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Throughout this talk:

wKn©t*# means cither a knot or a link
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Knots Naturaliy Arise in the
Quantum World as Dynamical Processes

Examples of dynamics!'knots in quantum.physics:
-Knotted •

'* I n supercooled helium'II

* In 'the Bose-Einstein Condensate

' * In the Electron fluid found within the
fractional quantum Hall effect

Reason for current intense interest:
A Natural Topolopical Obstruction to &ec©hercnce

'* We seek to create a "quantum'.system
that 'Simulates ••& 'dosed -knotted physical
.piece of-rope.

* We 'Seek to define A .quantum' knot, in: sych
a way as "t© represent the state -of 'the
knotted'rope, Le., the particular spatial
configuration• of the knot 'tied In the 'rope.

';* We -also seek to model the ways of •
moving the rope around .{without'cutting "the
rope, and'without letting it pass 'through
Itself.)

Rules of the Same

Find a mathematical definition of a quantum
knot that is

Physically meaningful/ i.e., 'physically
iifipiementfibie, and

Simple enough to be workable and
yseablc.

We would hope that this definition will be
yseful in modeling and predicting the • ••
behavior of' knotted -vortices that actually
occur in quantum. physics such. as ..

* in sypercooled helium I I
* in the Bose-Einstein Condensate

* In the Electron-fluid found within the
"fractional quantum' Hall effect

Overview

Part .0. Quick Overview of Knot Theory

I . Mosaic:Knots

We redyce tome knot .theory "to a formal
system of string manipulation rules, i.e.,
string rewriting systems,

Pert 2. QyaRtuw Knots

We then use mosaic knots to build a
physically implementable definition of
quantum'knots.



J © J

f' m rrh 3 I Orientation
J 'Ambi«nt SpGCC = JE IPrcservini
I* Group G = AutoHomeoij&F)*

Problem. When ore two placements the some ?
K, ~ K2 7

/ ; Knots —• Mathematical Domain

that totes each kn©t'K 'to-o-mathematicai'
object 1CK) sweh that

J ( K 1 ) = / ( K 2 )

|The Jones polynomial is a knot

A fywdamewtal tool in 'knot

Picnar four volcnt graph with

labeled vertices
Q « ^ o § : I f we locajiy move the ro^f what |
does Its shadow (knot diagram) db ??? [



I n this case, we'have not changed the
topoiogical 'type of the knot diagram

This is 'move denoted by

(ROj

f This is o local move !

i t does not change the topolo§ic<il type |
of the knot diagram, I

' _ S L

\kl

1R2I

IR3 !

! These ere tecai moves that change the topoiof leal type
\ of the knot diagram I

When do two Knot diagrams represent the
same OP dif ferent knots ?

j Theorem (Rcldemeistcr). Two knots
| diagrams represent the same knot i f f
lone can be transformed into the other
iby a finite sequence of fteideroester
j moves (and pionor Isotopy ry(es)»

*k L .5?_ > mm IBsM? fNSS

Mosaic Knots



Let TU

symbols,

; i :

Mosaic Ties
denote the following set of 11

called mosaic (unoriented) tiles

V ") }

^ ; C i ;

:../: ? i ̂  1
Please note that, up to rotation, there ere
exactly 5 tiles

definition of an n-Mosaic

nxn matrix of tiles, with
rows and columns indexed Cl,l,.«»,#?~l

An example of a 4-mosoic

Tile Connection Points

offi p
c tile edge which is also the endpoint of a
curve drawn on the tile. For example,

T
I-

Connection
Points

| Cmmettim
i Points

Contiguous Tiles

Two tiles in o 'mosaic are, said to be ^g
if they lie Immediately next to-each otter in
either the same row or the-'same eolymfi. • '

Contiguous Not Cmtlgnms

Suitably Connected Tiles

A tile in a mosaic Is said to be Sw|«W^
^nnected if all its connection points toych the
connection points* of 'contiguous t ics. For
example,

