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Review from first lecture:

Definition (Federer 1959)
The reach of a space curve is the largest ε so that any point in
an ε-neighborhood of the curve has a unique nearest neighbor
on the curve.

Idea
reach(K ) (also called thickness) is controlled by curvature
maxima (kinks) and self-distance minima (struts).
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Ropelength

Definition
The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave
2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)
Ropelength minimizers (called tight knots) exist in each knot
and link type and are C1,1.

We can bound Rop in terms of Cr.
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Ropelength

Definition
The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave
2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)
Ropelength minimizers (called tight knots) exist in each knot
and link type and are C1,1.

We can bound Rop in terms of Cr. For small knots, the most
effective bound is

Theorem (Diao 2006)

Rop(K ) ≥ 1
2

(
17.334 +

√
17.3342 + 64π Cr(K )

)
.
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Ropelength

Definition
The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave
2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)
Ropelength minimizers (called tight knots) exist in each knot
and link type and are C1,1.

We can bound Rop in terms of Cr. For large knots, the most
effective bound is

Theorem (Buck and Simon 1999)

Rop(K ) ≥ 2.210 Cr3/4 .
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Bounding ropelength in terms of topological invariants

Definition
Peri(n) is the minimum length of any curve surrounding n
disjoint unit disks in the plane.

Theorem (with Kusner, Sullivan 2002)
Suppose K is topologically linked to n components and K and
all the other components have unit reach. Then

Rop(K ) ≥ 2π + Peri(n).
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Proof (sketch) of Peri(n) bound for ropelength

Proposition
For any closed curve K of unit reach, there is a point p outside
the tube around K so that the cone of K to p has (intrinsic)
cone angle 2π.

Idea
The intrinsic geometry of the cone is Euclidean and the other
components puncture it in n disjoint disks.
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This bound is sometimes sharp

For some examples, the Peri(n) bound is actually sharp.
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Linking number bounds for ropelength

Theorem (with Kusner, Sullivan 2002)
If K and J have the same reach, then

Rop(K ) ≥ 2π + 2π
√

Lk(K , J).

Proof.
A unit norm vector field flowing along the tube around J has flux
across the Euclidean cone spanning K of π Lk(K , J), so the
cone has at least this area.

Remark
The extra 2π comes from the portion of the spanning disk in the
tube around K and depends on cone angle. If K was knotted,
we could find a 4π cone point and improve it to 4π.
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Another linking number bound on ropelength

It is interesting to compare this bound to

Theorem (Diao, Janse Van Rensburg 2002)
If K and J have unit reach, is a constant c2 so that

min{Len(K ) Len(J)1/3, Len(K )1/3 Len(J)} ≥ c2 Lk(K , J)

Proof.
Proved by directly bounding the Gauss linking integral

Lk(K , J) =
1

4π

∫∫
K ′(s)× J ′(t) · (K (s)− J(t))

|K (s)− J(t)|3
ds dt .
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Open question

Open Question
Can you find bounds on ropelength in terms of finite-type
invariants by looking at their integral formulations?

Definition
Let ω be the pullback of area form on S2 to R3 under x $→ x/ |x |.

For example, we note that the Gauss integral can be written

Lk(K , J) =

∫

S1×S1
ω(K (s)− J(t)).
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Open question (continued)

x

Definition
Let ∆4 = {(s1, s2, s3, s4)|s1, s2, s3, s4 in order on S1} and

∆3 = {(s1, s2, s3; x)|s1, s2, s3 in order on S1

and x ∈ R3 not on K (S1)}.
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Open question (continued)

Theorem (Lin, Wang 1996)
The second coefficient of the Conway polynomial v2
(normalized so v2(unknot) = −1/24) obeys

v2 =

∫

∆4

ω(K (s3)− K (s1)) ∧ ω(K (s4)− K (s2))

−
∫

∆3

ω(x − K (s1)) ∧ ω(x − K (s2)) ∧ ω(x − K (s3))

Open Question
In particular, can you bound this integral for v2 above in terms
of ropelength?
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Other finite-type invariants

Theorem (Thurston 1995, Altschuler and Friedel 1995)
All of the finite type invariants have integral formulations
defined in terms of linear combinations of Gauss-type integrals
of configuration spaces of points on the knots and in space.

(Actually defining the integrals would take too long to do here.)

