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This talk was motivated by:

Lomonace and Kouffman, Quantum Knots and
Mosaics, Journal of Quantum Information

1Processing, vol. 7, 'Nos_ 2-3, (2008), 85-
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Knots Naturally Arise in the
| Guantum World as Dynamical Processes

Examples of dynamical knots in guantum physics:
Knotted vortices -

* In supercooled helium 11
® In the Bose-Einstein Condensate

* In the Electron fluid found within the
Ffractional guantum Hall effect

Reason for current intense interest:
A Natural Topelogical Obstruction to Decoherence

|

* We seek to create o quantum system
that simulates. a closed knotted physical
piece of rope. '

® We seek to-define o quantum knot in such
a:way as To represent the state of the
knotted rope, i.e., the particular spatial
configuration of the knot tied.in the rope.

? We also seek to mode! the ways of ,
moving the rope around (without cutting the
rope, and without letting it pass through
itself)

Rules of the Gamel

Find-a mathematical-definition of a quantum :
knot that is

* ‘Physically meaningful, i.e., physically
implementable, and

® Simple enough to be workable and
usedble.

Aspirations l

We would hope that this definition will be
-useful in modeling and predicting the .~
behavior of knotted-vortices that actualiy
occur-in quantum physics:such as =

*In supercooled helium IT
® “In the Bose-Einstein Condensate

® In the Electron fluid found within the
fractional quantum Hall effect

! Overview |
Part 0. Quick Overview of Knot.Theory
Part 1. Mosaic Knots

We reduce tame knot theory fo:a formal
system of string manipulation rules; ie.;
string rewriting systems.

Part 2. Quantum Knots

We then use mdsaic knots to build:a
physically implementable definition of
quantum knots.

1Quick
Overview
to
Knot '
Theory

% Bkipto.mosaic knots




JPlacement Problem: Knot Theory |

=] Orientation

[ Ambient space = =R? Preserving
%ﬁ Group G-.AuioH(lmeo(Rs)

Def. K,~K,
ifgeGst.gK, =K, o
Problem. When are two placements the same ?

Ki~K, ?

Knot Diagrams:

A fundamental Yool in knof
theory.

lKnof Diagram §

Labeled
Vertex

*Labeled vertices -

‘* ‘Planar four vulen'r groph wrth a ‘

]Wha‘r is a knot invariant ? |

‘Def. A knof invariant I is a map

1 Knofs—5 Mutbematmxl l)nmam

that takes each knot K 10 a mafhemaﬂcai
object T(K) such that

K,~K,= I(K,)= I(Kz)
Consequently, .
K =I(K,) =K, #K,

' The Jones polynomial is a knot invariant. |

TKnot Projections]

1Question: If we locally move the rope, what
does its shadow (knot diagram) do ?2?
b ———————————————— ]




{Planar Isotopy Moves |

In'ﬂ'\is case, we have not changed the
topological type of the knot diagram

This is a planar isotopy move denoted by RO

{Planar Isotopy Moves |

" This is a local move ! |

It does not change the topological type
of the knot diagram.

JReidemeister Moves |
g ,‘ L

#

Rz

When do two Knot diagrams represent the
same or different knots ?

“ Theorem: (Reidemeister). Two knots
diagrams represent the same knot iff
one can be transformed into the other
by a finite sequence of Reidemester
moves {and planar isotopy rules).

' These are local moves that change the topological type

. of the knot diagram:!

~ |Mosaic Knots




277 ] Mosaic Knots I
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| Definition of an n-Mosaic

An n-mosaic is-an nx7n matrix of tiles, with
rows and columns indexed 0,1,...,n-1

;___,_J

N B
o
1 Have

i

An-example of a 4-mosaic

Mosaic Tiles

tet T denote the following set of 11
symbols, called mosaic (unoriented) tiles:
;..m_, Inmm. 3 : .......... jmw...( ’}
e N -

NFVEih

Please note that, up to rotation, there are
exactly’S tiles

] Tile Connection Points |

A connection ‘point of .a tile is-0 midpoint of
a tile edge which is also the endpoint of a
‘curve drawn:on the tile.  For example,

0 ! % 2 4
| Connection . | Connection | | Connection
i Points ; i Points Points

| Contiguous Tiles

Two tiles in a mosaic are 'said to be contiguous
if they lie immediately next 1o each other in.
either the same row or the same column.

