_{bd} -<u>()</u>

Rearranging equation 1) and 2) and using the definition of concentration factor

we can obtain a formula relating seawater requirement and product distillate capacity

$$\mathbf{m}_{D} = \mathbf{m}_{SW} \cdot \left(1 - \frac{1}{Cf_{bd}}\right)$$

Note this formula is valid for all types of desalination processes including RO

But Then why seawater consumption for SWRO technology is much lower than for thermal ?

- Concentration factor production ratio : theoretically it would be best to concentrate as much as possible
- However it is not possible to concentrate seawater – blowdown above a certain limit.
- The following constraints occur :
 scale precipitation in tube bundle are more frequent the more salt is concentrated

Concentration factor – production ratio

- Experience with all systems indicated need for scale control
- Hot brines easily reached saturation with inorganic species (Mg(OH)₂, CaCO₃, CaSO₄, etc.)
- Scale restricted flow paths, reduced heat transfer, caused outages

Concentration factor – production ratio

Concentration factor – production ratio

A glance to ro technologies : Concentration factor – production ratio for RO system

Typically the recovery rate for a SWRO is 38% to 45%

$$RR = 100\% \cdot \frac{m_p}{m_{SW}} = 100\% \frac{m_p}{\left(\begin{array}{c} \cdot & \cdot \\ m_p + m_{conc} \end{array}\right)}$$

 Concentration factor – production ratio
 A glance to other technologies : Concentration factor – production ratio for RO system

$$RR = \frac{TDS_{con} - TDS_{sw}}{TDS_{con} - TDS_{perm}}$$

$$C_F = \frac{1}{1 - RR} = \frac{1}{1 - 0.45} = 1.82$$

Concentration factor – production ratio

seawater recovery ratio and concentration factors for each technology

	MSF	MED	MED-TVC	RO
Recovery ratio Y %	33%-37.5%	33%-37.5%	33%-37.5%	35%-43% (*)
Concentration factor 1/ (1-Y)	1.5-1.6	1.5-1.6	1.5-1.6	1.6-1.8

Seawater consumption difference between thermal and RO

Seawater consumption difference between thermal and RO

Seawater consumption difference between thermal and RO

	MSF	MED	MED-TVC	RO
Cooling water	8-10	2.3-5	2.3-5	0
Process water (make up- feed water)	2.7-3	2.7-3	2.7-3	2.3-2.9
Pre-treatment back washing losses	0	0	0	0.15-0.3
Brine discharge	1.7-2	1.7-2	1.7-2	1.3-1.9
Seawater discharge	57.3		0.5-2	
Tonnes of seawater required per tonne of distillate water	8-10	5-8	5-8	2.5-3.2

Working example: classroom exercise Data available: Sea Water TDS = 45400 mg/l Desired distillate flow = 1200 tons/hr Brine blowdown max admissible TDS = 58000 mg/l Calculate : - brine blowdown flow rate - seawater make up requirement

ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA

Working example

Step 1: Calculate blowdown concentration factor:

$$Cf_{bd} = \frac{58000}{45400} \cdot \frac{mg}{l} \cdot \frac{l}{mg} = 1.277$$

Step 2 calculate seawater make flow rate:

$$1200 \cdot \frac{tons}{hr} = X \cdot \left(1 - \frac{1}{1.277}\right) = X \cdot 0.217$$

Working example
Seawater make up flow rate:
$$X \cdot = \frac{1200}{0.217} \cdot \frac{tons}{hr} = 5530 \cdot \frac{tons}{hr}$$

Calculate blowdown as the difference between make up and distillate

$${}^{\bullet}_{m_{bd}} = {}^{\bullet}_{m_{sw}} - {}^{\bullet}_{m_{d}} = (5530 - 1200) \cdot \frac{tons}{hr} = 4330 \cdot \frac{tons}{hr}$$

ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA

Association with power plant and Energy input classifications

Energy input classifications

Evaporative processes

Evaporative processes use thermal energy to produce distilled pure water from sea or brackish water.

Energy input classifications

Evaporative processes rely on a phase change from liquid (in this case brine) to the vapour phase.

In this process only the water molecules pass to the vapour phase leaving the other constituents behind in the liquid.

