Advanced School and Conference on Knot Theory and its Applications to Physics and Biology

$$
\text { 11-29 May } 2009
$$

Braid Order: History and Connection with Knots

Patrick Dehornoy
Laboratoire de Mathématiques Nicolas Oresme Université de Caen

F-14032 Caen
France

Braid Order: History and Connection with Knots
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

- An introduction to some of the many aspects of the standard braid order, with an emphasis on the few known connections with knot theory.

Plan :

- The Braid Order in Antiquity
- The Braid Order in the Middle Ages
- The Braid Order in Modern Times (Knot Applications)

I. The Braid Order in Antiquity : 1985-95
- The set-theoretical roots
\bullet Artin's braid group $B_{n}:\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{cc}\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 \\ \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1\end{array}\right.\right\rangle$.
$\simeq\{$ braid diagrams $\} /$ isotopy:
\simeq mapping class group of D_{n} (disk with n punctures):

- Theorem 1 (D., 1992): For $\boldsymbol{\beta}, \boldsymbol{\beta}^{\prime}$ in B_{n}, declare $\boldsymbol{\beta}<\boldsymbol{\beta}^{\prime}$ if $\boldsymbol{\beta}^{-1} \boldsymbol{\beta}^{\prime}$ has an expression in which the generator σ_{i} with minimal i appears only positively (no σ_{i}^{-1}). Then $<$ is a left-invariant linear ordering on B_{n}.

- Example: $\boldsymbol{\beta}=\sigma_{1}, \boldsymbol{\beta}^{\prime}=\sigma_{2} \sigma_{1}$. Then $\boldsymbol{\beta}^{-1} \boldsymbol{\beta}^{\prime}=\sigma_{1}^{-1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}^{-1}$, so $\boldsymbol{\beta}<\boldsymbol{\beta}^{\prime}$.
- Question : Where does Theorem 1 come from ?
- Theorem 0 (D., 1986): If j is an elementary embedding of a self-similar rank, then the LD-structure of $\operatorname{Iter}(j)$ implies Π_{1}^{1}-determinacy.

???????

- At least, it should be clear that Theorem 1 relies on two non-trivial results:
- Property A: a braid word containing σ_{1} and not σ_{1}^{-1} cannot be trivial;
- Property C: each braid has an expression with no σ_{1} or no σ_{1}^{-1}.
- Braid diagram colorings: Start with a set S ("colours"), apply colours at the left ends of the strands in a braid diagram, propagate the colors to the right, and compare the initial and final colors.
- Option 1: Colors are preserved in crossings:

\leadsto permutation of colors
- Option 2: (Joyce, Matveev, Brieskorn, ...) Colors change under the rule
 where $*$ is some binary operation on S.
- For an action of B_{n} on S^{n}, one needs compatibility with the braid relations:

- Hence: action of B_{n} iff $*$ satisfies the left self-distributivity law (LD):

$$
\boldsymbol{x} *(\boldsymbol{y} * \boldsymbol{z})=(\boldsymbol{x} * \boldsymbol{y}) *(\boldsymbol{x} * \boldsymbol{z}) .
$$

- Classical examples of LD-systems:
(= sets equipped with an operation satisfying the LD law)
$-\boldsymbol{x} * \boldsymbol{y}=\boldsymbol{y}$,
- $\boldsymbol{x} * \boldsymbol{y}=\boldsymbol{x y} \boldsymbol{x}^{-1}, \quad$ leads to $\quad B_{n} \rightarrow \operatorname{Aut}\left(F_{\boldsymbol{n}}\right)$ (Artin)
$-\boldsymbol{x} * \boldsymbol{y}=(\mathbf{1}-\boldsymbol{t}) \boldsymbol{x}+\boldsymbol{t y}, \quad$ leads to $\quad \boldsymbol{B}_{\boldsymbol{n}} \rightarrow \mathrm{GL}_{\boldsymbol{n}}\left(\mathbb{Z}\left[\boldsymbol{t}, \boldsymbol{t}^{-1}\right]\right)$ (Burau)
- Note: in these examples, $\boldsymbol{x} * \boldsymbol{x}=\boldsymbol{x}$ always holds.
- Definition : Say that an LD-system $(\boldsymbol{S}, *)$ is orderable if
there is a linear ordering $<$ on \boldsymbol{S} satisfying $\boldsymbol{x}<\boldsymbol{x} * \boldsymbol{y}$ for all $\boldsymbol{x}, \boldsymbol{y}$.
- Certainly orderable LD-systems are of a new flavour: $x<x * x \neq x$.
- Theorem 0.5 (D., 1991): There exist orderable LD-systems
(namely: free LD-systems).
- Claim: Theorem 1 (braid order) directly comes from Theorem 0.5.

