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Abstract. In the present paper closed integral formulae for the
volumes of spherical octahedron and hexahedron having non-trivial
symmetries are established. Trigonometrical identities involving
lengths of edges and dihedral angles (Sine-Tangent Rules) are ob-
tained. This gives a possibility to express the lengths in terms of
angles. Then the Schläfli formula is applied to find the volume of
polyhedra in terms of dihedral angles explicitly. These results and
the canonical duality between octahedron and hexahedron in the
spherical space allowed to express the volume in terms of lengths
of edges as well.
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1. Introduction and Preliminaries

The calculation of volume of polyhedron is very old and difficult
problem. Probably, the first result in this direction belongs to Tartaglia
(1499–1557) who found the volume of an Euclidean tetrahedron. Nowa-
days this formula is more known as Caley-Menger determinant. A few
years ago it was shown by I. Kh. Sabitov [Sb] that the volume of any
Euclidean polyhedron is a root of algebraic equation whose coefficients
are functions depending of combinatorial type and lengths of polyhe-
dra.

In hyperbolic and spherical spaces the situation is much more com-
plicated. Gauss, who is one of creators of hyperbolic geometry, use
the word ”die Dschungel” in relation with volume calculation in non-
Euclidean geometry. Since Lobachevsky [Lb] and Schläfli [Sch1] the
volume formula for biorthogonal tetrahedron (orthoscheme) is known.
The volume of the Lambert cube and some other polyhedra were cal-
culated by R. Kellerhals [K], D. A. Derevnin, A. D. Mednykh [DM1],
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A. D. Mednykh, J. Parker, A. Yu. Vesnin [MPV] and others. The vol-
ume of hyperbolic polyhedra with at least one vertex at infinity was
found by E. B. Vinberg [V].

The general formula for volume of tetrahedron remained to be un-
known for a long time. A few years ago Y. Choi, H. Kim [ChK],
J. Murakami, U. Yano [MY] and A. Ushijima [U] were succeeded in
finding of a such formula. D. A. Derevnin, A. D. Mednykh [DM2]
suggested an elementary integral formula for the volume of hyperbolic
tetrahedron. We note that the volume formula for symmetric tetrahe-
dra whose opposite dihedral angles are mutually equal is rather sim-
ple. For the first time this phenomena was discovered by Lobachevsky
[Lb] for ideal hyperbolic tetrahedra, which is automatically symmetric.
The respective result in quite elegant form was presented by J. Milnor
[M1]. For general case of symmetric tetrahedron the volume was given
by D. A. Derevnin, A. D. Mednykh and M. G. Pashkevich [DMP].

Surprisedly, but a hundred years ago, in 1906 an essential advance
in volume calculation for non-Euclidean tetrahedra was achieved by
Italian Duke Gaetano Sforza. It came to light during discussion of
the third named author with Jose Maria Montesinos-Amilibia at the
conference in El Burgo de Osma (Spain), August 2006. Unfortunately,
the outstanding work by Sforza [Sf] has been completely forgotten.

One of the key tools in the calculation of convex polyhedra in constant
curvature spaces is the Schläfli differential formula. In the present
paper we need the case of dimension three.

Theorem 1 (Schläfli formula). Let P be a convex polyhedron in the

spaces S
3 or H

3. If P is deformed in such a way that its combinatorial

structure is preserved, while its dihedral angles vary in a differentiable

manner, then the volume V = V (P ) also varies in a differential manner

and the volume differential is given by

K dV =
1

2

∑

i

ℓi dαi ,

where K is the curvature of the space, the sum is taken over all the

edges of P, ℓi denotes the length of the i-th edge and αi denotes dihedral

angle along it.

In classical paper by Schläfli [Sch2] this formula was proved for the
case of spherical n-simplex. For hyperbolic case it was obtained by
H. Kneser [Kn]. For more details see also [V] and [M2].
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2. Volume of the Spherical Octahedron with mmm
Symmetry

Consider a spherical octahedron O with mmm symmetry, that is
symmetric with respect of reflections in three mutually orthogonal
planes passing through its edges. We notice that in this case polyhe-
dron has eight congruent faces. Denote the lengths of edges by a, b, c,
dihedral angles by A, B, C and the face angles by α, β, γ as shown on
Fig. 1. In this notation face angle α is the opposite to the side with
length a and the dihedral angle A can be found between two faces
meeting in a side with length a.

