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e An introduction to some of the aspects of the braid order,
with an emphasis on the known connections with knot theory.



Plan :
e The Braid Order in Antiquity

e The Braid Order in the Middle Ages

e The Braid Order in Modern Times (Knot Applications)




I. The Braid Order in Antiquity : 1985-95

- The set-theoretical roots




Braid groups

. . 0. = 0.0, for |2 — 7| > 2
e Artin’s braid group B, : <a-1, . ; 0,0; = 0,0; or |t —j| >

'n—11] g0.0 =0.0,0, for|i—jl=1 >
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~ { braid diagrams }/ isotopy:

~ mapping class group of D,




The standard braid order

e Theorem 1 (D., 1992): For 3,3’ in B, declare 3 < 3’ if 3~ 13 has an expression

in which the generator o; with minimal i appears only positively (no ai_l).
Then < is a left-invariant linear ordering on B,,.

1

e Example: 8 =o,, 3 = 0,0,. Then 3713 = o, 'oy,0, = 0,00, ', 50 B < 3.

e Question : Where does Theorem 1 come from ?

e Theorem 0 (D., 1986): If j is an elementary embedding of a self-similar rank,
then the LD-structure of Iter(j) implies I1]-determinacy.

2??°?°7?

e At least, it should be clear that Theorem 1 relies on two results:

1 cannot be trivial;

- Property C: each braid has an expression with no o; or no 0'1_1.

- Property A: a braid word containing o; and not o,



Colorings

e Braid diagram colorings: Start with a set S (“colours”),
apply colours at the left ends of the strands in a braid diagram,

propagate the colors to the right, and compare the initial and final colors.

e Option 1: Colors are preserved in crossings:

Yy 2
\ ~~ permutation of colors
xcd \y

e Option 2: (Joyce, Matveev, Brieskorn, ...) Colors change under the rule

WA
\ where * is some binary operation on S.
xd \ xT*xy

e For an action of B,, on S™, one needs compatibility with the braid relations:

e Hence: action of B,, iff x satisfies the left self-distributivity law (LD):
xx (yxz)=(r*xy)* (xrx*x2).




LD-systems

e Classical examples of LD-systems:

-TxYy =Y, leadsto B, — &,.
-xTxy =Y I, leads to B,, — Aut(F,) (Artin)
~xxy=(1—-t)x+ty, leadsto B, — GLy,(Z[t,t~']) (Burau)

e Definition : Say that an LD-system (S, x) is orderable if
there is a linear ordering < on S satisfying x < x x y for all x, y.

e Theorem 0.5 (D., 1991): There exist orderable LD-systems
(namely: free LD-systems).

e Claim: Theorem 1 directly comes from Theorem 0.5.



Proofs

e Claim: Theorem 1 (braid order) directly comes from Theorem 0.5.

e Proof of Property A : A braid word with o, and no 0-1_1 does not represent 1.

T < rxy; < (T*y)xys; <. Fwx

e Proof of Property C : A linear ordering on braids:

T3 Y3 I3 z3
2 Yo 2 z2
1 Y1 1 <1

~» Compare (y;,Ys,...) and (21, z2, ...) lexicographically.

e Question: OK, but then, why to look for orderable LD-systems?




Self-similar sets

v

... because set theory told us

e Set theory studies infinity. By Godel’s theorem,
every axiomatic system, e.g., the standard
Zermelo-Fraenkel system ZF, is incomplete.

e Godel’s program: Complete ZF with axioms stating

the existence of “hyper-infinite” sets (“large cardinals™).

e Typically, strengthen

“X is infinite iff 47 : X — X injective non-surjective”
into

“X is self-similar iff 93 : X — X injective non-surjective
and, moreover, j preserves everything that is definable from €”.

an elementary embedding

e Example: As 3 : n+— m + 1 is injective non-surjective, N is infinite;
Now j preserves <, but not +: 7 is not an elementary embedding. In fact:
no (non-trivial) elementary embedding of N exists: N is infinite, but not self-similar.




