Detection of Chirality and Mutation of Knots and Links

Dr. P. Ramadevi (Associate Professor)

Dept. of Physics, IIT Bombay
Knot Theory Conference May 25-29, 2009

Plan:

(i) My research background
(ii) Chern-Simons Field Theory
(iii)Computation of Knot Invariants
(iv) Detection of Chirality.
(v) Mutations

MY RESEARCH BACKGROUND

- Knots,Links,Three-Manifold Invariants from Chern-Simons Field Theory
Work done with
(a) Romesh Kaul and T.R. Govindarajan (IMSc):

1) Nucl. Phys. 402(1993) 548
2) Nucl. Phys. 422(1994) 291

- 3) Mod. Phys. Lett.A9(1994)3205
- 4) Mod. Phys. Lett.A10(1995)1635
(b) I.P. Ennes, A.V. Ramallo, J.M. Sanchez de Santos (Univ. of Santiago,Spain)

5) Int. J. Mod. Phys.A13(1998) 2931
(c) Swatee Naik (Math. Dept, Univ. of Nevada,USA)
6) Commun. Math. Phys.209(2000)29
(d) Romesh Kaul (IMSc, Chennai)
7) hep-th/0005096, Commun.Math.Phys. 217(2001) 295.

- Last 9 years, I have been involved in the meaning of integers in the polynomial invariants in topological string stable states

CHERN-SIMONS FIELD THEORY

Topologically equivalent Objects C
(no notion of distance or size)

Hence the theory describing such objects must be metric independent (Chern-Simons theory)

- Chern-Simons action S on a three-manifold M based on gauge group G :

$$
S=\frac{k}{4 \pi} \int_{M} \epsilon_{\mu \nu \lambda} d^{3} x \operatorname{Tr}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} A_{\nu} A_{\lambda}\right)
$$

k is the coupling constant, A_{μ} 's are the gauge fields.

- Above objects C carrying representation R are described by expectation value of Wilson loop operators $W_{R}(C)=\operatorname{Tr}\left[P \exp \oint A_{\mu} d x^{\mu}\right]$:
$V_{R}[C]=\left\langle W_{R}(C)\right\rangle=\frac{\int_{M}[\mathcal{D} A] W_{R}(C) \exp (i S)}{\mathcal{Z}[M]}$
where $\mathcal{Z}[M]=\int_{M}[\mathcal{D} A] \exp (i S)$ (partition function)
$V_{R}[C]$ are the knot invariants.

COMPUTATION OF KNOT INVARIANTS

- These knot invariants ($V_{R}[C]$) can be directly evaluated using two inputs:

1) Connection between Chern-Simons theory to WessZumino conformal field theory.
2) Any knot can be obtained as a closure of braid

Take example C

where \mathcal{B} is the braiding operator.

To see the polynomial form of the invariant:
Expand the state $\left|\psi_{0}\right\rangle$ in a suitable basis in which \mathcal{B} is diagonal.
For the four-punctured S^{2} boundary, the bases are:

where $s, t \in R \otimes R$. These two basis are related by a duality matrix:

$$
\left|\Phi_{t}\right\rangle=a_{s t}\left|\Phi_{s}\right\rangle
$$

In this example, the braiding involves middle two strands,

$$
\left|\Psi_{0}\right\rangle=\sum_{t} \mu_{t}\left|\Phi_{t}\right\rangle
$$

where $\mu_{t}=\sqrt{S_{0 t} / S_{00}} \equiv \sqrt{\operatorname{dim}_{q} t}$ (unknot normalisation).

$$
V_{R}[C]=\left\langle\Psi_{0}\right| \mathcal{B}^{3}\left|\Psi_{0}\right\rangle=\sum_{t} \operatorname{dim}_{q} t\left(\lambda_{t}(R, R)\right)^{3}
$$

where braiding eigenvalue depends on the framing and also on the relative orientation on the two braiding strands.

For parallel right-handed braiding in standard framing,

$$
\lambda_{t}^{(+)}(R, R)=(-1)^{\epsilon} q^{2 C_{R}-C_{t} / 2}, q=e^{\frac{2 \pi i}{k+C_{v}}}
$$

- Knot invariants are polynomials in the variable q

The method for a four-punctured S^{2} boundary is generalisable for r such four-punctured S^{2} boundaries

$$
\nu_{r}=\sum_{R_{s}} \frac{\left|\phi_{R_{s}}^{(1) s i d e}\right\rangle\left|\phi_{R_{s}}^{(2) s i d e}\right\rangle \cdots\left|\phi_{R_{s}}^{(r) s i d e}\right\rangle}{\left(\operatorname{dim}_{q} R_{s}\right)^{\frac{r-2}{2}}} .
$$

Also for the S^{2} boundary with more than fourpuctures, the basis-state will be

- The method enables evaluation of any knot/link directly without going through the recursive procedure

We can place any representation R of any compact semi-simple gauge group on the knot and obtain generalised knot invariants.