Open Question
Is ropelength bounded below by a certain power of any
finite-type invariant of type n? If so, what power?
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Approximating Ropelength Minimizers

Definition
The ropelength of a polygon is defined by

Rop(P) = min
{

MinRad(P),
dcsd P

2

}
.

where MinRad(P) is the minimum radius of all the circle arcs
inscribed at vertices of P so that they are tangent to P at both
ends and touch the midpoint of the shorter edge at each vertex.
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A hunting license

Theorem (Rawdon 2000)

Suppose that P is a polygonal knot. Then there exists a C1,1

knot K inscribed in P so that

Rop(P) ≥ Rop(K )

Given this theorem, we can use computational methods to find
upper bounds for smooth ropelength by finding tight polygonal
knots.
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Some more tight polygonal knots . . .
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Some more tight polygonal knots . . .
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EE
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Tightening knots by computer

Simulated annealing
Laurie, Stasiak, et. al. 1997
Rawdon 2000-2006 TOROS
Smutny, Maddocks 2003-2004 (for a kind of spline)

Gradient Descent
Baranska, Pieranski, Przybl, Rawdon 2000-2008 SONO

Results (with Ashton, Piatek, Rawdon 2006) ridgerunner:

Link name Hopf link (22
1) 22

1#22
1 Borromean rings (63

2)
Vertices 216 384 630
Rop bound 25.1389 41.7086588 58.0146
Rop 8π 12π + 4 58.0060
Error 0.02% 0.02% 0.01%
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How does it work?

Simulates the gradient flow of length

. . . with struts entered as new constraints as they form . . .

. . . eventually all motion is stopped by constraints.
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Movies

Nobody could resist showing a few minutes of movie footage
from this process. (It’s Friday afternoon, after all!)
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Ok, now back to work . . .

Open Question
Can a tightening knot get “stuck” in a local ropelength minimum
before reaching the global minimum?

41β, Rop(K ) = 44.868 41, Rop(K ) = 42.099
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Gordian Unknots

Open Question
Is there an unknotted local minimum for ropelength other than
the circle?

Theorem (Smale Conjecture, Hatcher 1983)

The space of smoothly embedded unknotted circles in S3

deformation retracts onto the space of great circles in S3.

So answer might be “no”. BUT . . . (Pieranski et.al. 2004)

Cantarella Geometric Knot Theory



Important open questions

Open Question
Find an energy functional for which there is only one unknotted
local minimum for energy.

Remark
Of course, this is probably very hard, since it would provide an
alternate proof of the Smale conjecture. Freedman tried it in the
1990s without success.

Open Question
Classify the energy functionals which must have unknotted
local minima. (Ropelength? Freedman/O’Hara “repulsive
charge” energies?)
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Ropelength-critical configurations

Definition
The set Kink is the set of two-jets (x , v , a) with radius of
curvature 1 in the closure of the set of 2-jets of L. If L is
(piecewise) C2, then Kink is the set of points with radius of
curvature λ.

Definition
The set Strut is the set of pairs of points (x , y) on L with xy ⊥ L
at x and y and |x − y | = 2 reach(L).

Idea
The struts and kinks prevent L from reducing length without
also reducing reach.

Cantarella Geometric Knot Theory



Strut measures

Definition
A strut measure is a non-negative Radon measure on the struts
representing a compression force pointing outwards.

Definition
A strut force measure ~S on L is the vector-valued Radon
measure defined at each point p of L by integrating a strut
measure over all the struts with an endpoint at p.
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Main Theorem

Theorem (with Fu, Kusner, Sullivan, Wrinkle (in preparation))
Suppose L is ropelength-critical, and that Kink is included in a
finite union of closed C2 subarcs of L. Then ∃ a strut force
measure ~S and a lower semicontinuous function ϕ ∈ BV(L)
such that (ϕN)′ ∈ BV(L), with

~S|interior L = −
(
(1− 2ϕ)T − (ϕN)′

)′∣∣∣
interior L

.

If p is a fixed endpoint of L, ϕ(p) = 0.

We are supposed to think of ϕ as a “kink force measure”.
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Ideas from the proof

Theorem (an application of ∞-dim’l Kuhn-Tucker theorem)
Suppose L is regular and reach(L) ≥ 1. Then L is
ropelength-critical iff there exist nonnegative Radon measures
µ on Strut(L) and ν on Kink(L)such that for any compatible
vector field ξ,

δξ length(L) =

∫

Strut(L)
〈x − y , ξx − ξy 〉dµ(x , y)

+

∫

Kink(L)
δξr dν(x , v , a).

Integrate by parts to derive the Euler-Lagrange equation:

~S︸︷︷︸
from dµ

= −( 1︸︷︷︸
from δ length

−2ϕ)T − (ϕN)′︸ ︷︷ ︸
from δr ,dν

)′.
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Applications of the criticality theorem

Theorem (with Fu, Kusner, Sullivan, Wrinkle 2006)
An explicit construction of a critical configuration of the
Borromean rings with ropelength a definite integral which
evaluates to ∼ 58.0060.