Suitably
Connected

Not Suitably
Connected



Knot Mosaics

* Mi2t I2§S!£ *iS> Q 'mosaic with all'tiles suitably
connected. For .example,

c

Non-Koof 4 - Knot 4~lfo£fii€

Figure, Eight Knot 5-mosaic

Notation

M{ft) = Set of n-wosoics

•KKn) = Subset of knot .n-mosaics

Planar Isotopy
Moves



We
one

For

Non-betermistic Tiles

use the following'tile
of two possible'tiles:

example, the fife >.

px or

symbols to denote

**** denotes cither

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

A Planar Isotopy (PI) Move on Mosaics

1

A Planar Isotopy (Pi) Move on Mosaics

ff-ttL

^

E3:

Planar Isotopy (PI) HHwes on Mosaics

i t is ynderstood that each of the ab©¥c moves
depicts oil mmes ©btalncd by rotating the 2x2
sub-mosaics'by 0, 90, 180, or 270 degrees.

fw example, ' -y- • ^JL^ _J

represents each of the following 4 moves*



Isotopy (PI) Moves on Mosaics

Each -of the PX.2~submo$aic moves represents
.any one of the (ft~2*l)2 possible moves on ©ft
n-mosaic

bef. A k-sybinosaic §ft©we on,a mosaic
M Is a mosaic move that replaces one 'k~
.submosaic In' M by •another :k-'sybmosaic.

.411 of the PI moves ore .examples of
..E-syfbffiesaic moves. I .e. , ectch PI
move replaces a."2-$ubmo$aic by-.another

for:example,

Isotopy (PI) Moves on Mosaics

Each PI wove acts QŜ G local transformation
on m n-mosoic whenever its conditions ore
met. I f Jts 'cm4itlms are §0t met, if acts
ets the • identity transformation.

Ergo, 'each 'PI wove is a.
set of ail - knot •n~«osalcs

of the

In fact, -each PI tpetve, as a peretjtatiofi, is

Reidemeister
Moves

Rcidemeister (R) Moves on Mosaics More NOR-Deterministic Tiles

We also use the following tile symbols to
denote one-.of two possible tiles:

For •example, the tile •«?,*—•• denotes'either

-or



Synchronized

Nondetepmtnistic
letter arc s^ncftf

j||f

Non-Dctermistic

tiles labeled by the

J '"i :""B]

; z ::r

flies]
.same

Reidemcister (R) Moves ow Mosaics

Just l i te each PI wove, 'each ft'.move
is a pep mutation of the set of all
•knot n~mosaics KiP)

In fact, each R wove, as .a .pepirtutattort, Is

The Ambient Sroyp A(n)

We define the a^Jent | » ^ t t 9**°°?
A(a} as the subproyp of the group of

all permutations of the set ,jfw •
generated hf the all PI moves and all
Reidemeister moves.

Knot Type
We define the i : M(t

otherwise

10



Knot Type

Two n-mosatcs M and
knot •n-tyjje, written

of the

. provided there exists an element of the ambient.
group A(n) that'transforms »!••# into A/f .

Two n-mosaics M and Mf arc of the same
• knot tyjge if there exists a non-negative
Integer k such that

Oriented
Mosaics

Oriented Mosaics and Oriented Knot Type

In like wanner, we can-use'the following
. oriented tiles to construct oriented i
oriented mosaic •knots, end'.oriented-knot ..type

There mm 29 oriented tiles, *«nd :.9 'tiles up
to rotation. Rotationaiiy equivalent'tiles •

been grayped 'together.. .

Quantum ICncts

Knot Systems

The Hilbert Space M(w> of R~ mosaics

Let 3HC be the. i l dimensional Hiibert
with orthonormal • basis labeled .by 'the

We define the Hilbert .1
OS »

3 ad-M^ of i

This is the 'Hilbert space'with induced
orthonormal basis

f /-.«
:-» F, ) : (I <£(k)< 11

space
•tiles -
JL - L

r, V

]

11



We identify each basis ket ® L,,
a ket \M) labeled by art ft-mosaic j^§ using
row major order.