~

] Suitably Connected Tiles |

A tile in o mosaic is said to be Suitably
Connected if all its connection points touch the
connection points of contiguous tiles. For

exampie,
Suitably Not-Suitably
Connected

Connected




- A knot mosaic -is‘a mosaic with dll tiles suitably
connected. ‘For example,

7

5

N

[ Non-Knot 4- Mosaic | Knot 4-Mosaic

I(@"? |

l Figure Eight Knot 5-Mosaic l

J

v

«n

{ Hopf Link 4-Mosaic

l Borromean Rings 6-Mosaic

T
SN

sk H

M = Setof n-mosaics

K" = Subset of knot n-mosaics

Planar Isotopy
Moves




| Non-Determistic Tiles

We use the following tile symbols to dencte
one of two possible tiles:

For example, ‘the tile \\ * denotes either

or

| A Planar Isotopy (PI) Move on Mosaics |

| A Planar Isofopy (PI) Move on Mosmcs |

o

| A Planar Iso‘topy (PT) Move on Mosaics |

| Planar Isotopy (PI) Moves on Mosaics |

It is understood that each of the above moves
depicts all moves obtained by rotating the 2x2
sub-mosaics by 0, 90, 180, or 270 degrees.

For exnmpte

repreaenfs each of the fol!owmg 4 moves:




| Planar Isotopy (PI) Moves on Mosaics |

Each of the PI 2-submosaic moves represents
any one of ‘the (n-2+1)2 possible moves.on:an
n=mosaic

-

N I
J/

AT 1

Terminology: k-Submosaic Moves |

Def. A'k-submosaic move:on a mosaic
M is 4 ‘mosaic move that replaces one k-
submosaic in'M by another k-submosaic.

All of the PI moves are examples of
2-submosoic moves. e, each PI
move: reploces a 2-submosaic by another
2-submosaic ;

For example, J"” ety ‘T”S

{ Planar Isotopy (PI) Moves on Mosaics |

Each PI.move. acts as:a local transformation
on an:n-mosaic whenever its. conditions are
met. - If its conditions are not met it octs
as the identity tronsformation.

Ergo. each PI move is o p_ermufaﬁoﬁ of ‘the
set of all knot n-mosaics k'™

In fact. each PL move, as:a permutation, is
a product of disisint franspesitions.

Reidemeister
Moves

| Reidemeister (R) Moves on Mosaics |

D =D D D

O

N R: e’ ,
e

| More Non-Deterministic Tiles |

We also use the following tile symboils 1o
denote one of two possible ftiles:

3

e




i Synchronized Non-Determistic Tiles

Nondeterministic tiles labeled by the same
lemr are zzashme_é

Reidemeister (R) Moves on Mosaics |

Just like .each PI move, each R move
is a permutation nf fhe se:r of all
knot n-mosaics K% .

In fact,each R.move, as:a pem*mtaﬁbn, is
o product of disjoint transpositions.

'Knot ‘Type

| Reidemeister (R) Moves on Mosaics
iy | ¢ K : |
e EETSE EEee
5 " ::* “‘\ Iy N R
By Ry
N s e sl
A o Y £y Rﬁ" R & W”‘
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|The Ambient Group 4(n)|

We define the ambient isotopy group

A(1) as the subgroup of the group of
all permutations of the set g»-
generated by the all PL moves and all
Reidemeister moves.