Figure 1. Octahedron O = O(a, b, c, A, B, C) with
mmm symmetry.

For the Euclidean case the following result is given in [GMS].

Theorem 2 (Galiulin, Mikhalev, Sabitov, 2004). Let V be the volume

of an Euclidean octahedron O(a, b, c, A, B, C) with mmm symmetry.

Then V is a positive root of equation

9V 2 = 2(a2 + b2 − c2)(a2 + c2 − b2)(b2 + c2 − a2) .

To find the volume of such an octahedron in spherical space we obtain
the following trigonometrical identity at first.
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Theorem 3 (The Sine-Tangent Rule). Let O(a, b, c, A, B, C) be a spher-

ical octahedron with mmm symmetry, then the following trigonometric

rule holds
sin A

tan a
=

sin B

tan b
=

sin C

tan c
= T = 2

K

C
,

where K and C are positive numbers defined by

K2 = (z − xy)(x − yz)(y − xz), C = 2xyz − x2 − y2 − z2 + 1

and x = cos a, y = cos b and z = cos c.

Proof. Consider an intersection O = O(a, b, c, A, B, C) with a suffi-
ciently small sphere centered on a vertex of O (see Fig. 2(i)). Without
loss of generality, we assume that the intersection is a spherical quadri-
lateral with interior angles B, C, B and C. Since the polyhedron under
consideration admits the mmm symmetry the respective quadrilateral
is a spherical romb with side α (Fig. 2(ii)).

i

Figure 2. Octahedron O = O(a, b, c, A, B, C) inter-
sected with a horosphere, and the resulting spherical
quadrilateral.

Given the symmetry hypothesis, the quadrilateral can be divided in
four right spherical triangles with angles B/2 and C/2 and hypotenuse
with length α. Applying Pythagoras Theorem for spherical right tri-
angles, the identity

cos α = cot
B

2
cot

C

2
takes place. Similar relations hold for the angles β and γ.

Rewriting the previous relation, it is immediate to obtain

cot2
A

2
=

cos β cos γ

cos α
, cot2

B

2
=

cos α cos γ

cos β
, cot2

C

2
=

cos α cos β

cos γ
.
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The previous identities relate the dihedral angles and the face angles
of O. Similarly, it is possible to find relations between lengths and
angles. Applying the first cosine rule to a face, the identities

cos a = cos b cos c + sin b sin c cos α ,

cos b = cos a cos c + sin a sin c cos β ,

cos c = cos a cos b + sin a sin b cos γ

are valid. Rewriting the previous relation, the equivalent identities are
obtained

cos α =
cos a − cos b cos c

sin b sin c
,

cos β =
cos b − cos a cos c

sin a sin c
,

cos γ =
cos c − cos a cos b

sin a sin b
.

Defining new variables

x = cos a , y = cos b , z = cos c ,

X = cos A , Y = cos B , Z = cos C

it is immediate to observe that

cot2
A

2
=

(y − xz)(z − xy)

(x − yz)(1 − x2)
,

cot2
B

2
=

(x − yz)(z − xy)

(y − xz)(1 − y2)
,

cot2
C

2
=

(x − yz)(y − xz)

(z − xy)(1 − z2)
.

And, from the previous relations, the following equations are valid

sin A = 2
(1 − x2)1/2

x

K

C
,

sin B = 2
(1 − y2)1/2

y

K

C
,

sin C = 2
(1 − z2)1/2

z

K

C
,

where

K2 = (z − xy)(x − yz)(y − xz) and C = 2xyz − x2 − y2 − z2 + 1.

�
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We note that in the Sine-Tangent Rule the parameter T is given in
terms of edges of octahedron O. To find the volume of O we have to
express T in terms of dihedral angles.

Remark 1. The value T in the Sine-Tangent Rule satisfies the follow-

ing equation

T 2 +
(1 + X)(1 + Y )(1 + Z)

1 + X + Y + Z
= 0 ,

where X = cos A, Y = cos B and Z = cos C.

Proof. To achieve this, we apply the second cosine rule to a face of O,
obtaining

cos a =
cos β cos γ + cos α

sin β sin γ
.