- Claim: Theorem 1 (braid order) directly comes from Theorem 0.5.

- Proof of Property A: A braid word with σ_{1} and no σ_{1}^{-1} does not represent 1 .

- Proof of Property C : A linear ordering on braids:

- Question: OK, but then, why to look for orderable LD-systems?
- Set theory studies infinity. By Gödel's theorem, every axiomatic system, e.g., the standard Zermelo-Fraenkel system ZF, is incomplete.

- Gödel's program: Complete ZF with axioms stating

 the existence of "hyper-infinite" sets ("large cardinals").- Typically, strengthen
" X is infinite iff $\exists j: X \rightarrow X$ injective non-surjective" into
" \boldsymbol{X} is self-similar (= hyper-infinite) iff $\exists \boldsymbol{j}: \boldsymbol{X} \rightarrow \boldsymbol{X}$ injective non-surjective and, moreover, \boldsymbol{j} preserves everything that is definable from \in ".
an elementary embedding
- Example: As $j: n \mapsto n+1$ is injective non-surjective, \mathbb{N} is infinite;

Now j preserves $<$, but not + : j is not an elementary embedding. In fact:
no (non-trivial) elementary embedding of \mathbb{N} exists: \mathbb{N} is infinite, but not self-similar.

- Definition : A rank is a set R such that $f: R \rightarrow R$ implies $f \in R$. (??)
- If R is a self-similar rank (= there exists an elem. emb. of R into itself) and i, j are elementary embeddings of R, then we can apply i to j.
- "Being an elem. emb." is definable from \in, so $i(j)$ is an elem. emb.:
"application" is a binary operation on elementary embeddings of \boldsymbol{R}.
- "Being the image under" is definable from ϵ, so $\ell=\boldsymbol{j}(\boldsymbol{k})$ implies $i(\ell)=i(j)(\boldsymbol{i}(\boldsymbol{k}))$,

$$
i(j(k))=i(j)(i(k)):
$$

the "application" operation satisfies the LD law.

- Proposition : If j is an elementary embedding of a self-similar rank, then the iterates of j, make an LD-system $\operatorname{Iter}(j)$.
closure of $\{\boldsymbol{j}\}$ under application: $\boldsymbol{j}(\boldsymbol{j}), \boldsymbol{j}(\boldsymbol{j})(\boldsymbol{j}) \ldots$
- Remember the question: why to look for orderable LD-systems (Theorem 0.5)?
- Theorem 0.2 (Laver, 1989): If j is an elem. embedding of a self-similar rank, then $\operatorname{Iter}(j)$ is an orderable LD-system.
- Theorem 0.1 (D., 1989): If there exists at least one orderable LD-system, then the word problem of LD is solvable.
deciding whether two terms are equal modulo LD
- Corollary : If there exists a self-similar rank, the word problem of LD is solvable.
- But the existence of a self-similar rank is an unprovable axiom, so the corollary does not give a solution for the word problem of LD.
\leadsto Construct a true orderable LD-system: Theorem 0.5 (orderable LD-systems) by investigating the "geometry group of LD". - As the latter group extends Artin's braid group: Theorem 1 (braid order).
- Question: Why care about $\operatorname{Iter}(j)$ and prove Theorems 0.1 and 0.2 ?
- Theorem 0 (D., 1986): If j is an elem. embedding of a self-similar rank, then the LD-structure of $\operatorname{Iter}(j)$ implies Π_{1}^{1}-determinacy.
(" $\operatorname{Iter}(j)$ is not trivial ")
\leadsto a continuous path from Theorem 0 (about sets) to Theorem 1 (about braids).
- Is the braid order an application of set theory?
- Formally, no: braids appear when sets disappear.
- In essence, yes: Orderable LD-systems have been investigated because set theory showed they might exist and be involved in deep phenomena.
- An analogy:
- In physics: using physical intuition and/or evidence,
guess some statement, then pass it to mathematicians for a formal proof.
- Here: using logical intuition and/or evidence (\exists self-similar rank), guess some statement (\exists orderable LD-system),
then pass it to mathematicians for a formal proof.