{The Mosaic Injection ;: m" — M

We define the mosaic injection 1: M — MY

T M®, . if0<ij<n
» otherwise




{Mosaic Knot Type |

Def. Two n-mosaics: M-and  Al'are of the
same knot-n-type, written

H
M~M'
.provided there exists an-element of the ambient
group A(n) that transforms A7 into A .

Two n-mosaics M and M gre of the szame

knot type if there exists o non-negative
infeger -k such that

P ik B
I'M~i'M'

\L.'._.,) N
)
. :)C‘\ ......... . C"“\)
‘#) e ___,,J
q{j(; et
N o r
i.r; _) //‘ /,/! ;N\ (,/ i\-...:/'
Lo O € g
i oS N?

Oriented
Mosaics

IOriemed Mosaics and Oriented Knot Typel |

In like manner, we canuse the following
oriented files to construct oriented mosaics,
oriented mosaic knots, and:oriented knot type
E o Tanht Rl Wy el N
T e e

N ar [N . ¢

There are 29 criented tiles, and 9 tiles up
fo rotation. - Rotationally equivalent tiles
have been:grouped together.

Quantum Knots
&
Quantum Knot Systems

| The Hilbert Space M of n-mosaics |

‘Let 3( be the 11 dimensional Hilbert space
with orthonormal basis labeled by the files
R IR s Nenw s
LL LTI, LT T 5%TT,

We define the Hilbert space M """ of n-mosaics
as at-1
M =® X

hug)

This is the Hilbert space with induced
orthonormal basis

{ Q| T} + 0stB)<1 }

11



| The Hilbert Space M of n-mosaics

We identify each basis ket ® /. |T,,,) with

i

a ket iM) labeled by an n-mosaic a7 using
‘row major order.

For‘example, in“the 3-mosaic Hilbert space
MY, the basis ket
Lieln)el) © [n)sln)elr) ® [%)s|n)e/r)
is identified with the 3-mosaic labeled ket
T, T, T,
T, T, T,
T, T, T

8

[The Hilbert Space %" of Quantum Knots |

" The Hilbert space K" of guantum knots'is
defined as the sub-Hilbert space of V™
spanned by all orthonormal basis elements
labeled by knot n-mosaics.

| Identification via Row Major Order I

Let J{ be the 11 dimensional Hilbert space
with orthonormal. basts lnbeied by the files

.
LLELELEL T

H

7

Construct : E Rows ¥ajor Drder }
Mosaic Space J-
Ru’ [ /_ h\
H |
® ITkU j)> f E : \
88, j<n 1Y i
f N ———_
Select . ll
Basis s e
Element :

|Quantum Knots |

as

M‘"i ® k"'(!

This is the Hilbert space Wl‘fh induced
orthonormal basls '
zm) 1 0<e<n’ }

{ ® k=it
7

We identify each basis element: R, *Tmﬂ
with the mosaic labeled ket ‘M }via the bijection

LoM, i Row major arder §

where | i=!¢/n|
j=t—nltin]

and L=ni+j

We define the Hilbert _gu_c__M"” of n-mosaics

An Example of a Quantum Knof_[

| — | -—
\"_‘“_:WJ ! 'LLJ
; ; Lo ’ - 'iv/

2

{The Ambient Group .4(n)as a Unitary Group

‘We identify each element g A(n) with the k
linear transformation defined by

fx(n) - fxm)
K) - |sK)

Since each element gé A(n) is o permutation,
it is o linear transformation thot simply
permutes basis elements.

‘Hence, under this idémificnﬁnn, the ambient
group A(n) becomes a discrete group of
unitery transfs on the Hilbert space .

- L _1

12



An Example of the 4(n) Group Action | | The Quantum Knot System (K™, A(n))

Def. " A quantum knot system (SK,‘-"’.,A(n)) isa
quantum: system having K as its state space,
and having the Ambient group A(#n) as its set
of accessible unitary transformations.

