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‘ CelticArt
Les nceuds

au quotidien

Mer éz\ Montagne ﬁ

In Pagan and Christian Times

Randonnées @

es nceuds sont peut-&tre les plus anciens outils de I'homme. Des
Lpeup\es primitifs & I'époque actuelle, en passant par les Incas et les
Egyptiens, les nceuds ont accompagné I'histoire du monde.
L'apogée de leur utilisation se situe sans doute au XVIII*siécle pendant
I'épogue de la marine a voile, mais on redécouvre I'art du nceud de nos
jours.
Un nceud est I'entrecroisement de deux cordes, deux fils. .. qui les réunit
étroitement ou I'enlacement d'une corde, d'un fil.... sur lui-méme.
Marins, plaisanciers, pécheurs, alpinistes, spéléologues, pompiers,
randonneurs, campeurs... tous sont ameneés a utiliser les neeuds.
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A knot Is a smooth curve:

c:[0,1] - R*AQS°’
t c(t)=(x(1),y(1),z(1))

such that c is 1-1 and c(0)=c(1). Equivalently, a knot IS a
smooth embedding of the circle S'in R® orin S°.
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A link with k components IS a smooth embedding of k
copies of the circle In R’ or in S
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The Borromean rings
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Carl Friedrich Gauss (1777-1855)

“Zur mathematischen Theorie der elektrodynamischen
Wirkungen”, Werke Koenigl. Gessell. Wiss. Goettingen,
Vol. 5, p. 605 (1833).

Handwritten catalogue of 13 knots.

Listing — student of Gauss

Lord Kelvin (William Thomson, 1824-1907)

“On vortex atoms”, Philosophical Magazine, Vol. 34, pp.
15-24 (1867).

«Atoms are knotted tubes of ether».

KIrKman:  Byaknot of n crossings, I understand a reticulation of any mumber of

tieshes of two or more edges, whose summits, all tessaraces, are each a
single crossing, as when you cross your forefinges straight or slightly
curved, so as not to link them, and such meshes that every thread is ei-
ther seen, when the projection of the knot with its n crossings and no
more is drawn in double lines, or conceived by the reader of its course,

Peter Guthrie Tait (1839-1901), Scotch physicist
Catalogue up to 10 crossings (work of 20 years).
Little: same catalogue almost at the same time.






No. of crossings No. of knots
3 1
4 1
5 2
6 3
7 7
8 21
9 49

10 165
11 552
12 (1981) 2.176
13 (1982) 9.988
14 46.972
15 253.293

J. Navy Academy UK
Gauss (~1810)
Kirkman

Tait (1898)

Alexander& Briggs
(1927)

Reidemeister (1932)
2" choices)

Little (1900)

Mary Haseman (’17)
J. Conway (1969)
Caudron (1978)
[V.F.R. JONES 1984]
Dowker (notation)
Thistlethwaite (HY)
Hoste & Weeks
Aneziris



Open Problem: How many different knot types are there?

By 'knots’ we always mean ‘knots or links’.
Two knots are of the same type, called isotopic, if there exists an

orientation preserving homeomorphism of the 3-space that takes
one to the other.

Let h: A 2B be a function. We say that h is a homeomorphism if h
IS continuous, and h has a continuous inverse.
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A diagram of a knot is a projection on a plane, with only finitely many
double points, the crossings, with the extra information "under’ or over’.
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The above, together with cusps, form a set of projections of measure zero.




Reidemeister Theorem (1927): Two knots are isotopic iff any two
diagrams of theirs differ by finitely many of the following moves:

«—>
planar
isotopy
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The Reidemeister moves







The mirror image —K of a knot K is obtained by switching all crossings.

XXX

A knot that is isotopic to its mirror image is called "achiral’. E.g. the figure-8:

O+-D=P-p-P=
2=9-Q-0-@

A knot that is not isotopic to its mirror image is called “chiral’. E.g. the trefoil.



How do we answer gquestions like the following?

. Why is @ *+ Q

¢ Why is OO + 00 ?

e Whyis g) w(’é‘) ?



Knot invariants

| ={all knots and links}
l: L — S (e.g. numbers, polynomials,...)