II. The Braid Order in the Middle Ages: 1995-2000
- Handle reduction
- Dynnikov's formulas

```
- Theorems (Burckel, D., Dynnikov, Fenn, Fro- mentin，Funk，Greene，Larue，Rolfsen，Rourke， Short，Wiest，．．．）：
＂Many different approaches
lead to the same braid ordering＂．
```


－Theorems（Clay，Ito，Navas，Rolfsen，Short， Wiest，．．．）：
＂Many different braid orderings making an interesting space＂．
－Definition ：A σ_{i}－handle is a braid word of the form $\sigma_{i} w \sigma_{i}^{-1}$ or $\sigma_{i}^{-1} w \sigma_{i}$

$$
\text { with } w \text { containing no } \sigma_{j}^{ \pm 1} \text { with } j \leqslant i
$$

－Definition ：Reducing a handle $\sigma_{i}^{e} w \sigma_{i}^{-e}$ means deleting the initial and final $\sigma_{i}^{ \pm 1}$ ， and replacing each nested σ_{i+1} with $\sigma_{i+1}^{-e} \sigma_{i} \sigma_{i+1}^{e}$ ．
－Handle reduction is an isotopy；It extends free group reduction； Irreducible words are：the empty word，σ－positive words，σ－negative words．

$$
\text { the } \sigma_{i} \text { with least } i \text { occurs positively only }
$$

－Theorem（D．，1995）：A braid β satisfies $\beta=1$（resp．$\beta>1$ ）iff some／any sequence of handle reductions from some／any braid word representing β finishes with the empty word（resp．with a σ－positive word）．

- Definition : For \boldsymbol{x} in \mathbb{Z}, put $\boldsymbol{x}^{+}=\max (\mathbf{0}, \boldsymbol{x}), \boldsymbol{x}^{-}=\min (\boldsymbol{x}, \mathbf{0})$, and

$$
\begin{aligned}
& \boldsymbol{F}^{+}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)= \\
& \left(x_{1}+y_{1}^{+}+\left(y_{2}^{+}-z_{1}\right)^{+}, y_{2}-z_{1}^{+}, x_{2}+y_{2}^{-}+\left(y_{1}^{-}+z_{1}\right)^{-}, y_{1}+z_{1}^{+}\right), \\
& F^{-}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)= \\
& \left(x_{1}-y_{1}^{+}-\left(y_{2}^{+}+z_{2}\right)^{+}, y_{2}+z_{2}^{-}, x_{2}-y_{2}^{-}-\left(y_{1}^{-}-z_{2}\right)^{-}, y_{1}-z_{2}^{-}\right), \\
& \\
& \text {with } z_{1}=x_{1}-y_{1}^{-}-x_{2}+y_{2}^{+} \text {and } z_{2}=x_{1}+y_{1}^{-}-x_{2}-y_{2}^{+} .
\end{aligned}
$$