By rather simple trigonometric identities, we obtain

cot2 a =
(cos α + cos β cos γ)2

1 − (2 cos α cos β cos γ + cos2 α + cos2 β + cos2 γ)
.

Using the relations between face angles and dihedral angles, we rewrite
the latter in terms of X, Y and Z as

cot2 a =
(1 + Y )(1 + Z)

(X − 1)(1 + X + Y + Z)
.

Then the statement follows from identity T 2 = cot2 a sin2 A . �

It follows from Theorem 3 that a mmm symmetric spherical octa-
hedron is completely determined by its dihedral angles, hence O =
O(A, B, C).

Before proving the volume formula, the following technical lemma is
needed.

Lemma 1. If

tan2 θ +
(1 + X)(1 + Y )(1 + Z)

1 + X + Y + Z
= 0

then

arth(X cos θ) + arth(Y cos θ) + arth(Z cos θ) + arth(cos θ) = 0 .

Proof. Since

1

cos2 θ
= 1 −

(1 + X)(1 + Y )(1 + Z)

1 + X + Y + Z
= −

XY + XZ + Y Z + XY Z

1 + X + Y + Z

we have

X + Y + (XZ + Y Z) cos2 θ + Z + 1 + (XY + XY Z) cos2 θ = 0.
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Equivalently,
X + Y

1 + XY cos2 θ
= −

Z + 1

1 + Z cos2 θ
.

Multiplying the latter equation by cos θ we obtain

th(arth(X cos θ) + arth(Y cos θ)) = −th(arth(Z cos θ) + arth(cos θ)) .

Since both arguments of hyperbolic tangent are real the statement of
Lemma follows. �

Now we are able to obtain the following theorem.

Theorem 4 (Volume of the mmm Octahedron). Let O = O(A, B, C)
be a spherical octahedron with mmm symmetry. Then the volume V =
V (O) is given by

2

∫ θ

π

2

(

arth(X cos τ)+arth(Y cos τ)+arth(Z cos τ)+arth(cos τ)
) dτ

cos τ
,

where X = cos A, Y = cos B, Z = cos C and 0 ≤ θ ≤ π/2 is a root of

equation

tan2 θ +
(1 + X)(1 + Y )(1 + Z)

1 + X + Y + Z
= 0.

Moreover, θ is determined by the Sine-Tangent Rule

sin A

tan a
=

sin B

tan b
=

sin C

tan c
= tan θ .

Proof. To obtain this result, it is necessary to verify the Schläfli for-
mula, that is

dV = 2(a dA + b dB + c dC) ,

or equivalently, to check that

∂V

∂A
= 2a ,

∂V

∂B
= 2b ,

∂V

∂C
= 2c .

We notice that the volume V is the unique solution of the above
system of differential equations satisfying the condition V → 0 as
a = b = c → 0.

Denote the integrand

arth(X cos τ) + arth(Y cos τ) + arth(Z cos τ) + arth(cos τ)

cos τ

by F (X, Y, Z, τ). Then by the Leibniz rule we get

∂V

∂A
= 2F (X, Y, Z, θ)

∂θ

∂A
+ 2

∫ θ

π/2

∂F

∂A
dτ .
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By Lemma 1 we F (X, Y, Z, θ) = 0 . Hence by Sine-Tangent Rule (The-
orem 3) we obtain

∂V

∂A
=

∫ θ

π/2

2 sin A

cos2 τ cos2 A − 1
dτ = 2 arctan

sin A

tan θ
= 2a .

The equations
∂V

∂B
= 2b and

∂V

∂C
= 2c can be derived in a similar

way.
We note that in the case a = b = c by Theorem 3 we have

T = tan θ = 2

√

(x − x2)3

2x3 − 3x2 + 1
, where x = cos a .

Hence, tan θ → +∞ and θ → π/2 as x → 1 − 0 . Then the condition
V → 0 as a = b = c → 0 follows from the convergence of integral

V =

∫ θ

π/2

F (A, B, C, τ) dτ .

�

3. Hexahedron Dual to the Octahedron with mmm
Symmetry

Let P be a spherical polyhedron, and let P ∗ be its dual. If an edge
of length a has associated a dihedral angle A, then the corresponding
edge of P ∗ has length a∗ = π −A and dihedral angle A∗ = π − a. The
previous arguments allow to obtain the following analogues of Theo-
rems 3 and 4 for hexahedron H(a, b, c, A, B, C) with mmm symmetry
dual to octahedron O(a∗, b∗, c∗, A∗, B∗, C∗).

