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• An introduction to some of the many aspects of the standard braid order,
with an emphasis on the few known connections with knot theory.



Plan :

• The Braid Order in Antiquity

• The Braid Order in the Middle Ages

• The Braid Order in Modern Times (Knot Applications)



I. The Braid Order in Antiquity : 1985-95

- The set-theoretical roots



Braid groups

• Artin’s braid group Bn :
D
σ1, ..., σn−1

˛̨
˛

E
.

σiσj = σjσi for |i− j| ! 2
σiσjσi = σjσiσj for |i− j| = 1

""" { braid diagrams }/ isotopy:

σi """""""""
1 2 i i+1 n

... ...

""" mapping class group of Dn (disk with n punctures):

σi """"""""" 1 2 i i+1 n... ...

Dn



The standard braid order

• Theorem 1 (D., 1992): For β, β′ in Bn , declare β < β′ if β−1β′ has an expression
in which the generator σi with minimal i appears only positively (no σ−1

i ).
Then < is a left-invariant linear ordering on Bn .

↑
β < β′ implies αβ < αβ′

• Example: β = σ1, β′ = σ2σ1. Then β−1β′ = σ−1
1 σ2σ1 = σ2σ1σ−1

2 , so β <<< β′.

• Question : Where does Theorem 1 come from ?

• Theorem 0 (D., 1986): If j is an elementary embedding of a self-similar rank,
then the LD-structure of IterIterIter(j) implies Π1

1-determinacy.

???????

• At least, it should be clear that Theorem 1 relies on two non-trivial results:

- Property A: a braid word containing σ1 and not σ−1
1 cannot be trivial;

- Property C: each braid has an expression with no σ1 or no σ−1
1 .



Colorings

• Braid diagram colorings: Start with a set S (“colours”),
apply colours at the left ends of the strands in a braid diagram,
propagate the colors to the right, and compare the initial and final colors.

• Option 1: Colors are preserved in crossings:

x

y x

y
######### permutation of colors

• Option 2: (Joyce, Matveev, Brieskorn, ...) Colors change under the rule

x

y x

x ∗ y
where ∗ is some binary operation on S.

• For an action of Bn on Sn , one needs compatibility with the braid relations:

x

y

z

x

y

z
y∗z x

x

x∗y

x∗(y∗z)
x∗y

x x∗z
x

x∗y

(x∗y)∗(x∗z)

• Hence: action of Bn iff ∗ satisfies the left self-distributivity law (LD):

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).



LD-systems

• Classical examples of LD-systems:
(= sets equipped with an operation satisfying the LD law)

- x ∗ y = y, leads to Bn →→ Sn .

- x ∗ y = xyx−1, leads to Bn → AutAutAut(Fn) (Artin)

- x ∗ y = (1− t)x + ty, leads to Bn →GLGLGLn(ZZZ[t, t−1]) (Burau)

• Note: in these examples, x ∗ x = x always holds.

• Definition : Say that an LD-system (S, ∗) is orderable if
there is a linear ordering < on S satisfying x < x ∗ y for all x, y.

• Certainly orderable LD-systems are of a new flavour: x < x ∗ x &= x.

• Theorem 0.5 (D., 1991): There exist orderable LD-systems
(namely: free LD-systems).

• Claim: Theorem 1 (braid order) directly comes from Theorem 0.5.



Proofs

• Claim: Theorem 1 (braid order) directly comes from Theorem 0.5.

• Proof of Property A : A braid word with σ1 and no σ−1
1 does not represent 1.

· · ·

x

y1

x∗y1

y2

(x∗y1)∗y2<<< <<< <<< ... &= x

• Proof of Property C : A linear ordering on braids:

x1

x2

x3

x1

x2

x3

y1

y2

y3

z1

z2

z3

######### Compare (y1, y2, ...) and (z1, z2, ...) lexicographically.

• Question: OK, but then, why to look for orderable LD-systems?



Self-similar sets

... because set theory told us

• Set theory studies infinity. By Gödel’s theorem,
every axiomatic system, e.g., the standard
Zermelo-Fraenkel system ZF, is incomplete.

• Gödel’s program: Complete ZF with axioms stating
the existence of “hyper-infinite” sets (“large cardinals”).

• Typically, strengthen

“X is infinite iff ∃j : X → X injective non-surjective”
into

“X is self-similar (= hyper-infinite) iff ∃j : X → X injective non-surjective
and, moreover, j preserves everything that is definable from ∈∈∈”.

