

International Atomic Energy Agency

Non electric applications of nuclear reactors

I. Khamism Department of Nuclear Energy

Contents

- Prospects of Non electric applications
- Nuclear Desalination
- Hydrogen production
- District heating
- Other industrial applications
- Summary and conclusion

International Atomic Energy Agency

Industrial process vs. temperature

Industrial Process	Approximate Temperature Range (Centigrade)	
Home and building heating	100 - 170	
Desalination	100 - 130	
Vinyl Chloride production	100 - 200	
Urea synthesis	180 - 280	
Process Steam	200 - 400	
Paper and pulp production	200 - 400	
Oil refining	200 - 600	
Oil shale and oil sand processing	300 - 600	
Crude oil desulphurisation	300 - 500	
Petroleum refineries	450 – 550	
Production of synthetic gas and Hydrogen from natural gas or naphtha	400 – 800	
Steel making via direct reduction	500 - 1000	
Iron industry	600 - 1600	
Production of styrene from ethyl-benzene	600 - 800	
Production of ethylene from naphtha or ethane	700 – 900	
Hydrogen production by thermo-chemical reaction	600 - 1000	
Coal processing	400 - 1000	
Coal gasification	800 -1000	

Nuclear process heat vs. Temperature range

Major non electric applications

- Nuclear desalination
- Hydrogen Production
- District heating
- Industrial process heat applications

Non-Electric Applications of nuclear energy

- 14-15% of world electricity is from nuclear power plants
- 438 nuclear power reactors worldwide,
 - 30 are being used for co-generation of hot water and/ or steam for:
 - District heating,
 - Seawater desalination
 - Industrial processes.

- Over 700 reactor-years of combined experience exists for these non-electrical applications.

Operating experience in heat applications

Grouping of non electric applications

- High temperature Process-heat appl.:
 - Hydrogen production & Water splitting
 - Hard coal gasification & refinement of coal and lignite
 - Reforming of natural gas
 - Oil refinery, oil shale &oil sand processing
- Low Temp Process-heat appl.:
 - Steam injections
 - Desalination & district heating
 - Agro-industry

World energy use

Fuel	Percentage (%)	Present trends
Oil	39	Short-term: Building of additional plants continues
Coal	25	Building of additional plants continues
Gas	22	Short-term – Building of additional plants continues; gas turbine combined cycle plants considered the cheapest of fossil fuelled plants.
Hydro	7	Building of dams continues, where possible
Nuclear	6	Currently under reconsideration in developed countries, with a hope for renewed interest; high rate of expansion in emerging countries.
Renewable energies	1	Gradual expansion; continued efforts to reduce costs.

Energy consumption by application

Total heat capacity of 30 co-generation plants is 5 GW(th).

Nuclear could make bigger impact by penetrating heat and transportation sectors

Prospects of non electric applications

- <u>Current and near term</u> applications using currently available nuclear reactors.
 - Desalination, with emphasis on <u>cogeneration</u>
 - District heating
 - Steam for industrial applications including heavy oil recovery
 - "Plug-in" hybrid electric vehicles using electricity
 - Hydrogen production (using electricity and heat)

<u>Mid term</u> applications using HTR

- High-temp process heat appl
- Hydrogen production
- Other appl.

Prospects for Non-Electric application

By 2050, desalination and hydrogen production are most preferred cogeneration of NPPs.

International Atomic Energy Agency

Survey Expected Non-electricity Application of NPPs

	Number of Countries		
	By 2025	By 2040	By 2050
Desalination	7	11	12
H ₂ Production	2	3	8
Process Heat	2	3	3
Coal Liquefaction	0	1	1
District Heating	2	2	2

Total Capacity of New NPPs Expected at Different Sizes

International Atomic Energy Agency

Number of New NPPs Expected at Different Sizes

Number of non-electrical units (Age is based on exploitation start date)

Statistics criteria	Groups & Sections
Base Year = 2000 (Operational in Base Year OR Shutdown in Base Year)	Group by Type

Туре	No. of Units
DH – District Heating	19
DS – Desalination	6
PH – Process Heating	9
	34

Hydrogen Demand

Hydrogen Main Consumers

World H ₂ production per year	≅ 500 billion Nm ³
Equivalent energy>	 ≅ 1.5% world energy consumption (≅ 75000 MWe equivalent converted electric power)
Raw material used>	50% is used in fertilizer production (Ammonia)
Uses of hydrogen ————————————————————————————————————	37% is used in refining processes with a tendency to increase due to the utilization of heavy oils ≅ 200 billions Nm ³ per year
	8% is used in methanol production
	1% is used in space programmes
	4% others

Hydrogen Demand

Future of the Hydrogen demand by region

Source: Hydrogen demand, production and cost by region to 2050 (ARGONNE National Laboratory)

International Atomic Energy Agency

Nuclear hydrogen production

International Atomic Energy Agency

Nuclear energy and hydrogen

Nuclear energy:

- Has been used mainly for electricity generation (more than 12000 years of reactor operation).
- Can play a significant role in areas of non electric applications like: hydrogen production, desalination, district heating, and other industrial applications.
- Still has only a small share of the non-electric application market.