- Let n-strand braid words act on $\mathbb{Z}^{2 n}$ by

$$
\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) * \sigma_{i}^{e}=\left(a_{1}^{\prime}, b_{1}^{\prime}, \ldots, a_{n}^{\prime}, b_{n}^{\prime}\right)
$$

with $a_{k}^{\prime}=a_{k}$ et $b_{k}^{\prime}=b_{k}$ for $k \neq i, i+1$, and

$$
\left(a_{i}^{\prime}, b_{i}^{\prime}, a_{i+1}^{\prime}, b_{i+1}^{\prime}\right)=F^{e}\left(a_{i}, b_{i}, a_{i+1}, b_{i+1}\right)
$$

- Finally, define the coordinates of w to be $(0,1,0,1, \ldots, 0,1) * w$.
- Remark: Looks ackward, but actually very easy to implement.
- Theorem (Dynnikov, 2000): A braid β satisfies $\beta=1$ (resp. $\beta>1$) iff the coordinates of some/any braid word representing β are $(0,1,0,1, \ldots, 0,1)$
(resp. the first nonzero odd rank coordinate is positive).
- Braid $=$ homeomorphism \leadsto braids act on curves drawn on D_{n}.

- Attribute coordinates by counting intersections with a fixed triangulation:

$\leadsto 3 n+3$ numbers that determine the braid.
- Coordinates $=$ half-differences between intersection numbers;

```
(going from 3n+3 to 2n numbers)
```

- Question : What are the coordinates of $\beta \sigma_{i}$ in terms of those of β and of i ?

```
= compare the intersections of }\underset{\uparrow}{C}\mathrm{ and }\underset{i}{~
```

- We have

$$
\begin{aligned}
& \#\left(\boldsymbol{\sigma}_{i}(\boldsymbol{C}) \cap \boldsymbol{T}\right)=\#\left(\boldsymbol{C} \cap \sigma_{i}^{-1}(\boldsymbol{T})\right) \\
& \leadsto \text { compare the intersections of } C \text { with } T \text { and } \sigma_{i}^{-1}(T) .
\end{aligned}
$$

- Proposition : If $\boldsymbol{T}, \boldsymbol{T}^{\prime}$ are (singular) triangulations of a surface, one can go from T to T^{\prime} by a finite sequence of flips.

- So it must be possible to go from T to $\sigma_{i}^{-1}(T)$ using a finite sequence of flips:

- For one flip, the formula is

\leadsto Dynnikov’s formulae by a fourfold iteration.

III. The Braid Order in Modern Times: 2000-...
- Floor and closure
- Conjugacy via the μ function
- Definition : For β in B_{n}, the floor $\lfloor\boldsymbol{\beta}\rfloor$ is the unique m satisfying

$$
\Delta_{n}^{2 m} \leqslant \beta<\Delta_{n}^{2 m+2}
$$

- Proposition (Malyutin-Netsvetaev): The stable floor $\lfloor\boldsymbol{\beta}\rfloor_{s}$ of $\boldsymbol{\beta}$, defined to be $\lim _{\boldsymbol{p}}\left\lfloor\boldsymbol{\beta}^{p}\right\rfloor / \boldsymbol{p}$, is a pseudo-character on \boldsymbol{B}_{n} : one has $\left\lfloor\boldsymbol{\beta}^{\boldsymbol{p}}\right\rfloor_{s}=\boldsymbol{p}\lfloor\boldsymbol{\beta}\rfloor_{s}$, and

$$
\left|\left\lfloor\boldsymbol{\beta}_{1} \boldsymbol{\beta}_{\mathbf{2}}\right\rfloor_{s}-\left\lfloor\boldsymbol{\beta}_{\mathbf{1}}\right\rfloor_{s}-\left\lfloor\boldsymbol{\beta}_{\mathbf{2}}\right\rfloor_{s}\right| \leqslant 1 .
$$

(the only pseudo-character on B_{n} that is >0 on braids >1 and is 1 on Δ_{n}^{2})