For example, in the 3-mosaic Hilbert space
MO) . the basis ket

}0\T2)m\Tl) <&

is identified with the 3*mosaic labeled kct

T2

T2

Identification via Sow Mojor Order

Let 3i be the • i 1 diwcnsionfll Hilbert space
with ofth©nof mo I basis labeled' by the tiles

— I r^ : w Jr ^ + H
r7r4

The Hilbert Space 3ClB)of Quawtyin Knots

HWfert sjmce %(M .of •
defined as the syb-Hilbert space -of M{n}

spanned by all -orthonormal-basis-elements
labeled by knot n~tn«sfiics.

We define the JHlbert sgoce MClt| of l-*nos§lcs

This is the Hilbert space with induced
orthonormol basis

We identify each basis clement • § * . .
with the mosaic labeled kct J.M)via the bljectlon

1 l-i J few tnGjof ©rder j

where f i = (|/ i i( j _

Example of a Quantum Knot The Ambient Sroyp ,4(n)as a

; each element f € /i(#i) with the
linear transformation defined by

Since each element ^e /l(#i) is -a.perimitation,
it is a linear transformation that simply
permutes'basis elements.

Hertce# under this Identification, the ambient
§mup A(n) becomes a discrete group of
unitary transfs. on the HIibcrt space %Ut},

12



An Example of the A(n) Uroup Action

fegf • <* SifiStilli iSSSt JEXlMl! ,(5C(W)»^(«)) is a
quantum system having %in) as its state space,
.and having the Ambient group A(n) as its set
of ••accessible unitary transformations.

The states of quantum system \%{tt\A(n)} .are
t--knots. The elements of the ambient

j Physically
i Xrnfjlerttenfabic

group A(n)

'.Choosing an iKtcfer-n is analogous to -
choosing a length of rope. The longer the
rope, the more knots that-can be tied.

The ..parameters of the ambient group A(n)ore
•the wknobsw one turns to specially manipulate
the qyotttym knot.

Two knots jl'"}) and K2) are
# written

provided there is an clemcrit #•€ .4(#i)' s.t.

They ore of the saw knot Jxie* written

provided' there is art integer m^ l l sych that

Two Qoanfym Knots of the Some Knot Type Two Qyantom fcnots NOT of the Same Knot Type

13



Hamiltonians
of the

Generators
of the

Ambient Group

Each generator g-€ A(n) is the prodyct of
disjoint transpositions, i.e..

Choose a permutation ff so that

Hence,

0
, where • *r, *0 !

1 0

Also, let ^ L j ] , and note that

in (V,) = —~{2s + I)(c0 — cx), s€ Z

iicity, »e aiwuys cheese the branch $ ~ 0 .

H. = - i r

1*9 of c matrix

Let U be an arbitrcry finite vxr unitary
matrix.

Then eigenvalues of U all lie on the unit
circle In ike complex plane.

Moreover, there exists a' unitary'matrix W
which dia§onaiizes U# I.e., there'exists a
unltory motrlx W such that

where ew\ei$t^.^ei9r ore the ei of U.

JThe Log (

Then

ln(£/) = »f-1A

Since ^ n | e z55

Is on Qfbitrwy

whc« ii f,«2,

rf a Uni

( in , , - , .

integer,

tary Matr

inj . where
we have

2

n(e*'))

li.€Z

.+2OT,

W

)w ;

Since eA = ^ / i w / (#»!) , we hove

J»i^ Inî , \ .

14



Using'the Hamtltonian for the •Reidernclster
2 ' (2;t)

and'the initial .state

we have that the solution to Selwwdilifer's
equation for'time I is

Misc. Transformations

The crossinf 'tunneling -transf ortnation

M l

The'mirror image transformation

Misc. Transformations

The hyperbolic'transformation

{14)

The elliptic 'transformation

£.• = k^J)" T ~ T :

Obserwables
which are

Quantum Knot
Invariants

Ok^^

^es t jo§ . What do - we' mean, by -a -
physically obserYable -knot"invariant'?