Advantages of using nuclear energy for hydrogen

- Reduction of Co2 to minimal rate.
- Low nuclear fuel cost will result in low cost of hydrogen production.
- Use of off-peak electricity for hydrogen production.
- Offers high temperature coolant in some specific cases like HTGR and VHTR.
- Offers better efficiencies for Hproduction.

Hydrogen Production

- Decomposition and gasification of fossil fuel:
 - Steam reforming of methane (600-800 C).
 - Carbon dioxide reforming of methane (800-900 C).
- Decomposition of Water:
 - Thermo-chemical Water Splitting (above 900 C).
 - Electrolysis:
 - Low-temperature (below 100 C).
 - High-temperature (above 800 C).

Advances in HTR

Increased interest in

Hydrogen economy International Atomic Energy Agency

Nuclear hydrogen

- There is an *increased interest* in hydrogen as a carbon-free fuel of future.
- Demand for hydrogen is large and keeps growing (at rate of 4-10 % /year).
- Reforming of hard coal and oil (gasification): 96% of the annual hydrogen production

Characteristics of hydrogen production

- Promising
- Still under R&D
- Safety of coupling is still an issue of concern
- Cost of under development processes (thermochemical cycles & High temperature electrolysis) will be <u>a major factor</u>

CHALLENGES FOR NUCLEAR HYDROGEN PRODUCTION

Technology

- Materials selection for long term operation (corrosive, high temperature environment)
- Process system design, control and integration
- Demonstration of production processes at large scale
- Development of storage systems (e.g. 350-700 bar) due to H₂ low energy density

International Atomic Energy Agency

Safety

- Coupling of H₂ production plant with NPP
 - Preventing H₂ migration
 - Preventing H₂ combustion

CHALLENGES FOR NUCLEAR HYDROGEN PRODUCTION

Economics

- Demonstrating low H₂ production costs on an industrial scale
- Exploiting today's needs to move toward a large future market
- Building and operating a very large number of NPPs with low energy generation costs (if H₂ is to replace a significant amount of fossil fuel for transportation)
- Public acceptance
 - Both H₂ and NPPs

International Atomic Energy Agency

Hydrogen production using nuclear power

- High Temperature Electrolysis (~ 900 C).
- Sulfur-based thermo-chemical cycles for water splitting:
 - Using Sulfur- Iodine cycle.
 - Hybrid Sulfur cycle.
 - Sulfur-Bromine hybrid cycle (with molten salt gas, liquid metals, and).

High temperature electrolysis using nuclear electricity and heat

Compared to thermochemical cycles:

- Has lower efficiency than thermochemical cycles.
- Low operating temperature resulting in less daunting operating conditions (less corrosive)
- Advantage: Build on existing fuel cell technology.

Electrolysis is promising particularly in the near term future

Hydrogen Production Alternatives

Short-Term Option

Electrolysis

- Electrolysis ideal for remote and decentralized H₂ production
- Off-peak electricity from existing NPP (if share of nuclear among power plants is large)
- As fossil fuels become more expensive, the use of nuclear outside base load becomes more attractive

200 m³/h

Hydrogen Production Alternatives

Hydrogen Thermochemical Cycles

• Sulphur-lodine (S_I) cycle

• Hybrid-Sulphur (HyS) cycle.

Nuclear Hydrogen Production

Indirect Self-Sustainable cycle 600 MWth.

International Atomic Energy Agency

Nuclear Hydrogen Production

Potential Arrangement of 600 MW VHTR for H2 Production

HEEP

Hydrogen Economic Evaluation Programme

- User-friendly interface to input, view and edit the data
- Similar to IAEA-DEEP (Desalination Economic Evaluation Programme)
- Under development by IAEA/Bhabha Atomic Research Centre, Mumbai, India
- Goal: Analyze economics of nuclear hydrogen

HEEP

Inputs to be provided by the user for HEEP:

- Technical details for:
 - Nuclear power plant (NPP),
 - Hydrogen generation plant (HGP)
 - Hydrogen transportation and dispensation (HTD)
- Time schedules of NPP, HGP and HTD
- Cost components of NPP, HGP and HTD
 - Capital cost
 - Cost of fuel in case of NPP
 - Cost of consumable
 - O&M cost
 - Decommissioning cost

International Atomic Energy Agency

Processes considered in HEEP

Characteristics of the district heating

• Well proven:

Bulgaria, China, Czech Republic, Hungary, Romania, Russia, Slovakia, Sweden, Switzerland and Ukraine

- Usually produced in a <u>cogeneration mode</u>
- Limited in applications

NUCLEAR DISTRICT HEATING

Technical features:

- Heat distribution network
 - Steam or hot water 80-150°C
 - Distribution up to 10-15 km
- District heat needs:
 - Typically up to 600-1200 MW_{th} for large cities
- Annual load factor < 50%
- Usually produced in a cogeneration mode

District Heating

- Hot water or steam supply decentralized at 80 – 150°C temperature and at low pressures
- Developed networks in many countries with sizes of 600-1200 MW(th) for large cities and 10-50 MW(th) for smaller communities (total: ~50,000)
- Hot water systems wide spread in Germany, steam systems in the USA
- Insufficient economy for nuclear systems

Nuclear District Heating

NPP Beznau, Switzerland

NPP Bohunice, Czech Rep., with a 40 km grid to provide hot water at 300 kg/s at 150°C

Coal Gasification

Coal Gasification

Coal Gasification

Industrial Process Temperature required

Coal Liquefactions

Coal Liquefaction

- Coal liquefaction is a process that converts <u>COAL</u> from a solid state into liquid fuels, usually to provide substitutes for petroleum products.
- Large scale applications have existed in only a few countries, eg, Germany during WWII and South Africa since the 1960s.

There are several I&D and projects under development using direct coal liquefaction. Efficiencies of different processes are listed below:

F7 00/
57.3%
60.4 %
66.9%
65.8%
70.2 %

EDS	Sub-Bituminous Coal	57~58.5%
SRC-II	Bituminous Coal	66~71.0%
CC-ITSL	Bituminous Coal	67.9%

International Atomic Energy Agency

Coal Liquefaction

Former Coal liquefaction projects in the world

3 Types of Unconventional Oil

Extra-heavy oil = viscous oil Mainly located in Venezuela

> Oil sands Mainly located in Alberta (Canada)

> Oil shales

= rock-like material

Mainly located in the USA

International Atomic Energy Agency

Objective of Enhanced oil recovery

- Exploitation of Heavy oil Reserves
- Recovery of nature and degradated oil fields
- Production of Clean fuels and syngas from heavy sour crude oil and refinery tars /dirty fuels)

Mature and degradated oil field

- During the past 40 years, a variety of enhanced oil recovery (EOR) methods have been developed and applied to mature and mostly depleted oil reservoirs
- Each of theses methods is highly energy intensive. Electric power is used for lifting, transporting, processing, compressing and reinjecting hydrocarbons, water an injectants in and around the EOR fields
 - CO2 EOR
 - Enhanced Coalbed Methane Recovery
 - Thermal EOR: Cyclic steam and hot water injection
 - Other gas EOR: Hydrocarbon and Hydrogen injection
 - Chemical / Microbial EOR: Polymers, surfactants and alkaline chemicals

Nuclear Heavy oil Plant

Typical Production of Synthetic Crude Oil

STEAM FOR INDUSTRIAL APPLICATIONS EXAMPLE: Mining Alberta's Oil Sands

- Steam assisted gravity drainage is applied for extraction of bitumen
 - Current: 1.1 Mbbl / day of bitumen
 - 2010: 2 Mbbl / day
 - 2030: 5 Mbbl / day (Ref: Alberta Chamber of Resources)
- Requires steam at 2-6 MPa
- Currently use natural gas representing 18 % of the energy content of the mined bitumen
- An ACR-1000 can supply steam for 0.35 Mbbl / day

Tertiary Oil Recovery

Flooding with steam @ 200-340°C, 10-15 MPa

Fort McMurray, Canada **Steam-Assisted Gravity Drainage** Steam Chamber Steam Injector Oil Producer Oil Sand ormation onetwellofor steaminjections, the other for production

CANDU-6 Cogeneration for Bitumen Extraction using Open Pit Mining

Summary

- Non-electrical applications have now 700 reactor years of experience
- Nuclear desalination can be a viable option
- Hydrogen production is an important non-electrical application
- No recent increase in district heating and process heat applications

Summary

- Short term prospects: Current Water cooled reactors needs to be considered for desalination, hydrogen production, and other appli.
- Near term prospects: HTR + WCR

CONCLUSIONS

Nuclear energy can:

- Penetrate energy sectors **now served** by fossil fuels as:
 - seawater desalination
 - district heating
 - heat for industrial processes
- Provide *near-term*, greenhouse gas free, energy for transportation

Prospects:

- Short and near Near-term appl are seen through cogeneration (especially for desalination) with Water Reactors,
- Mid-term and long term appl with HTR

International Atomic Energy Agency

Opportunity to participate in the development of low carbon foot print desalination system

• NEW CRP on: New Technologies for seawater Desalination using nuclear energy (2009-2011)

The 1st RCM on above is 27-28 Oct.
 (All invited to participate)

• Support the <u>Concept Design</u> of a more energy-efficient desalination system.

The design is based on heat pipe technology (IP protected).

...Thank you for your attention