Theorem 5 (The Sine-Tangent Rule). Let H(a, b, c, A, B, C) be a spher-

ical hexahedron with mmm symmetry, then the following trigonometric

rule holds
sin a

tan A
=

sin b

tan B
=

sin c

tanC
= 2

K

C
,

where X = cos A, Y = cos B, Z = cos C, K and C are defined by

K2 = −(X+Y Z)(Y +XZ)(Z+XY ) and C = 2XY Z+X2+Y 2+Z2−1.

Theorem 6 (Volume of Hexahedron). Let H = H(A, B, C) be a spher-

ical hexahedron with mmm symmetry. Then the volume V = V (H) is

given by

2Re

∫ π

2

θ

(

arch
X

cos τ
+ arch

Y

cos τ
+ arch

Z

cos τ
+ arch

1

cos τ

)

dτ

sin τ
,
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where X = cos A, Y = cos B, Z = cos C and 0 ≤ θ ≤ π/2 is a root of

equation

tan2 θ +
(2XY Z + X2 + Y 2 + Z2 − 1)2

4(X + Y Z)(Y + XZ)(Z + XY )
= 0 .

4. Volume of the Spherical Octahedron with 2|m
Symmetry

We consider octahedron O = O(a, b, c, d, A, B, C, D) with lengths of
edges a, b, c, d and corresponding dihedral angles A, B, C, D which has
2|m symmetry (Fig. 3).

D,d

D,d

p

m

2|m

Figure 3. Octahedron O = O(a, b, c, d, A, B, C, D)
with 2|m symmetry.

For the Euclidean case the following result is given in [GMS]

Theorem 7 (Galiulin, Mikhalev, Sabitov, 2004). Let V be the volume

of an Euclidean octahedron O(a, b, c, d, A, B, C, D) with 2|m symmetry.

Then V is a positive root of equation

9V 2 = (2a2 + 2b2 − c2 − d2)(a2 − b2 + cd)(b2 − a2 + cd) .

To find the volume of such an octahedron in spherical space, it is neces-
sary to obtain a trigonometrical identity relating lengthes and angles.
The following theorem holds.

Theorem 8 (The Sine-Tangent Rule). Let O(a, b, c, d, A, B, C, D) be a

spherical octahedron with 2|m symmetry. Then the following trigono-

metric rule holds

sin A

tan a
=

sin B

tan b
=

sin
C + D

2

tan
c + d

2

=
sin

C − D

2

tan
c − d

2

= tan θ ,
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where 0 ≤ θ ≤ π/2 is a number defined by

cos2 θ +
X + Y + Z + W

XY Z + XY W + XZW + Y ZW
= 0,

X = cos A, Y = cos B, Z = cos
C + D

2
and W = cos

C − D

2
.

Proof. This relations are obtained by straightforward calculations sim-
ilar to those in the proof of Theorem 3. �

Thus, what we have realized is the important fact that a 2|m sym-
metric spherical octahedron is completely determined by its dihedral
angles, hence O = O(A, B, C, D).

The following technical lemma (similar to Lemma 1) takes place.

Lemma 2. If

cos2 θ +
X + Y + Z + W

XY Z + XY W + XZW + Y ZW
= 0,

then

arth(X cos θ) + arth(Y cos θ) + arth(Z cos θ) + arth(W cos θ) = 0 .

Proof. By the data we have

X +Y +(XZW +Y ZW ) cos2 θ+Z +W +(XY Z +XY W ) cos2 θ = 0 .

Equivalently,
X + Y

1 + XY cos2 θ
= −

Z + W

1 + ZW cos2 θ
.

Multiplying the latter equation by cos θ we obtain

th(arth(X cos θ)+arth(Y cos θ)) = −th(arth(Z cos θ)+arth(W cos θ)) .

