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Introduction - The study of topologically ordered states with zero value of the local order 
parameters is important for classifying various phase states in low-dimensional systems, 
where the role of quantum fluctuations is significant. In this case, new types of ordering 
of strongly correlated spin degrees of freedom may be based on the employ of topological 
features of dynamics of excitations in low-dimensional systems; in particular, on the use of 
the effect of braiding of excitation world lines [1,2]. In spatially two-dimensional systems, 
braiding phenomena lead to fractional statistics of excitations and to the corresponding form 
of the topological order. Strongly correlated states form a certain part of the low-energy Hilbert 
space. When the considered  excitations are spatially separated, a low-energy space turns to be 
degenerated, and its states are characterized by pure topological quantum numbers. 
Analysis of the maps between  Hamiltonians of exactly  solvable quantum models [3,4], study of 
correlation functions [5], as well as the classification of the topological order [6] and quantum 
phase transitions make an incomplete list of problems in this field.    
We consider a universal form for Hamiltonians of the systems, which are in the topologically 
ordered phase state. It is shown that in strongly correlated systems the Hamiltonian has a 
form of a sum of the projectors expressed by means of the Temperley-Lieb algebra operators.  
In the case of twice linked excitation world lines it has a form of a two-dimensional Bloch matrix. 
In the limit of the infinite value of the linking degree, k (the Kac-Moody algebra level), the system 
turns into the ordinary Heisenberg spin-1/2 model or into the biquadratic spin-1 one. 
Hamiltonians of the Fibonacci anyons [7] and their counterparts corresponding to the intermediate 
values of the linking degree are also considered.



Hamiltonians as Projectors

The enlarged symmetry algebras of low-dimensional models result directly    
from the fact that world lines of the particles never intersect.
How do low-energy effective Hamiltonians look like in this case?
Their form is as follows: 
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i is the projector (Pi

2 = Pi) onto spin-l representation for the 
pair spin states on i, i+1 sites; here gi are coupling constants. 
For example,    
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Temperley-Lieb algebra projectors

The generators ei of the TL algebra are defined as follows  
ei

2 =  d ei ,
ei ei+1 ei = ei , 
ei ek =  ek ei ( |k-i|  ≥ 2 ). 
ei acts non-trivially on the ith and (i+1)th particles.  

where d=q+q-1=2cos[π/(k+2)] is the Beraha number 
(a weight of the Wilson loop) 

1. The values of the parameter d lead to the finite-dimensional Hilbert spaces. 
2. Besides, it turns out, that for the mentioned values of d the theory is unitary.
3. In the WZWN case, the colored generalization is given by el=Σm=l

kA(k,m,l)Pm, 
(ei

k)2 = (k+1)ei
k. It means in particular that standard TL algebra corresponds 

in the continuous limit to theories which are defined on coset spaces.

Due to ei
2 =  d ei , (ei/d)2 = ei/d. 

Therefore,  effective Hamiltonians have a form of the sum of the Temperley-Lieb
algebra projectors H = -Σi ei/d in this loop representation
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Irreps of ei’s in the RSOS (height) representation

V. Jones, R.J. Baxter, V. Pasquier, H. Wenzl, A. Kuniba, 
Y. Akutzu, M. Wadati,  P. Fendley,       1984 - 2006



Some examples 

1. In the case k=2, we have the transverse field Ising model:

∑ +−=
+

j

x

j

z

j

z

j hghH ]([ )/1 σσσ

2. In the case k=3, irreps of the ei’s lead to the Hamiltonian
of the Fibonacci anyons, where φ=(1+ )/2 is the golden ratio. 
This is the k=3 RSOS model which is a lattice version of the 
tricritical Ising model at its critical point [7].  
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The universal form of Hamiltonians in this case is as follows:
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Intermediate k=4 case and k >> 1 limit
We have the following quantum dimensions and fusion rules of the primary fields
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In the case k=4, two species 
of interacting anyons (with
quantum dimensions dj, spins 
hj and fusion rules) are given 
in table
(F.A. Bais, J.K. Slingerland, ’08)

If k>>1, we get the XXX Heisenberg chain (for spin-1/2 case):

and biquadratic Hamiltonians (for spin-1 models) ))2(exp( += kiq π



Yang-Baxter and Pentagon Relations

The general approach to the Hamiltonian dynamics of nontrivial models describing 
topologically ordered states is the relation between YB and PR’s  (R. Kashaev, ’95)
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The F-matrix indices here are corresponded to four faces of the tetrahedron; 
t and ti’s means the total and partial transpositions respectively.      

V 3: ⊗

VVV ⊗:



Tetrahedral (2+1)D Anzatz

A renormalization group  fixed point is given by the following tetrahedral anzatz

T [i][j][k][l] = Fabc
def·λ(i1j1k1)·λ(i2j2l2)·λ(i3k3l3)·λ(j4k4l4).
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and F-objects obey the pentagon equation 

T-matrices define a partition function
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V. Turaev, N. Reshetikhin, A. Kirillov, 
О. Viro, L. Каuffman, ’89 – ‘92
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Sites (i1, etc.), links (a, etc.) and 
faces (i,j,k,l) are labeled by indices 
corresponding to boundaries  of the 
tetrahedron. 
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