Special Cases: $R=$ fundamental

Gauge Group	Polynomial
$S U(2)$	Jones'
$S U(N)$	Two-variable HOMFLY
$S O(N)$	Two-variable Kauffman

Does generalised knot invariants solve the classification problem??
Knot Theory literature gives a list of Chiral knots and Mutant knots which are not distinguished by Jones', HOMFLY and Kauffman!

I must add the non-orientable knots like knot 8_{17} to this list

Use our method to check the powerfulness of generalised knot invariants to detect chirality and mutations!

Examples of Chiral Knots:

1) Knot 9_{42} :

2) Knot 10_{71} :

Using our method, the knot invariant for 9_{42} can be obtained as gluing of five building blocks as shown:

(a)

$\begin{array}{lll}\mathbf{P}_{\mathbf{1}} & \mathbf{P}_{\mathbf{1}} & \mathbf{P}_{\mathbf{2}} \\ & & \text { (b) }\end{array}$

(d)

(e)

For $G=S U(2), R_{n}=\stackrel{n}{\square}$ (spin $n / 2$ representation) placed on knot

$$
\begin{aligned}
& \nu_{1}\left(P_{1}\right)=\sum_{l_{1}=0} \sqrt{[2 l+1]}(-1)^{3\left(n-l_{1}\right)} q^{-3 / 2\left[n(n+2)-l_{1}\left(l_{1}+1\right)\right]}\left|\phi_{l_{1}}^{(1)}\right\rangle \\
& \nu_{1}\left(P_{4}\right)=\sum_{l_{5}=0}(-1)^{n-l_{5}} q^{-1 / 2\left[n(n+2)-l_{5}\left(l_{5}+1\right)\right]}\left|\phi_{l_{5}}^{(1)}\right\rangle \\
& \nu_{2}\left(P_{1} ; P_{2}\right)=\sum_{i_{1}, j_{1}, l_{2}, r=0} \frac{a_{l_{1} r} a_{j_{1} r} a_{l_{2} r} \sqrt{\left[2 l_{2}+1\right]}}{\sqrt{[2 r+1]}} \times \\
& q^{n(n+2)-l_{2}\left(l_{2}+1\right)}\left|\phi_{i_{1}}^{(1)}\right\rangle\left|\phi_{j_{1}}^{(2)}\right\rangle \\
& \nu_{2}\left(P_{2} ; P_{3}\right)=\sum_{l_{3}=0} q^{l_{3}\left(l_{3}+1\right)}\left|\phi_{l_{3}}^{(1)}\right\rangle\left|\phi_{l_{3}}^{(2)}\right\rangle \\
& \nu_{2}\left(P_{3} ; P_{4}\right)=\sum_{i_{2}, j_{2}, l_{4}=0}(-1)^{l_{4}} q^{-l_{4}\left(l_{4}+1\right) / 2} a_{l_{4} i_{2}} a_{l_{4} j_{2}}\left|\phi_{i_{2}}^{(1)}\right\rangle\left|\phi_{j_{2}}^{(2)}\right\rangle
\end{aligned}
$$

Using the above data, the knot invariant is

$$
\begin{aligned}
V_{n}\left[9_{42}\right]= & (-1)^{n} q^{\frac{-3}{2}[n(n+2)]} \sum_{r, l_{1} l_{2}, j_{1}, j_{2}=0} \sqrt{\left[2 l_{1}+1\right]} \times \\
& \sqrt{\left[2 l_{2}+1\right]} \sqrt{\left[2 j_{2}+1\right]} a_{l_{1} r} a_{2 r} a_{j_{1} r} a_{j_{1}, j_{2}} \times \\
& (-1)^{l_{1}} q^{\frac{3}{2}\left[l_{2}\left(l_{1}+1\right)\right]} q^{\frac{3}{2}\left[j_{1}\left(j_{1}\left(j_{1}+1\right)\right]\right.} q^{-l_{2}\left(l_{2}+1\right)} q^{j_{2}\left(j_{2}+1\right)}
\end{aligned}
$$

$n=1$ gives Jones' polynomial

$n=2$ gives Akutsu-Wadati/Kauffman polynomial.
For $n=3$, the polynomial is $V_{3}\left[9_{42}\right]=$

$$
\begin{aligned}
& q^{45 / 2}-q^{41 / 2}-q^{39 / 2}+q^{35 / 2}+q^{23 / 2}+q^{21 / 2}-q^{19 / 2} \\
& -q^{17 / 2}+q^{13 / 2}-q^{9 / 2}+q^{5 / 2}+q^{3 / 2}+q^{-3 / 2}+q^{-5 / 2} \\
& -q^{-13 / 2}-q^{-15 / 2}+q^{-21 / 2}+2 q^{-23 / 2}-q^{-27 / 2}+2 q^{-31 / 2} \\
& -3 q^{-35 / 2}-q^{-37 / 2}+q^{-39 / 2}+q^{-41 / 2} .
\end{aligned}
$$

Obviously $V_{3}\left[9_{42}\right](q) \neq V_{3}\left[9_{42}\right]\left(q^{-1}\right)$ indicating that $S U(2)$ Chern-Simons spin 3/2 invariant is powerful to detect chirality.

