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Plan:
(i) My research background
(ii) Chern-Simons Field Theory
(iii)Computation of Knot Invariants
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MY RESEARCH BACKGROUND

• Knots,Links,Three-Manifold Invariants
from Chern-Simons Field Theory
Work done with
(a) Romesh Kaul and T.R. Govindarajan (IMSc):
1) Nucl. Phys. 402(1993) 548

2) Nucl. Phys. 422(1994) 291

• 3) Mod. Phys. Lett.A9(1994)3205

• 4) Mod. Phys. Lett.A10(1995)1635

(b) I.P. Ennes, A.V. Ramallo, J.M. Sanchez de Santos
(Univ. of Santiago,Spain)
5) Int. J. Mod. Phys.A13(1998) 2931

(c) Swatee Naik (Math. Dept, Univ. of Nevada,USA)
6) Commun. Math. Phys.209(2000)29

(d) Romesh Kaul (IMSc, Chennai)
7) hep-th/0005096, Commun.Math.Phys. 217(2001) 295.

• Last 9 years, I have been involved in the meaning
of integers in the polynomial invariants in topological
string stable states



CHERN-SIMONS FIELD THEORY

Topologically equivalent Objects C
(no notion of distance or size)

Hence the theory describing such objects must be
metric independent (Chern-Simons theory)

• Chern-Simons action S on a three-manifoldM based
on gauge group G:

S =
k

4π

∫

M
ǫµνλ d

3x Tr

(

Aµ∂νAλ +
2

3
AµAνAλ

)

k is the coupling constant, Aµ’s are the gauge fields.



• Above objects C carrying representation R are de-
scribed by expectation value of Wilson loop opera-
tors WR(C) = Tr[Pexp

∮

Aµdxµ]:

VR[C] = 〈WR(C)〉 =

∫

M [DA]WR(C) exp(iS)

Z[M ]

where Z[M ] =

∫

M
[DA] exp(iS) (partition function)

VR[C] are the knot invariants .



COMPUTATION OF KNOT INVARIANTS

• These knot invariants (VR[C]) can be directly eval-
uated using two inputs:
1) Connection between Chern-Simons theory to Wess-
Zumino conformal field theory.
2) Any knot can be obtained as a closure of braid

Take example C

2S
Oppositely oriented

boundary

S3

ψ
3

0
ψ

VR[C] = 〈ψ0|ψ3〉 = 〈ψ0|B
3|ψ0〉

where B is the braiding operator.



To see the polynomial form of the invariant:
Expand the state |ψ0〉 in a suitable basis in which B

is diagonal.
For the four-punctured S2 boundary, the bases are:

R R RR

R

R R

R

s

φs φ
t

t

where s, t ∈ R⊗R. These two basis are related by a
duality matrix:

|Φ̂t〉 = ast|Φs〉

In this example, the braiding involves middle two strands,

|Ψ0〉 =
∑

t

µt |Φ̂t〉

where µt =
√

S0t/S00 ≡
√

dimqt (unknot normali-
sation).



VR[C] = 〈Ψ0|B
3|Ψ0〉 =

∑

t

dimqt(λt(R,R))3

where braiding eigenvalue depends on the framing
and also on the relative orientation on the two braiding
strands.

For parallel right-handed braiding in standard framing,

λ
(+)
t (R,R) = (−1)ǫq2CR−Ct/2, q = e

2πi
k+Cv .

• Knot invariants are polynomials in the vari-
able q



The method for a four-punctured S2 boundary is
generalisable for r such four-punctured S2 bound-
aries
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.



Also for the S2 boundary with more than four-
puctures, the basis-state will be

R1 R2 R R R R R R3 4 5 6
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• The method enables evaluation of any knot/link di-
rectly without going through the recursive procedure



We can place any representation R of any compact
semi-simple gauge group on the knot and obtain
generalised knot invariants.

Special Cases: R=fundamental
Gauge Group Polynomial
SU(2) Jones’
SU(N) Two-variable HOMFLY
SO(N) Two-variable Kauffman

Does generalised knot invariants solve the classifica-
tion problem ??
Knot Theory literature gives a list of Chiral knots and
Mutant knots which are not distinguished by Jones’,
HOMFLY and Kauffman!

I must add the non-orientable knots like knot 817 to
this list

Use our method to check the powerfulness of gen-
eralised knot invariants to detect chirality and muta-
tions!



Examples of Chiral Knots:
1) Knot 942:

4321

( a ) ( b )

2) Knot 1071:



Using our method, the knot invariant for 942 can be
obtained as gluing of five building blocks as shown:
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( a ) ( b ) ( c ) ( d ) ( e )

For G = SU(2), Rn =
� -n

(spin n/2 represen-
tation) placed on knot

ν1(P1) =
∑

l1=0

√

[2l+ 1](−1)3(n−l1)q−3/2[n(n+2)−l1(l1+1)]|φ(1)
l1

〉

ν1(P4) =
∑

l5=0

(−1)n−l5q−1/2[n(n+2)−l5(l5+1)]|φ(1)
l5

〉

ν2(P1;P2) =
∑

i1,j1,l2,r=0

al1raj1ral2r
√

[2l2 + 1]
√

[2r+ 1]
×

qn(n+2)−l2(l2+1)|φ(1)
i1

〉|φ(2)
j1

〉

ν2(P2;P3) =
∑

l3=0

ql3(l3+1)|φ(1)
l3

〉|φ(2)
l3

〉

ν2(P3;P4) =
∑

i2,j2,l4=0

(−1)l4q−l4(l4+1)/2al4i2al4j2|φ
(1)
i2

〉|φ(2)
j2

〉



Using the above data, the knot invariant is

Vn[942] = (−1)nq
−3

2
[n(n+2)]

∑

r,l1,l2,j1,j2=0

√

[2l1 + 1] ×

√

[2l2 + 1]
√

[2j2 + 1]al1ral2raj1raj1j2 ×

(−1)l1q
3

2
[l1(l1+1)]q

3

2
[j1(j1+1)]q−l2(l2+1)qj2(j2+1)

n = 1 gives Jones’ polynomial
n = 2 gives Akutsu-Wadati/Kauffman polynomial.