↑
an elementary embedding

• Example: As j : n )→ n + 1 is injective non-surjective, NNN is infinite;
Now j preserves <<<, but not +++: j is not an elementary embedding. In fact:
no (non-trivial) elementary embedding of NNN exists: NNN is infinite, but not self-similar.



Self-similar ranks

• Definition : A rank is a set R such that f : R→ R implies f ∈ R. ( ?? )

• If R is a self-similar rank (= there exists an elem. emb. of R into itself)
and i, j are elementary embeddings of R, then we can apply i to j.

• “Being an elem. emb.” is definable from ∈∈∈, so i(j) is an elem. emb.:
“application” is a binary operation on elementary embeddings of R.

• “Being the image under” is definable from ∈∈∈, so $=j(k) implies i($)=i(j)(i(k)),

i(j(k)) = i(j)(i(k)):

the “application” operation satisfies the LD law.

• Proposition : If j is an elementary embedding of a self-similar rank,
then the iterates of j, make an LD-system IterIterIter(j).

↑
closure of {j} under application: j(j), j(j)(j)...



Removing Set Theory

• Remember the question: why to look for orderable LD-systems (Theorem 0.5)?

• Theorem 0.2 (Laver, 1989): If j is an elem. embedding of a self-similar rank,
then IterIterIter(j) is an orderable LD-system.

• Theorem 0.1 (D., 1989): If there exists at least one orderable LD-system,
then the word problem of LD is solvable.

↑
deciding whether two terms are equal modulo LD

• Corollary : If there exists a self-similar rank, the word problem of LD is solvable.

• But the existence of a self-similar rank is an unprovable axiom,
so the corollary does not give a solution for the word problem of LD.

######### Construct a true orderable LD-system: Theorem 0.5 (orderable LD-systems)
by investigating the “geometry group of LD”.

- As the latter group extends Artin’s braid group: Theorem 1 (braid order).



An application of set theory?

• Question: Why care about IterIterIter(j) and prove Theorems 0.1 and 0.2?

• Theorem 0 (D., 1986): If j is an elem. embedding of a self-similar rank, then
the LD-structure of IterIterIter(j) implies Π1

1-determinacy.

(“ IterIterIter(j) is not trivial ”)

######### a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).

• Is the braid order an application of set theory?

- Formally, no: braids appear when sets disappear.

- In essence, yes: Orderable LD-systems have been investigated because
set theory showed they might exist and be involved in deep phenomena.

• An analogy:

- In physics: using physical intuition and/or evidence,
guess some statement, then pass it to mathematicians for a formal proof.

- Here: using logical intuition and/or evidence (∃ self-similar rank),
guess some statement (∃ orderable LD-system),

then pass it to mathematicians for a formal proof.



II. The Braid Order in the Middle Ages: 1995-2000

- Handle reduction

- Dynnikov’s formulas



Many different approaches

• Theorems (Burckel, D., Dynnikov, Fenn, Fro-
mentin, Funk, Greene, Larue, Rolfsen, Rourke,
Short, Wiest, ...):

“Many different approaches
lead to the same braid ordering”.

• Theorems (Clay, Ito, Navas, Rolfsen, Short,
Wiest, ...):

“Many different braid orderings
making an interesting space”.



Handle reduction

• Definition : A σi-handle is a braid word of the form σiwσ−1
i or σ−1

i wσi

with w containing no σ±1
j with j $ i.

• Definition : Reducing a handle σe
i wσ−e

i means deleting the initial and final σ±1
i ,

and replacing each nested σi+1 with σ−e
i+1σiσ

e
i+1.

• Handle reduction is an isotopy; It extends free group reduction;
Irreducible words are: the empty word, σ-positive words, σ-negative words.

↑
the σi with least i occurs positively only

• Theorem (D., 1995): A braid β satisfies β = 1 (resp. β > 1) iff some/any
sequence of handle reductions from some/any braid word representing β finishes
with the empty word (resp. with a σ-positive word).