Criticality for the Gehring Link Problem 53

T S

R

M
J

I
x

y

z

M̃
J̃

Ĩ

T̂

Ŝ
R̂

Figure 19: One octant of the critical Borromean rings B0 consists of three rotated images

of an arc IJMRT of the type shown in Figure 18. The dotted lines are struts of length 1
connecting the labeled points. We now describe all other struts to IT in this octant. Of course,

all along the circular arc JMR there are struts to its center Ĩ . Also, between the marked
struts are several one-parameter families of struts, joining two arcs. The first family joins the

conjugate clasp arcs RS and Ĩ J̃ ; a second family connects ST to the circular arc J̃M̃ . The

other families are rotated images of these, connecting JM to ŜT̂ , and IJ to R̂Ŝ . The struts
{T̂ , M} and {M, Ĩ} are colinear. To balance IT , it is important to consider also the mirror-
image struts across the xy -plane. This figure is an accurate drawing of B0 , except that we

have exaggerated the separation between M and J : their actual distance is smaller than the
width of the lines used in the picture.

Geometry & Topology, Volume X (20XX)
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Classification of critical curves without struts

In a kink-only critical curve, we have ~S = 0, so

(1− 2ϕ)T − (ϕN)′ ≡ V0 = constant. (1)

Notice that V0 is some conserved vector along the curve.
Differentiating, we show a vector is equal to 0. This yields

ϕ′′ + (κ2 − τ2)ϕ = κ2 (2)

τϕ2 = c (3)

for some constant c. Since κ = 1, this is a system of ODE for τ
and ϕ with initial conditions specified by c and ϕ(0), and a
constant solution ϕ = ϕ0(c).

Cantarella Geometric Knot Theory



Pictures of solutions

ϕ0(c)× 1 1.125 1.25 1.5 1.75 2

c = 1
2

c = 1

c = 3
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The general case.

We may assume c /= 0, so ϕ is not always zero. Where ϕ > 0,
we have τ = c/ϕ2, so (2) and (3) become the semilinear ODE

ϕ′′ = κ2(1− ϕ) +
c
ϕ3 := fc(ϕ). (4)

Lemma
All solutions of (4) are positive periodic functions.

Proof.
(4) is an autonomous system with integrating function

F (x , y) =

(
κ2

2
x2 +

1
2

y2
)
− κ2x +

c2

2x2 = const, (5)

where x = ϕ and y = ϕ′.
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The general case (continued).

Theorem (CFKSW (2008))

Any closed piecewise C2 λ-critical curve with no strut force
measure is a circle of radius λ/2.

Proof.
We have reduced to the case ϕ > 0 with period P. Note

T · V0 = (1− 2ϕ)− ϕT · N ′ = 1− ϕ. (6)

Solving (4) for 1− ϕ, we see 1− ϕ = 1
κ2 ϕ′′ − c

κ2ϕ3 . So we have

∫ P

0
T · V0 ds =

∫ P

0

1
κ2 ϕ′′ − c

κ2ϕ3 ds = − c
κ2

∫ P

0
ϕ−3 ds. (7)

This /= 0, since c /= 0 and ϕ > 0. So over each period the curve
moves a constant distance in the V0 direction.
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Maybe how to find alternate critical configurations

?

Remark
This strategy can’t be extended to find Gordian unknots,
because the round circle already has a symmetry of every
period.
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Maybe how to find alternate critical configurations

?

Theorem (with Fu, Kusner, Sullivan, Wrinkle, in preparation)
There is another critical configuration of 31 with 2-fold
symmetry.

Proof.
The proof is based on a symmetric version of the criticality
theorem. There should be a critical configuration with 3-fold
and with 2-fold symmetry (Kawauchi shows no configuration
has period 6.)

Remark
This strategy can’t be extended to find Gordian unknots,
because the round circle already has a symmetry of every
period.
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But not Gordian unknots . . .

?

Remark
This strategy can’t be extended to find Gordian unknots,
because the round circle already has a symmetry of every
period.
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Open Question

Open Question
Can you find an exact description of the shape of a tight knot?

You have the balance theorem to work with and a tremendous
amount of numerical data to help solve the structure. For
instance, here’s a plot of the curvature of the knot:

554 The European Physical Journal B

Fig. 14. Curvature profile of the tightest parametrically de-
fined 31 knot. The arrow indicates one of the three places
within the knot where the double peaks are formed.