For n = 3, the polynomial is V3[942] =

q45/2 − q41/2 − q39/2 + q35/2 + q23/2 + q21/2 − q19/2

−q17/2 + q13/2 − q9/2 + q5/2 + q3/2 + q−3/2 + q−5/2

−q−13/2 − q−15/2 + q−21/2 + 2q−23/2 − q−27/2 + 2q−31/2

−3q−35/2 − q−37/2 + q−39/2 + q−41/2 .

Obviously V3[942](q) 6= V3[942](q
−1) indicating

that SU(2) Chern-Simons spin 3/2 invariant is pow-
erful to detect chirality.



Similar exercise for knot 1071 by redrawing the di-
agram in the following way

I

II

III

IV

Vn[1071] =

(−1)nq
n(n+2)

2

∑

i,r,s,u,m=0

√

[2r+ 1][2s+ 1][2u+ 1]

[2m+ 1]
aim

amsarmaiu(−1)s q−i(i+1)qm(m+1)q−r(r+1)qu(u+1)q
3

2
s(s+1)



For n = 3, we have checked that

V3[1071](q) 6= V3[1071](q
−1)

confirming the powerfulness of
generalised Chern-Simons invariant in detecting
chirality!

Next question
What is mutation and mutant knots?
Can the generalised invariants detect mutation?
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Example:
Eleven-crossing Kinoshita-Terasaka and Conway knots
are mutants

( a ) ( b )



Mutant knots
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These mutant knots correspond to gluing state (d) with
any of (a),(b),(c) states:

Rγ
1R γR2 S

ψ| > ψ| > ψ| > >φ |
1 2 3

( a ) ( b ) ( c  ) ( d )

S
2

S
2

S

2 S

2



The states (a), (b), (c) can be obtained by gluing state
(a)

Rγ
1R γR2 S

ψ| > ψ| > ψ| > >φ |
1 2 3

( a ) ( b ) ( c  ) ( d )

S
2

S
2

S

2 S

2

with two-boundary states in the following way:

1

2

1
1

22

( a ) ( b ) ( c )

Denote the state (a) as ν1 , (b) as ν2 and state (c) as
ν3 .
Clearly, ν2 and ν3 represent mutation γ1 and γ2 re-
spectively
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2
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22

( a ) ( b ) ( c )

As braid words, (a), (b), (c) are different but the
states are same, we will see!

ν2 =
∑

l

|φ
side(1)
l 〉b1b

−1
3 |φ

side(2)
l 〉 = Cν1 .

where we have used

b1|φ
side
l 〉 = b3|φ

side
l 〉 = λ

(−)
l (R, R̄)|φsidel 〉 ,

and the operator C interchanges the representations
on the first and second, the third and fourth punctures
in that basis.

Similarly, we can show

ν3 =
∑

l

|φ
side(1)
l 〉b1b2b1b3b2b1|φ

side(2)
l 〉 = Cν1 .



Rγ
1R γR2 S

ψ| > ψ| > ψ| > >φ |
1 2 3

( a ) ( b ) ( c  ) ( d )
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S
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So, the generalised invariants of the mutantsL1, L2, L3

obtained by gluing (a),(b) and (c) with (d) are same

What is the reason??
Four-point conformal block plays a crucial role to
make ν2 and ν3 to be same as ν1 (identity braid)!

1

2

1
1

22

( a ) ( b ) ( c )

Strategy: Go beyond 4-pt conformal block by tak-
ing composite braiding



Incidentally, two 16-crossing mutant knots where
one is chiral and the other is achiral!

( a )  chiral ( b ) achiral

Clearly, chirality of the chiral 16-crossing knot is not
detected by our generalised invariants



r-Composite Braiding
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We studied braid-group representation of composite
braids and obtained eigen-basis and eigenvalues
We showed that the composite invariant for knots are
sum of the generalised knot invariants which implies

Composite invariants cannot detect mutations in knots.
However, some mutant links can be distinguished by
composite invariants.



Data from the Knot Theory School and Conference

• From Morton, I learnt that some specific represen-
tations of SU(3)q and SU(4)q can distinguish 11-
crossing mutant knots!
Should check out the 16-crossing mutant knots with
this method.

So far, I thought the Chern-Simons invariants must
coincide with quantum-group invariants but appears
to be not true for mixed representations placed on
the knot.
• We checked and found that the Khovanov homol-
ogy invariants does not distinguish 11-crossing mu-
tant knots.
M. Khovanov says that ‘there is a proof that the Z2

homology invariants cannot detect mutations!’
• Talking to P.Ozsvath, I see that the genus compu-
tation in Floer homology gives different results for the
two 11-crossing mutants. Must check for 16-crossing
mutants and prove in general!

Thank You