Dynnikov’s formulas

• Definition : For x in ZZZ, put x+ = max(0, x), x− = min(x,0), and

F+(x1, y1, x2, y2) =
(x1+y+

1 +(y+
2 −z1)+, y2−z+

1 , x2+y−2 +(y−1 +z1)−, y1+z+
1 ),

F−(x1, y1, x2, y2) =
(x1−y+

1 −(y+
2 +z2)+, y2+z−2 , x2−y−2 −(y−1 − z2)−, y1−z−2 ),

with z1 = x1−y−1 −x2+y+
2 and z2 = x1+y−1 −x2−y+

2 .

• Let n-strand braid words act on Z2n by

(a1, b1, ..., an , bn) ∗ σe
i = (a′1, b′1, ..., a′n , b′n)

with a′k = ak et b′k = bk for k &= i, i + 1, and

(a′i , b
′
i , a

′
i+1, b′i+1) = Fe(ai , bi , ai+1, bi+1).

• Finally, define the coordinates of w to be (0,1,0,1, ...,0,1) ∗w.

• Remark: Looks ackward, but actually very easy to implement.

• Theorem (Dynnikov, 2000): A braid β satisfies β = 1 (resp. β > 1) iff the
coordinates of some/any braid word representing β are (0,1,0,1, ...,0,1)

(resp. the first nonzero odd rank coordinate is positive).



Laminations

• Braid = homeomorphism ######### braids act on curves drawn on Dn .

*** *

#########
σ1

* *

#########
σ1

* *

#########
σ1

* * *

#########
σ1

#########
σ−1
2

* * *

#########
σ1

#########
σ−1
2

* * *

#########
σ1

#########
σ−1
2

• Attribute coordinates by counting intersections with a fixed triangulation:

6
3 3
4
2 2
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
4 2
6
3 3
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
4 2
6
3 3
2
1 1
0

3

0

6
3 3
4
2 2
2
1 1
0

3

0

6
4 2
6
3 3
2
1 1
0

3

0

6
4 2
6
1 5
6
3 3
0

3

0

######### 3n + 3 numbers that determine the braid.



Changing coordinates

• Coordinates = half-differences between intersection numbers;
(going from 3n + 3 to 2n numbers)

• Question : What are the coordinates of βσi in terms of those of β and of i ?

= compare the intersections of C and σi(C) with the base triangulation T
↑ ↑

closed curve(s)

• We have #(σi(C) ∩ T ) = #(C ∩ σ−1
i (T ))

######### compare the intersections of C with T and σ−1
i (T ).

• Proposition : If T , T ′ are (singular) triangulations of a surface,
one can go from T to T ′ by a finite sequence of flips.

↗

#########



Flips

• So it must be possible to go from T to σ−1
i (T ) using a finite sequence of flips:

#########
σ−1

i

########################### ################## ################## ######### ################## ######### ################## ######### ######### ################## ######### ######### #########

• For one flip, the formula is

x1 x4

x2 x3

x1 x4

x2 x3

x x′

x + x′ = max(x1 + x3, x2 + x4)

######### Dynnikov’s formulae by a fourfold iteration.



III. The Braid Order in Modern Times: 2000-...

- Floor and closure

- Conjugacy via the µ function



The floor

• Definition : For β in Bn , the floor ,β- is the unique m satisfying

∆2m
n $ β < ∆2m+2

n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn , <)

β

,β- = 1

• Proposition (Malyutin–Netsvetaev): The stable floor ,β-s of β, defined to be
limp,βp-/p, is a pseudo-character on Bn : one has ,βp-s = p ,β-s, and

˛̨
,β1β2-s − ,β1-s − ,β2-s

˛̨ $ 1.

(the only pseudo-character on Bn that is > 0 on braids > 1 and is 1 on ∆2
n)

• Principle : Use the (absolute value of) the (stable) floor as
a measure of complexity for a braid.



Large braids

• Principle: If β is very small or very large in the braid ordering, then bβ is simple.

• Theorem (Malyutin–Netsvetaev): If β satisfies β < ∆−4
n or β > ∆4

n ,
then bβ is prime and non-trivial.

• Proof: For χ a pseudo-character on Bn s.t. χ|Bn−1 = 0, then

|χ(β)| > def(χ) implies that bβ is prime.
Apply to , -s: both β < ∆−4

n and β > ∆4
n imply |,β-s| > 1. %

• Theorem (Malyutin–Netsvetaev): For each n, there exists r(n) such that,

if β in Bn satisfies β < ∆
−2r(n)
n or β > ∆

2r(n)
n ,

then bβ is represented by a unique conjugacy class in Bn .

bβ′ ≈ bβ implies β′ conjugated to β

• Proof: For each template move M, there exists r s.t.
|,β-| > r implies that bβ is not eligible for M.