Fig. 15. Details of one of the double peaks of the curvature
profile of the 31 knot. The numerous sharp deeps reflect the
corrugation of the surface of perfect rope simulated by SONO.
Note that the curvature peaks here reach the κ = 1 limit.

of the knot is 34.16. No further reduction of its length in
this smooth, parametrically defined conformation is pos-
sible; at smaller values of R0 overlaps appear. Figure 14
shows the curvature profile of the tightest parametrically
defined 31 knot. It can be seen that the double peaks are
already there, although in a much less sharp form.

A closer look at the double peaks visible in the cur-
vature profile of the SONO tightened knot reveals an in-
teresting detail (Fig. 15). It is clear that the double peaks
hit the κ = 1 limit. We have discussed the problem in
detail before [43]. That the κ = 1 limit is reached is es-
sential, since it answers the doubts raised by Smutny if in
the conformation of the ideal 31 knot the curvature limit
also becomes active (Fig. 16).

Finding the torsion profiles of simulated knots creates
some problems. Torsion is a variable connected with third
derivatives, and so when it is determined from numerical
data it will display strong fluctuations. Variables which
can be determined directly from the numerical data pro-
vided by SONO are the signed torsion angles αi, between
the osculating planes of consecutive arcs inscribed into the
polygonal knot Kp. The signed torsion angles, determined

Fig. 16. Left - the tight trefoil can be seen as consisting of
loops and parts piercing the loops. Curvature of the loop parts
is close to 1/2. In the piercing parts, the curvature profile devel-
ops the double peaks. Right - in places where curvature meets
the κ = 1 limit, the surface of the rope develops singularities.

Fig. 17. Torsion angles in the inscribed knot Kc.

Fig. 18. Accumulated torsion angle vs. the arclength.

with the use of formula (23) are plotted in Figure 17. As
expected, their fluctuations are very strong.

However, a plot of the accumulated torsion angles β
versus the arclength s, where βi:

βi =
i∑

k=1

αk (29)

reveals that it behaves in a much more predictable manner
(Fig. 18).
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with the use of formula (23) are plotted in Figure 17. As
expected, their fluctuations are very strong.

However, a plot of the accumulated torsion angles β
versus the arclength s, where βi:

βi =
i∑

k=1

αk (29)

reveals that it behaves in a much more predictable manner
(Fig. 18).

(Baranska, Pieranski, and Przybyl 2008)
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Numerical Data on the Trefoil Knot

The struts are described by points on the (s, t) plane:

0.00

1.64

3.27

4.91

6.55

8.19

9.82

11.46

13.10

14.73

16.37

0

1

2

kl_3_1_1200e.final.vect / 1200 verts / 1560 struts

Length: 16.3719 / minstrut: 0 / minrad: 0.499978

Curvature range: [0.898271, 2.00009]

(with Ashton, Piatek, Rawdon 2005)
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But 818 might actually be easier to solve...

0.00

7.49

14.99

22.48

29.97

37.47

44.96

52.46

59.95

67.44

74.94

0

1

2

14.28

33.05

42.43

Link Ropp Rop Filename Verts Struts κ range Kink Straight

818 74.9421 74.9253 kl_8_18_I.vect 535 1213 [0.382439, 1.00006] 3

32
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Conclusion: One last open problem...

Definition
The writhe of a space curve K is given by

Wr(K ) =
1

4π

∫∫
K ′(s)× K ′(t) · (K (s)− K (t))

|K (s)− K (t)|3
ds dt .

Open Question
For an unknot, is there a constant c so Wr(K ) ≤ c Rop(K )?
This is not true for nontrivial knots, since (n, n − 1) torus have
Wr ∼ Rop4/3.

Remark
This would be implied if alternating knots had ropelength linear
in their crossing numbers.
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Thank you for inviting me!

Thank you for inviting me! (And more movies if there’s time . . . )
Slides on the web at:

http://www.jasoncantarella.com/

under “Courses” and “Geometric Knot Theory”.
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Another solution: Clasps

What happens when a rope is pulled over another?

arcsin τ

It depends on the angle (τ ) and the stiffness (λ) of the rope.
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Four types of clasps

fully kinked

Gehring

generic

transitional

0.5

1.0

1.5

2.0

2.5

λ

0.2 0.4 0.6 0.8 τ
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Gehring clasp (CFSKW 2006)

δ length balanced against strut force only.
Curvature given explicitly, position as an elliptic integral.
Small gap between the two tubes.
Curvature unbounded at tip.
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Kinked, Transitional, Generic Clasps

kink
shoulder

kink Gehring
shoulder

Kinked Clasp Transitional Clasp Generic Clasp

Cantarella Geometric Knot Theory