Similar exercise for knot 10_{71} by redrawing the diagram in the following way

$$
\begin{aligned}
& (-1)^{n} q^{\frac{n(n+2)}{2}} \sum_{i, r, s, u, m=0} \sqrt{\frac{[2 r+1][2 s+1][2 u+1]}{[2 m+1]}} a_{i m} \\
& a_{m s} a_{r m} a_{i u}(-1)^{s} q^{-i(i+1)} q^{m(m+1)} q^{-r(r+1)} q^{u(u+1)} q^{\frac{3}{2} s(s+1)}
\end{aligned}
$$

For $n=3$, we have checked that

$$
V_{3}\left[10_{71}\right](q) \neq V_{3}\left[10_{71}\right]\left(q^{-1}\right)
$$

confirming the powerfulness of generalised Chern-Simons invariant in detecting chirality!

Next question
What is mutation and mutant knots?
Can the generalised invariants detect mutation?

Example:

Eleven-crossing Kinoshita-Terasaka and Conway knots are mutants

(a)

(b)

Mutant knots

These mutant knots correspond to gluing state (d) with any of (a),(b),(c) states:

(a)

(b)

(c)

(d)

The states (a), (b), (c) can be obtained by gluing state (a)

(a)

(b)

(c)

(d)
with two-boundary states in the following way:

Denote the state (a) as ν_{1}, (b) as ν_{2} and state (c) as ν_{3}.
Clearly, ν_{2} and ν_{3} represent mutation γ_{1} and γ_{2} respectively

As braid words, (a), (b), (c) are different but the states are same, we will see!

$$
\nu_{2}=\sum_{l}\left|\phi_{l}^{\text {side }(1)}\right\rangle b_{1} b_{3}^{-1}\left|\phi_{l}^{\text {side }(2)}\right\rangle=\mathcal{C} \nu_{1} .
$$

where we have used

$$
b_{1}\left|\phi_{l}^{\text {side }}\right\rangle=b_{3}\left|\phi_{l}^{\text {side }}\right\rangle=\lambda_{l}^{(-)}(R, \bar{R})\left|\phi_{l}^{\text {side }}\right\rangle,
$$

and the operator \mathcal{C} interchanges the representations on the first and second, the third and fourth punctures in that basis.

Similarly, we can show

$$
\nu_{3}=\sum_{l}\left|\phi_{l}^{\text {side }(1)}\right\rangle b_{1} b_{2} b_{1} b_{3} b_{2} b_{1}\left|\phi_{l}^{\text {side }(2)}\right\rangle=\mathcal{C} \nu_{1} .
$$

(a)

(b)

(c)

(d)

So, the generalised invariants of the mutants L_{1}, L_{2}, L_{3} obtained by gluing (a),(b) and (c) with (d) are same

What is the reason??
Four-point conformal block plays a crucial role to make ν_{2} and ν_{3} to be same as ν_{1} (identity braid)!

(a)

(b)

(c)

Strategy: Go beyond 4-pt conformal block by taking composite braiding

Incidentally, two 16-crossing mutant knots where one is chiral and the other is achiral!

Clearly, chirality of the chiral 16-crossing knot is not detected by our generalised invariants

r-Composite Braiding

We studied braid-group representation of composite braids and obtained eigen-basis and eigenvalues We showed that the composite invariant for knots are sum of the generalised knot invariants which implies
Composite invariants cannot detect mutations in knots.
However, some mutant links can be distinguished by composite invariants.

Data from the Knot Theory School and Conference

- From Morton, I learnt that some specific representations of $S U(3)_{q}$ and $S U(4)_{q}$ can distinguish 11crossing mutant knots!
Should check out the 16 -crossing mutant knots with this method.
So far, I thought the Chern-Simons invariants must coincide with quantum-group invariants but appears to be not true for mixed representations placed on the knot.
- We checked and found that the Khovanov homology invariants does not distinguish 11-crossing mutant knots.
M. Khovanov says that 'there is a proof that the Z_{2} homology invariants cannot detect mutations!'
- Talking to P.Ozsvath, I see that the genus computation in Floer homology gives different results for the two 11 -crossing mutants. Must check for 16 -crossing mutants and prove in general!

Thank You