By the Birman-Menasco MTWS theory, ∃ finitely template moves for each n. %
• (M.-N., 2000) r(3) $ 3; (Matsuda, 2008) r(4) $ 4; (Ito, 2009) r(3) = 2.

• Conjecture (Ito): r(n) $ n− 1 for each n.



Genus and Nielsen-Thurston classification

• Two more results connecting the complexity of a braid (floor)
and the complexity of its closure:

• Theorem (Ito, 2008): If β satisfies β < ∆−2k−2
n or β > ∆2k+2

n , then

4· genus(bβ) > k(n + 2)− 2.

• Theorem (Ito, 2008): If β satisfies β $ ∆−4
n or β ! ∆4

n and bβ is a knot, then

- β is periodic iff bβ is a torus knot,

- β is reducible iff bβ is a satellite knot,

- β is pseudo-Anosov iff bβ is hyperbolic.

• False for arbitrary braids:

- σ3
1 is periodic,

- σ1σ2σ3σ1σ2 is reducible,

- σ3
1 σ−1

2 is pseudo-Anosov, whereas the three closures are a (2,3)-torus knot.



Two functions

• Theorem (Laver, 1995): For every braid β and every i, one has β−1σiβ > 1.

• Corollary : The restriction of the braid order to B+++
n is a well-ordering.

↑
the submonoid of Bn generated by σ1, ..., σn−1

↑
every nonempty subset has a minimal element

• Definition : For β in B+++
n , put

µ(β) = min{β′ ∈ B+++
n | β′ conjugate to β}.

ν(β) = min{β′ ∈ B+++
n | β′ Markov equivalent to β}.

• Are these definitions useful? Only if the functions can be computed ...

... so certainly not until recently.

• Remark: The braid order is quite bizarre: not Archimedian, not Conradian, ...
↑

∃β, β′>1 ∀p (βp < β′)
↑

∃β, β′>1 ∀p (β < β′βp)



The alternating normal form

• Associate with every braid β in B+++
n

a finite sequence (..., β3, β2, β1) of braids in B+++
n−1: the n-splitting of β.

β

1

2

...

n

β1β1

Φn(β2)

↓
n-flip (= horizontal symmetry)

β1

Φn(β2)

β3

↓

β1

Φn(β2)

β3

Φn(β4)

↓

...

• Iterate to obtain a unique normal form ( = construct a tree for each braid )

• Theorem (D., 2007, building on Burckel, 1997):
The order < on B+++

n is a ShortLex-extension of the order < on B+++
n−1.

↑
β < β′ holds iff the splitting of β is shorter than that of β′ or

they have the same length and the splitting of β is lexicographically smaller



Fromentin’s rotating normal form

• Definition (Birman-Ko-Lee, 1997): The dual braid monoid B+++∗
n is the submonoid

of Bn generated by (ai,j )1!i<j!n with

ai,j = σ−1
j−1...σ−1

i+1σiσi+1...σj−1.

• Alternative Garside structure for Bn ,
with the Catn non-crossing partitions replacing the n! permutations.

• Then similar splitting of braids in B+++∗
n into sequences of braids in B+++∗

n−1.

1

2

3

n

n−1

1

2

3

n

n−1

β1

1

2

3

n

n−1

β1

φn(β2)

1

2

3

n

n−1

β1

φn(β2)

φ2
n(β3)

...

• Theorem (Fromentin, 2008):
The order < on B+++∗

n is a ShortLex-extension of the order < on B+++∗
n−1.



Conjectures

• Principle : With the (alternating and) rotating normal form(s) of braids,
we now have a practical way of controlling the braid order.

• Example: For β in B+++
n , one has ,β- ≈ 2× (length of the splitting of β)− 2.

• Conjecture (D., Fromentin, Gebhardt, 2009): For β in B+++
3 ,

µ(β∆2
3) = σ1σ2

2 σ1 · µ(β) · σ2
1 .

↑
min{β′∈B+++

n | β′ conjugate to β}

... more generally: a reasonable hope of computing the function µ.
(whence possibly solving the conjugacy problem in a completely new way).

• Then let’s dream a little: What about ν?
↑

similar to µ with Markov equivalence instead of conjugacy
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