The two dominating systems that have evolved are Multi Stage Flash (MSF) and Multiple Effect Distillation(MED).

Energy input classifications Membrane processes

In Membrane processes electric energy is used to pump seawater (or brackish water) through a series of semi permeable membranes to obtain a low salinity permeate as a product. ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA

Energy input classifications

Membrane processes do not rely on a phase change but on the size and transport mobility of water molecules through a permeable membrane.

For the separation of fresh water from seawater or brackish water this process is known as Reverse Osmosis (RO).

Association with power plant

ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA

Overview of desalination technologies

Power thermal desalination combinations

ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA

Overview of desalination technologies

Power and SWRO plant combinations

Overview of desalination technologies The Energy Situation

 Studies have been carried out showing that potable water with TDS lower than 500 mg/l could be obtained with less than 2.5 kwh/m3

Overview of desalination technologies

Minimum bottom threshold for power requirements for SWRO is 1.2-1.5 kwh/m3

Overview of desalination technologies The Energy Situation 35 **3**0 · specific energy consumption [kwh/m³] 25 20 -15-Thermal energy converted in equivalent electric energy 10-**Electric energy** 5-0 **MEF Cogeneration MSF stand alone MED** condensing Sola

ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA

ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA comparison MSF, MED and RO

	Specific electric power	Specific heat consum ption	Steam Extr acti on pres sure	Thermal energ y	Equivalent power loss	Total Ener gy requi reme nts
	kwh/m³	kJ/kg	Bar abs	Thermal kwh/ m ³	Electric kwh/m³	kwh/m³
SWRO(Medit erranean Sea)	3.5	0	N.A.	0	0	3.5
SWRO (Gulf)	4.5	0	N.A.	0	0	4.5
MSF	4-5	287	2.5-2.2	78	10-20	14-25
MED-TVC	1.0-1.5	287	2.5-2.2	78	10-20	11-21.5
MED	1.0-1.5	250	0.35-0.5	69	3	4-4.5

Water and Power

- Water and Power are essential simultaneously
- The variation of energy consumption (kWh/m3) is function of the site (rural or urban), of seasons (summer or winter). In the GCC, the electrical consumption in the winter represents only 30 - 40 % / summer
- Moreover, water needs are higher than electricity needs: in the GCC the growth rate of water consumption is 11 % per year and energy is only 4 % (*)

(*) Koussai Quteishat, Hydrorop 2001, Marseille

Seasonal variation of water and electricity needs in ABU DHABI

Hybrid Systems

2 + different desalination processes are coupled with the power plant

Mainly MSF or MED with RO or VC. This combination can better utilize fuel energy as well as the power produced
 For utilization of idle power to produce water via RO or

> For utilization of idle power to produce water via RO or MVC, the extra produced water can be stored in aquifers

Advantages & potential of hybrid systems

- > A common intake, reduce pumping energy
- Blending products of RO and distillation plants
- Use of single stage RO thus lowers energy needs
- RO membrane life can be extended
- Feed water temperature to RO can be integrated and optimized with distillation and power plant
- Integrated pretreatment and post treatment can reduce energy and chemical consumption
- Possibility to increase the ratio water/electricity if the water consumption is preponderate

Fujairah Plant - UAE

- Seawater 40 g/l T = 22 35 °C Started in 2002
- Separate intake for MSF and RO
- Feed water for RO not heated by MSF
- 4 gas turbines of 109 MW + 3 generators of 380 t/h 68 bar 537 °C generates 500 MW_e net on the network + 662 MW for desalination

MSF	5x12,5 MIGD = 62,5 MIGD,	$5 \times 56.250 \text{ m}^3/\text{j} = 281.250 \text{ m}^3/\text{j}$
RO	15 x 2,5 MIGD = 37,5 MIGD, 2	15 x 11.250 m ³ /j =168.750 m ³ /j
TOTAL	100,0 MIGD	soit 450.000 m ³ /j

MSF: Ratio = 8 TBT (Top Brine Temperature) = 107 - 109 °C

MULTISTAGE FLASH TECHNOLOGY (MSF)

Process description Process thermodynamics Stage simulation model
MSF what do we know ?