Self-similar ranks

e Definition : A rank is a set R such that f: R — R implies f € R. ( 77)

e If R is a self-similar rank
and 2, 5 are elementary embeddings of R, then we can apply 2 to j.

e “Being an elem. emb.” is definable from €, so i(j) is an elem. emb.:
“application” is a binary operation on elementary embeddings of R.

e “Being the image under” is definable from €, so £=j(k) implies i(£)=1(j)(i(k)),
1(j(k)) = (J)(2(k)):

the “application” operation satisfies the LD law.

e Proposition : If 3 is an elementary embedding of a self-similar rank,

then the iterates of j, make an LD-system Iter(7).

closure of {j} under application: 5(j), 7(7)(7)..-



Removing Set Theory

e Theorem 0.2 (Laver, 1989): If j is an elem. embedding of a self-similar rank,
then Iter(j) is an orderable LD-system.

e Theorem 0.1 (D., 1989): If there exists at least one orderable LD-system,

then the word problem of LD is solvable.

e Corollary : If there exists a self-similar rank, the word problem of LD is solvable.

e But the existence of a self-similar rank is an unprovable axiom,
so the corollary does not give a solution for the word problem of LD.

~~ Construct a true orderable LD-system: Theorem 0.5
by investigating the “geometry group of LD”.

- As the latter group extends Artin’s braid group: Theorem 1



An application of set theory?

e Question: Why care about Iter(j) and prove Theorems 0.1 and 0.27

e Theorem 0 (D., 1986): If j is an elem. embedding of a self-similar rank, then

the LD-structure of Iter(j) implies IT}-determinacy.

not

~~ a continuous path from Theorem 0 to Theorem 1

e Is the braid order an application of set theory?
- Formally, no: braids appear when sets disappear.

- In essence, yes: Orderable LD-systems have been investigated because
set theory showed they might exist and be involved in deep phenomena.

e An analogy:
- In physics: using physical intuition and/or evidence,
guess some statement, then pass it to mathematicians for a formal proof.

- Here: using logical intuition and/or evidence (3 self-similar rank),
guess some statement (3 orderable LD-system),
then pass it to mathematicians for a formal proof.




Il. The Braid Order in the Middle Ages: 1995-2000

- Handle reduction

- Dynnikov’s formulas




Many different approaches

e Theorems (Burckel, D., Dynnikov, Fenn, Fro-

mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

“Many different approaches

lead to the same braid ordering”.

e Theorems (Clay, Ito, Navas, Rolfsen, Short,
Wiest, ...):

“Many different braid orderings

making an interesting space”.

Q¥



Handle reduction

e Definition : A ai-handle is a braid word of the form aiwai_l or a'z._lwai

+

with w containing no o; 1 with 7 < 2.

D2 A [ e e S R

|
o

1 X

e Definition : Reducing a handle o7 wo;

© means deleting the initial and final o1

'I: y
and replacing each nested o, , with ,L.:Lfo-ioﬁrl.

e Handle reduction is an isotopy; It extends free group reduction;
Irreducible words are: the empty word, o-positive words, o-negative words.

e Theorem (D., 1995): A braid 3 satisfies 3 = 1 (resp. B > 1) iff some/any
sequence of handle reductions from some/any braid word representing 3 finishes

with the empty word (resp. with a o-positive word).




Dynnikov’s formulas

e Definition : For x in Z, put ™ = max(0,x), £~ = min(x, 0), and

F+(w1,y1,w2’yz) =

(1+y7 +(y3 —21) T, ¥ — 2], w2 +ys +(yg +21) 7 Y1 +21),
F~(z1,y1,%2,Yz) =

(1—yy —(y3 +22) ", ¥a+25, @2—y5 —(y7 — 22)7,¥1—23),

with z71 = wl—yl_—azz—l—yé" and zo = :131—|—y1_—a:2—yé|'.
e Let n-strand braid words act on Z2™ by

(a1,b1,...,an,bn) xof = (a},b],...,a;,,b},)
with a, = ay, et by, = by, for k # 4,7+ 1, and

(a’;:7 b;7 a';:_|_]_7 b;_|_1) — Fe(a”ia b’ia a;i1, b’l,—{—l)

e Finally, define the coordinates of w to be (0,1,0,1,...,0,1) x w.

e Theorem (Dynnikov, 2000): A braid 3 satisfies 3 = 1 (resp. 3 > 1) iff the
coordinates of some/any braid word representing 3 are (0,1,0,1,...,0,1)
(resp. the first nonzero odd rank coordinate is positive).




Laminations

e Braid = homeomorphism ~» braids act on curves drawn on D,,.