Since both arguments of hyperbolic tangent are real the statement of
Lemma follows. �

With this considerations, we are able to prove the following

Theorem 9 (Volume of the 2|m Octahedron). Let O = O(A, B, C, D)
be a spherical octahedron with 2|m symmetry. Then the volume V =
V (O) is given by

2

∫ θ

π

2

(

arth(X cos τ)+arth(Y cos τ)+arth(Z cos τ)+arth(W cos τ)
) dτ

cos τ
,

where X = cos A, Y = cos B, Z = cos
C + D

2
, W = cos

C − D

2
and

0 ≤ θ ≤
π

2
is a root of equation
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cos2 θ +
X + Y + Z + W

XY Z + XY W + XZW + Y ZW
= 0.

Moreover, θ is determined by the Sine-Tangent Rule

sin A

tan a
=

sin B

tan b
=

sin
C + D

2

tan
c + d

2

=
sin

C − D

2

tan
c − d

2

= tan θ .

Proof. The Schläfli formula, restricted to our case, ensures that

dV = 2 arctan

(

sin A

tan θ

)

dA + 2 arctan

(

sin B

tan θ

)

dB

+ 2 arctan

(

sin C

tan θ

)

dC + 2 arctan

(

sin D

tan θ

)

dD .

We note that volume V is the unique solution of the above differential
equation satisfying the condition V → 0 as a = b = c = d → 0.

As in Theorem 4, denote the integrand

arth(X cos τ) + arth(Y cos τ) + arth(Z cos τ) + arth(W cos τ)

cos τ

by F (A, B, C, D, τ). Then

V (θ) = 2

∫ θ

π/2

F (A, B, C, D, τ) dτ .

By the Leibniz rule we get

∂V (θ)

∂A
= 2 F (A, B, C, D, θ)

∂θ

∂A
+ 2

∫ θ

π/2

∂F (A, B, C, D, τ)

∂A
dτ ,

but from Lemma 2 we have that F (A, B, C, D, θ) = 0, thus

∂V (θ)

∂A
= 2

∫ θ

π/2

∂F (A, B, C, D, τ)

∂A
dτ

= 2

∫ θ

π/2

− sin A

1 − cos2 A cos2 τ
dτ = 2 arctan

(

sin A

tan θ

)

= 2a .

A similar argument follows for the dihedral angle B, hence
∂V

∂B
= 2b .

For the dihedral angle C (and similarly for D), it is clear that

∂V (θ)

∂C
= 2F (A, B, C, D, θ)

∂θ

∂C
+ 2

∫ θ

π/2

∂F (A, B, C, D, τ)

∂C
dτ ,
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but from Lemma 2 we have that F (A, B, C, D, θ) = 0, thus

∂V (θ)

∂C
= 2

∫ θ

π/2

∂F (A, B, C, D, τ)

∂C
dτ

= 2

∫ θ

π/2









− sin

(

C + D

2

)

1 − cos2

(

C + D

2

)

cos2 τ

+

− sin

(

C − D

2

)

1 − cos2

(

C − D

2

)

cos2 τ









dτ

= 2 arctan

sin

(

C + D

2

)

tan θ
+ 2 arctan

sin

(

C − D

2

)

tan θ

= 2

(

c + d

2

)

+ 2

(

c − d

2

)

= 2c .

As in the proof of Theorem 4, we have V → 0 as a = b = c = d → 0.
�
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[Sch2] L. Schläfli, On the multiple integral
∫ ∫

. . .
∫

dxdy . . . dz whose limits are

p1 = a1x + b1y + . . . + h1z > 0, p2 > 0, . . . pn > 0 and x2 + y2 + . . . + z2 < 1
// Quart. J. Math., 2, 1858. – P. 269–300; 3, 1860. – P. 54–68; 97–108.

[Kn] H. Kneser, Der Simplexinhalt in der nichteuklidischen Geometrie //
Deutsche Math. 1, 1936. – P. 337–340.

[M2] J. W. Milnor, How to Compute Volume in Hyperbolic Space // Collected
Papers 1, Geometry, Publish or Perish, 1994. – P. 189–212.

[GMS] R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, Some Applications of the

Formula for the Volume of an Octahedron // Mathematical Notes, 76(1),
2004. – P. 25–40.



14 N. V. ABROSIMOV, M. GODOY-MOLINA, A. D. MEDNYKH

Authors addresses:

Nikolay V. Abrosimov

Sobolev Institute of Mathematics,

Novosibirsk, 630090, Russia

abrosimov@math.nsc.ru

Mauricio Godoy-Molina
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