The states of quantum system (X‘"’,A(ﬂ)) are
quantum knots. The elements of the ambient
group 4(n)are:quantum moves. '

(%f‘,f!(l))—'>-—’>(%"’,A(n))fe(ﬂc'”",A(n+1))—'>--

i Im:t‘::::igbie\g %7 P!:\yzimily‘ 3 ; lihysically. 3
[The Quantum Knot System (K™, A(n)) | {Quantum Knot Type
¢ ¢ : Def. Two.quantum knots |K ) and K ) are
{fK‘”,A('i))—)--—>(1K"",A(n))—-){9€""”,A(n+l))—-)«-- of the same knot n-type. ‘wriiz'fen &)
< : ¢ g i ]Ki>~ K ,>,
ET P?ltysxmli{ ) § . P?ysnmi!y) % P?ymmnyb’ i n 2
e : ’ Ieenenee) provided there is an element goe A(n) st
glk,)=|K.) ~

Choosing an in’tcgé.r n is-analogous to

choosing a length of rope. The longer the They are of the same knot iﬁen
rope, the more knots that can be tied. 4 knot Ivpe, wr

jK 1) - 11‘ :) *
The parameters of the ambient group A(n)are provided there is an integer m 2> 0 such that :
the “knobs” one turns to spacially manipulate lm! K ),., o ] K >
the quantum knot. i/ mrm 2
Two Quantum Knots of the Same Knot Type {Two Quantum Knots NOT of the Same Knot Type | -

V2




Hamiltonians
of the

Generators
of the

Ambient Group

Hamiftonians for A(x) |

Each generator g & A(n) is the product of
disjoint transpositions, i.e.,

: gz('Ka;‘Kﬁ;)(K%’Kﬁl)“.(K’%’Kﬂx)

Choose o permutation 7 so that
: 77-18'77=(Kx’Kz)(KJ'K3)""(K1—|’Ke)
Hence, ‘o, ‘
' 0

-1

G,
T 01
g O . where 6‘3(1 ﬂ)
& -

)

a2l

Hamiltonians for 4(n) I

PSR
Also, ‘let !?o=[“ 1) . and ‘note that
i
ln(a’l)=—12—(2s+l)(a(,—a}). seZ
For simplicity, we always choose the branch =0
H, =—inn(n" gn)n™

n 11 ® (G'n -0 ) 0 .1
=27 0 0 g
(n-24pd - 2£)

Log of o matrix

{The Log of a Unitary Matrix|

Let U be an arbitrary finite rxr unitary
matrix.

Then eigenvalues of U oll lie on the unit
circle in ‘the complex plane.

Moreover, there exists a unitary matrix W
which diagonalizes U/, i.e., there exists a
unitary matrix W such that

WUWw™' = A(e"" % e )

where ¢ 0% .+ are the eigenvalues of U,

|The Log of a Unitary Matrix
Then i '
(V)= W"A( In(e®),In(e),...,In(e™ )} W

ig, . N i 8 R -
Since ]n(e ’):16j+27nnj , where n,€ 7
is an arbitrary‘integer, we have

In(U)=iW"A(6, +27n, .6, + 27n,,....6, + 27n )W

where m.n,...neZ

[The Log of a Unitary Matrix|

Since ¢ = SIA’” /{m!) ., we have

praft

ean(v) = eW“‘A(iniaw,.Jm;H, w
= W ez&(lnwx ....‘!nil?,)W,
= W—lA(elnfe, ’.“,elnia,)”/
=W A ( eiﬂ,i-lm'ni reens efa,nm'», )”,
=W A(e",....e" )W =U

Bleeck

14



[Hamiltonians for A(n)|

Using the Hamiltonian for the Reidemeister

{2y

2 move o LR
e D oo S

we have that the solution to Schroedinger’s

equation for time 7 is

Some
Miscellaneous
: Unitary
Transformations
Not in
l A(n)

Misc. Transformations

The crossing tunneling transformation

{i.5}
7= e |

The mirror image transformation

(6
#=11 ["%“ © w[m]

i

; | Misc. Transformations

The hyperbolic transformation
(1‘}')
= ‘l/"é“) '\‘\‘

The -elliptic transformation
(4} .