Let f%in)
%A(n)| be a ipattttiiTt.knot system.

Tltert'O quantum - observable Q is a Hermitian
t on the Hilbert space % | f J }. . •

15



Observable Q. Knot invariants

Question, But which ©bservobles Q are
actually knot invariants ?

Del. An observable JQ Is on |§vaE!§fit'Sf
gjjgjttum knots provided UQXJ~l = O for
all UeA{n)

. But how.do we find qy«nt«m knot

. Let (Xin\A(n)} be a quantum
t d l t

(
knot system, and let

be o decomposition of the representation
A(n)xXitt)->.Xitt)

into irreducible J

Then, fop each I , the projection-operator
for the 'syfaspoce fyf is a quantum knot

,. Let (X<n)-<A(n)) be a
d l t Q b bknot system, and let Q. be on .observable

on 3C°°. Let S l {O) fee the stabilizer '
subgroup for Q , i.e..

St(Q) A{n) : £/O£.rf = Q

Then the observable

is a qyantum knot invariant, where 'the
above sum is we r a complete set. of cosct
representatives of & ( Q ) in A(n) r

Observable Q. Kn©t invariants

The following Is an example of'O quantum
knot in¥ariant observable;

O =

Futyre Directions

Open Qyestiois

Future Directions & Open Questions

What is 'the 'Structure -of the 'ambient group
A(it) and its direct limit A = itm A(n) ?
Con owe find a presentation .of*this group 7
I s A{n) a Coxeter .group? •• •• •

* Unlike ciassicoi knots, ^uantuni knots'can
exhibit the non-classical behavior-of
quantum superposition and .qyantyirt
entanglement. Are.quantum and'topolpgicai
entanglement related to one .another ?

i f so, how ? '

18



'* -Mow. does one find o quontum observable for.
the Jones:.polynomial ? This would be o'famiiy
.of - observables. parameterized by points on'the
circle in the .complex-plane. &©es this
approach had to an algorithmic improvement
to the .quantum algorithm created bf
Aharonoy, Jones, .and .Landau'?

* Hciw docs'.one create quantum knot
observabfes ..that represent other •. knot
.invariants'sych «s# fo r example, the Vassiliev
'invariants.? •

'* What Is §ai«cd.by.cxtentin§ the-definition-
.of quantum 'knot observables to POVMs'? •

'"* What is gained'by extending'the-.definition
•of quantum knot observables to mixed
-ensembles'? • •.

f, -We define flic mosaic njyHjiber of 'a knot
k as the smallest integer1 n for which k Is
representablc .as a knot n-mosaic.

'•* The'tiosaic number of the trefoil ••
is 4. i n -general, how does one
compute the • mmmc number of a • -
knot? Haw does mm find, a quantum

* .Xs the mosaic number related to the
crossing number of a 'knot?

fyture Directions & Open Questions

Quantum Knot Tomography: Gwen many
copies of the same quantum knot, f ind
the most efficient set of measurements
that will deter mine the quantum knot to a
chosen'toleronce e>9 .

Qyortfym Braids: Use mosaics to define
cfyctntytn braids. .How are, such quantym
braids • related to the-work of. Frcedwon,
Kitaev, et al on anyows and
quantum. computing?

Future directions & Open Questions

"* Can quantum knot systems be us^d to model
and predict the behavior of

• Quantum vertices in supercooled helium 2 ?

• Quantum vortices In the Bose-Einstein
Condensate

•• Fractional e!icir§e qyanfification thef is
manifest in the frscttoncti quantum Nail
effect

UMBC
Quantum Knots
Research Lab

|¥#e at UMBC are very proud of our
Inew state of the QH Qyaftfyin K,nots
j Research Laboratory.

17



I Quantum knt}is Research Lab
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