- Highly reliable operation
- Scalable up to very large sizes 18MIGD
- Readily coupled with steam turbine generating stations in "dual purpose plant" configuration
- Good water to power to power ratio

A big and well-deserved success since the 1960s

Process description: How did it begin?

- It had long been known that water could be heated above its normal boiling point in a pressurized system
- If the pressure was released, a portion of the water would boil off or "flash". The remaining liquid water would be cooled as the issuing vapor took with it its heat of vaporization
- Since evaporation occurred from the <u>bulk fluid</u> rather than at a <u>hot</u> heat exchange <u>surface</u>, opportunities for scaling would be reduced

What flashing looks like

- Hot brine from the previous stage enters through slot at lower temperature and pressure stage
- It senses the new lower pressure environment, and
- Flashes!

Flashing and boiling: the thermodynamic meaning

MSF development

- Cross tube design tube length limitations
- Long tube design
- Once through process
- Optimise structural design to reduce shell plate thickness and weight
- Solid stainless steel shell construction
- Thinner heat transfer tubes

The influence of minor constituents of seawater and brackish waters A. Dissolved inorganic

- If seawater consisted of only H₂O and NaCl, life would be simple
- But natural waters are often close to saturation in many inorganic compounds (CaSO₄, Mg(OH)₂, Ca(HCO₃)₂, etc.)
- What is worse, their solubility may be <u>inverse</u> functions of temperature

This involves the following aspects to be considered:

- scaling
- venting

Multi stage flash

Cross Tube and Long Tube MSF Distillers

MSF Desalination Plant

Single stage temperature diagram

MSF Desalination Plant

Stage temperature diagram Complete plant (brine recirculation type)

MSF Desalination Plant

Flow sheets: cross flow brine

Figure 3

Flow sheets: once through

Main flow stream mass balance

MSF cross flow plant internal layout: How it really looks like - low side flash chamber

MSF cross flow plant internal layout: how it really looks like - upper side

tube bundle tube supports roof plates and uncondensable extraction pipes

details of tube bundle and tube support

MSF cross flow plant internal layout

distillate tray, demister supports and interstage walls

corrosion in the distillate tray

Multiple Effect Desalination Technology MED

- process description
- process thermodynamics
- stage simulation model

MED distillation

- Horizontal or vertical tube
- Falling film of seawater high heat transfer coefficients
- Mostly horizontal tube, low temperature
- 1st effect 65⁰⁻67⁰ max temperature
- Performance ratio up to 9:1 with no TVC
- Up to 15:1 with TVC thermal vapour compression and high steam pressure
- Steam isolation needed in dual purpose plants
- Lower power consumption than MSF and RO

MED distillation

- Unit size has increased from 1 to 5 MIGD (now 8 MIGD) in 8 years
- Potential for further increase?
- Improvements in thermal vapour compressors and plant configuration
- Reduce steam supply pressure
- Trade off between steam consumption and supply pressure
- Distiller performance v power plant output

MED distillation

Typical parameters for large MED plant are:

Top Temperature of first stagePerformance RatioDistillate Output (*)MIGD

65 deg C 8 to 15 5-10

The concept of thermo compression If reduced pressure causes evaporation at a lower

- If reduced pressure causes evaporation at a lower temperature, then compression should force condensation at a higher temperature
- The combination of these phenomena can yield useful (and efficient) desalination process

The concept of thermo compression

Mechanical Vapor Compression (MVC)

Mechanical Vapor Compression (MVC)

• Especially in their early development the mechanical compressors were unreliable

• They were replaced by a thermally-driven nomoving-parts substitute

A Simple Ejector-Compressor

Fluid flowing in the pipeline (the "motive fluid") speeds up to pass through the restriction and in accordance with Bernoulli's equation creates vacuum in the restriction.

A side port at the restriction allows the vacuum to draw a second fluid (the "ejected") into the motive fluid through the port.

Turbulence downstream of the port entrains and mixes the ejected into the motive fluid.

Process description

Flow sheets : once through

Flow sheets : vapor compression

ICTP/IAEA Workshop 11-15 May 2009 CORRADO SOMMARIVA

MED process phenomena : thermodynamic path : the ideal case

MED cross flow plant internal layout

Condensat vapor (distillate)