- Principle : Use the (absolute value of) the (stable) floor as a measure of complexity for a braid.
- Principle: If β is very small or very large in the braid ordering, then $\widehat{\beta}$ is simple.
- Theorem (Malyutin-Netsvetaev): If β satisfies $\beta<\Delta_{n}^{-4}$ or $\beta>\Delta_{n}^{4}$, then $\widehat{\beta}$ is prime and non-trivial.
- Proof: For χ a pseudo-character on B_{n} s.t. $\left.\chi\right|_{B_{n-1}}=0$, then
$|\chi(\beta)|>\operatorname{def}(\chi)$ implies that $\widehat{\beta}$ is prime.
Apply to $\left\rfloor_{s}\right.$: both $\beta<\Delta_{n}^{-4}$ and $\beta>\Delta_{n}^{4}$ imply $\left|\lfloor\beta\rfloor_{s}\right|>1$.
- Theorem (Malyutin-Netsvetaev): For each \boldsymbol{n}, there exists $\boldsymbol{r}(\boldsymbol{n})$ such that, if β in B_{n} satisfies $\beta<\Delta_{n}^{-2 r(n)}$ or $\beta>\Delta_{n}^{2 r(n)}$, then $\widehat{\beta}$ is represented by a unique conjugacy class in B_{n}.

$$
\widehat{\beta}^{\prime} \approx \widehat{\beta} \text { implies } \beta^{\prime} \text { conjugated to } \beta
$$

Proof: For each template move M, there exists r s.t.
$|\lfloor\beta\rfloor|>r$ implies that $\widehat{\boldsymbol{\beta}}$ is not eligible for M.
By the Birman-Menasco MTWS theory, \exists finitely template moves for each n.

- (M.-N., 2000) $r(3) \leqslant 3$; (Matsuda, 2008) $r(4) \leqslant 4$; (Ito, 2009) $r(3)=2$.
- Conjecture (Ito): $\boldsymbol{r}(\boldsymbol{n}) \leqslant \boldsymbol{n}-1$ for each \boldsymbol{n}.
- Two more results connecting the complexity of a braid (floor) and the complexity of its closure:
- Theorem (Ito, 2008): If β satisfies $\beta<\Delta_{n}^{-2 k-2}$ or $\beta>\Delta_{n}^{2 k+2}$, then

$$
4 \cdot \operatorname{genus}(\widehat{\beta})>k(n+2)-2
$$

- Theorem (Ito, 2008): If β satisfies $\beta \leqslant \Delta_{n}^{-4}$ or $\beta \geqslant \Delta_{n}^{4}$ and $\widehat{\beta}$ is a knot, then
- $\boldsymbol{\beta}$ is periodic iff $\widehat{\boldsymbol{\beta}}$ is a torus knot,
- $\boldsymbol{\beta}$ is reducible iff $\widehat{\boldsymbol{\beta}}$ is a satellite knot,
- $\boldsymbol{\beta}$ is pseudo-Anosov iff $\widehat{\beta}$ is hyperbolic.

```
False for arbitrary braids:
    - }\mp@subsup{\sigma}{1}{3}\mathrm{ is periodic,
    - }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{}\mp@subsup{\sigma}{3}{}\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{}\mathrm{ is reducible,
    - }\mp@subsup{\sigma}{1}{3}\mp@subsup{\sigma}{2}{-1}\mathrm{ is pseudo-Anosov, whereas the three closures are a (2,3)-torus knot.
```


- Theorem (Laver, 1995): For every braid $\boldsymbol{\beta}$ and every i, one has $\beta^{-1} \sigma_{i} \beta>1$.

- Corollary : The restriction of the braid order to B_{n}^{+}is a well-ordering.
the submonoid of B_{n} generated by $\sigma_{1}, \ldots, \sigma_{n-1}$ every nonempty subset has a minimal element
- Definition : For β in B_{n}^{+}, put

$$
\begin{gathered}
\boldsymbol{\mu}(\boldsymbol{\beta})=\min \left\{\boldsymbol{\beta}^{\prime} \in \boldsymbol{B}_{n}^{+} \mid \boldsymbol{\beta}^{\prime} \text { conjugate to } \boldsymbol{\beta}\right\} . \\
\boldsymbol{\nu}(\boldsymbol{\beta})=\min \left\{\boldsymbol{\beta}^{\prime} \in \boldsymbol{B}_{n}^{+} \mid \boldsymbol{\beta}^{\prime} \text { Markov equivalent to } \boldsymbol{\beta}\right\} .
\end{gathered}
$$