Observables
which are

| Quantum Knot
Invariants

IObservable Q. Knot Invariants

‘Question. . What do-we mean by a
physically observable knot invariant ?

Let (ﬂC"”, A(n)) be o qudnfum knot system.
Theria quanfum observable (3 is a Hermitian
operator.on the Hilbert space K .

15



{Observable Q. Knot Invariants

Gluestion. But which observables O are
actually knot invariants ?

Def. An abservable © is an invariant of
guantum knots provided Uﬂl?"‘

=0 for
dl Ue A(n) -

Observable Q. Knot Invariants |

Question.
invariant observables ?

Theorem. Let (X‘”’,A(n}) be a quantum
knot system::and let

K" =pW,
t &
be a decomposition of the representation

A(mx K — 5
into irreducible representations .

for the subspace W, is 0 quantum knot
observable.

But how do we find quanfum knot

Then, for each [ , the projection operator P,

|Observable Q. Knot Invariants

Theorem. Let (X, 4(m)) be a quantum
knot syst system, and let () be an observable
on K. Let 8¢ (Q) be the stabilizer

subgroup for ¢ .
st(Q)={ ve A(n) cvUut =0}
Then the observable
vau’
HaA(n)/St(Q) :
is a quantum knot invariant. where the

above 'sum is over a complete set of coset
representatives of St(Q) in An)

- |Observable Q. Knot Invariants

The following is an example of a guantum
knot inveriant observable:

Future Directions
&

Open Questions

[Future Directions & Open Questions [

* What is the structure of the umbuerrr gmup
Afn)and its direct limit A= llm Alny ?

Can one find o presentation of this group ?
Is A(n) g Coxeter group?

Unlike classical knots, quantum knots can
exhibit the non-classical behovior of
quantum superposition and quantum
entanglement. Are quantum and topological

- entanglement related to one another ?

If so, how ?

16



[Future Directions & Open Questions |

* How does one find a quantum observable for

the Jones polynomial 2. This would be a family -
of observables parameterized by points on the

circle in the complex plane. Does this
approach lead to an algorithimic improvement
“to the quantum algorithm created by
‘Aharonov, Jones, .and Landau ?

* How does one create quantum knot
observdbles that represent other knot
invariants such as, for example, the Vassiliev
L invariants 7

-of quantum knot observables to POVMs ?

‘ensembles ?

|Future Directions & Open Questions |
* What is gained by extenting the definition

* ‘What is gained by extending the definition
of quantum knot observables to mixed

[Future Directions & Open Questions |

Def. 'We define the mosaic number of a knot
k-as the smallest integer n for which k is
representable as a knot n-mosaic.

* The mosaic number of the frefoil ("}
is 4. In.general, how does one AT . S
compute the mosaic number of o
knot? How does.one find o quantum
observable Tor the mosaic number?

* Is the mosaic number related to the
crossing number of o knot?

-
IFufur'e Directions & Open Questions ] ,

Quantum Knot Tomography: Given many
copies.of the same quantum knot, find

the most efficient set of measurements
‘that will determine the guantum knot'to a
:chosen tolerance £>4 .

Quantum Braids:  Use mosaics to define
quantum braids.  How are such quantum
braids related to the work of Freedman,
Kitaev, et al on-anyons and topological
quantum computing?

|Future Directions & Open Questions |

* ‘Can quantum knot systems be used to:model
and predict the behavior of

*  Quantum vortices in supercooled helium 2 2

= Quantum vortices in the Bose-Einstein
Condensate

= Fractional charge quantification that is
manifest in the fractional quantum Hell
effect

UMBC
Quantum Knots
Research Lab

We at UMBC are very proud of our
new state of the art Quantum Knots
Research Laboratory.

17



|Quantum Knots Research Lab |
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