\Q;/ \ =2/ N2/

OWhRNNREO
O OWNREO
OO O WO

v

~» 3n -+ 3 numbers that determine the braid.



Changing coordinates

e Coordinates = differences between intersection numbers:

e Question : What are the coordinates of 3o; in terms of those of 3 and of z ?

e We have #(o; (C)NT) =#(CnN Uq;_l(T))

e Proposition : If T, T’ are (singular) triangulations of a surface,

one can go from T to T by a finite sequence of flips.




Flips

e So it must be possible to go from T to ai_l(T) using a finite sequence of flips:
PR o S
—_— A > ary Ary
e — I

e For one flip, the formula is

T2 \/ GS T2 \//\\_ 3

\/ \¢
c‘»’)\\\} \“\?
1 q/ L4 1 / v T4

x + x' = max(x1 + x3, T2 + x4)

.

~~» Dynnikov’s formulae by a fourfold iteration.



I1l. The Braid Order in Modern Times: 2000-...

- Floor and closure

- Conjugacy via the u function




The floor

e Definition : For 3 in By, the floor |3] is the unique m satisfying
AZ™ < B < AZTH2,

e Proposition (Malyutin—Netsvetaev): The stable floor |3]s; of 3, defined to be
lim, | BP | /p, is a pseudo-character on B,,: one has |G | = p | 3]s, and

H181:82Js — B1]s — L,szs} < 1.

e Principle : Use the (absolute value of) the (stable) floor as
a measure of complexity for a braid.



Large braids

e Principle: If 3 is very small or very large in the braid ordering, then ,@ is simple.

e Theorem (Malyutin—Netsvetaev): If 3 satisfies 3 < A% or B3 > A2,
then 3 is prime and non-trivial.

e Theorem (Malyutin—Netsvetaev): For each n, there exists r(n) such that,

if Bin B, satisfies 8 < A,2" ™ or g > A",
then 3 is represented by a unique conjugacy class in B, .

e (M.-N., 2000) »(3) < 3; (Matsuda, 2008) (4) < 4; (Ito, 2009) »(3) = 2.

e Conjecture (Ito): r(n) < n — 1 for each n.




Genus and Nielsen-Thurston classification

e Two more results connecting the complexity of a braid
and the complexity of its closure:

e Theorem (lto, 2008): If 3 satisfies 3 < A 2*~2 or B > A2FF2 then
4-genus(B) > k(n + 2) — 2.

e Theorem (Ito, 2008): If 3 satisfies 3 < A% or B > A% and 3 is a knot, then
- 3 is periodic iff B is a torus knot,
_ B is reducible iff 3 is a satellite knot,
- 3 is pseudo-Anosov iff B is hyperbolic.




Two functions

e Theorem (Laver, 1995): For every braid 3 and every %, one has B_lo'i,B > 1.

e Corollary : The restriction of the braid order to B is a well-ordering.

e Definition : For 3 in B}, put

p(B) = min{B" € B} | B’ conjugate to (3}.
v(B) = min{B’ € B} | 3 Markov equivalent to 3}.

not Archimedian, not Conradian



The alternating normal form

e Associate with every braid 3 in B}
a finite sequence (..., B3, 35, 3;) of braids in B‘,,';_l: the n-splitting of 3.

e lterate to obtain a unique normal form

e Theorem (D., 2007, building on Burckel, 1997):

The order < on B} is a ShortLex-extension of the order < on B} ..




Fromentin’s rotating normal form

e Definition (Birman-Ko-Lee, 1997): The dual braid monoid B} * is the submonoid
of B, generated by (a; j)i<i<j<n With

R | —1
a'L,J e Uj—l...ai+1a'iai+1...aj—1.

e Then similar splitting of braids in B}:* into sequences of braids in B;";l.

e Theorem (Fromentin, 2008):
The order < on B!* is a ShortLex-extension of the order < on Biil.




Conjectures

e Principle : With the (alternating and) rotating normal form(s) of braids,

we now have a practical way of controlling the braid order.

e Example: For 3 in B}, one has |3| ~ 2 x (length of the splitting of 3) — 2.

e Conjecture (D., Fromentin, Gebhardt, 2009): For 3 in BY,

p(BA3) = o 050, - u(B) - o7

. more generally: a reasonable hope of computing the function .

e Then let’s dream a little: What about v?
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