- Are these definitions useful? Only if the functions can be computed ...
... so certainly not until recently.
- Remark: The braid order is quite bizarre: not Archimedian, not Conradian, ...

$$
\exists \beta, \beta^{\prime}>1 \forall p\left(\beta^{p}<\boldsymbol{\beta}^{\prime}\right) \quad \exists \boldsymbol{\beta}, \boldsymbol{\beta}^{\prime}>\mathbf{1} \forall \boldsymbol{p}\left(\boldsymbol{\beta}<\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}^{p}\right)
$$

- Associate with every braid β in B_{n}^{+}
a finite sequence $\left(\ldots, \boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{1}\right)$ of braids in B_{n-1}^{+}: the n-splitting of β.

- Iterate to obtain a unique normal form ($=$ construct a tree for each braid)
- Theorem (D., 2007, building on Burckel, 1997):

The order $<$ on B_{n}^{+}is a ShortLex-extension of the order $<$on B_{n-1}^{+}.
$\beta<\beta^{\prime}$ holds iff the splitting of β is shorter than that of β^{\prime} or
they have the same length and the splitting of β is lexicographically smaller

- Definition (Birman-Ko-Lee, 1997): The dual braid monoid B_{n}^{+*} is the submonoid of B_{n} generated by $\left(a_{i, j}\right)_{1 \leqslant i<j \leqslant n}$ with

$$
a_{i, j}=\sigma_{j-1}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i} \sigma_{i+1} \ldots \sigma_{j-1}
$$

- Alternative Garside structure for \boldsymbol{B}_{n}, with the Cat ${ }_{n}$ non-crossing partitions replacing the n ! permutations.
- Then similar splitting of braids in B_{n}^{+*} into sequences of braids in B_{n-1}^{+*}.

- Theorem (Fromentin, 2008):

The order $<$ on B_{n}^{+*} is a ShortLex-extension of the order $<$ on B_{n-1}^{+*}.

- Principle : With the (alternating and) rotating normal form(s) of braids, we now have a practical way of controlling the braid order.
- Example: For $\boldsymbol{\beta}$ in B_{n}^{+}, one has $\lfloor\beta\rfloor \approx 2 \times($ length of the splitting of $\boldsymbol{\beta})-\mathbf{2}$.
- Conjecture (D., Fromentin, Gebhardt, 2009): For β in B_{3}^{+},

$$
\mu\left(\beta \Delta_{3}^{2}\right)=\sigma_{1} \sigma_{2}^{2} \sigma_{1} \cdot \mu(\beta) \cdot \sigma_{1}^{2}
$$

$$
\min \left\{\boldsymbol{\beta}^{\prime} \in \boldsymbol{B}_{\boldsymbol{n}}^{+} \mid \boldsymbol{\beta}^{\prime} \text { conjugate to } \boldsymbol{\beta}\right\}
$$

... more generally: a reasonable hope of computing the function μ. (whence possibly solving the conjugacy problem in a completely new way).

- Then let's dream a little: What about ν ?
similar to μ with Markov equivalence instead of conjugacy
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. (2008)
- J. Fromentin, The well-order on dual braid monoids;
J. Knot Th. Ramif., to appear, arXiv: math.GR/0712.3836.
- J. Fromentin, Every braid admits a short sigma-definite expression, arXiv: math.GR/0811.3902.
- T. Ito, Braid ordering and the geometry of closed braids, arXiv math.GT/0805.1447.
- T. Ito, Braid ordering and knot genus, arXiv math.GT/0805.2042.
- A. Malyutin, Twist number of (closed) braids,

St. Peterburg Math. J., 16 (2005), 791-813.

- A. Malyutin and N. Netsvetaev, Dehornoy's ordering on the braid group and braid moves, St. Peterburg Math. J. 15 (2004) 437-448.