IS a knot invariant if

Ki~ K, = 1K) = 1(K,)
Equivalently:

I(K,) #1(K,) = K not~ K;



» 3-colourability

A knot K is said to be 3-colourable if there is a projection P of K in which each arc
in P can be coloured with one of three colours such that:

(i) at any crossing, either all three arcs are the same colour or they are all different,
(ii) at least two colours are used to colour the knot.

Theorem 1: A knot K has a projection P that can be 3-coloured iff every projection of
K can be 3-coloured. Hence, 3-colourability is a knot invariant. (Show it!)

O @ @3
% P

The unknot is not 3-colourable, the trefoil is, the figure-8 is not.




*The linking number (for oriented links)

k(L1,L2)=1/2 = sign(L1,L2)

X X

(+1) 1)

Theorem 3: The linking number is a link invariant. (Show it!)
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k=1 k=0 lk=1or-1 lk =2 or—-2
But:

k=0 lk =0 k=0 lk =0



 The crossing number, c(K): the least number of crossings over all diagrams
in the isotopy class of a knot K. E.g. c(trefoil) = 3.

QD

* The unknotting humber, u(K): the least number of crossing changes in order

to get from a knot K the unknot. E.g. u(trefoil) = 1.

o
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 The bridge number, b(K): the least number of bridges for the knot K. A bridge
IS considered to be an arc, a piece of a knot diagram between two
undercrossings with no undercrossings in between, with at least one
overcrossing. E.g. the usual knot diagram for the trefoil has three bridges,
but b(trefoil) = 2 (show it!). Also, b(O) = 1.

Show that ¢(K), u(K) and b(K) are isotopy invariants.



®* The knot complement
3 3
K1~K2:> S™-K ~S-K,

(hence also the fundamental group, the homology groups and the cohomology
groups of the knot complement)

inside outside

Dehn (1914) distinguished the right-handed trefoil from the left-handed trefoil:
P+

Theorem (Gordon&Luecke, 1989): s°- K ~ S’- K, = K ~K.
(Not true for links).



Oxl O Xl : Szn

Fundamental group of the n unlink = the free group on n generators (not
abelian!).

Trivial knot Theorem: A knot is trivial iff its fundamental group = Z.
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Fundamental group of the Hopf link = the free abelian group on 2 generators.

Find the fundamental group of the trefoil!



 The Alexander polynomial (Conway ~1960, Alexander 1928):

For a given knot diagram it is defined inductively via the rules:
A(O)=1 and

Ap, — A = (FI/Z — tl/z)ALO, (Skein relation)

Note: The Alexander polynomial does not distinguish between right-nanded
and left-handed trefoil (and generally mirror images).

But A(trefoil) # A(figure-8).



The Jones polynomial, 1984

® =1
1
l‘V — tWA )V—-v
b ( Vi) =
Show that V is an isotopy invariant.

L.H. Kauffman, 1984: The Jones polynomial is an invariant of non-oriented
knots and it is equivalent to the Kauffman bracket:

(><)=4{=)+3(D Q)

<0> = -A*- A

B=1/A




Rule 1: <O>=1

Rule2: <X>=A<)CG+A1<=>
e = A LA Y (5

Rule3: <LUO>=(-A?>-A"9)<L>

Show that the bracket is invariant under the moves RIl and RIII.

Example 11 ( QLO> -4(Q0 )+ (@ )

= A(—A*) + A7 (-A7?)
(L) = —-A*— A%

Example 2: <@_|2 > = A<(§) > +A-1<& >

=A(_A4 _A—4)+A—-1(__A—3)2
(T)=-A°" - A3+ 477



To make the bracket invariant under the move RI we consider the
writhe of L, w(L), and define:

XL} = (=A%) 20 <[>

Then X(L)A) =V, (t)
Show that:  V, ('[) =V_, (t_l)

Compute V for the right-handed and for the left-handed trefoil.
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OF THE CHRISTIAN PERIOD 259

I now propose to explain how plaitwork is set out,
and the method of making breaks in it. When it is
required to fill in a rectangular panel with a plait the
four sides of the panel are divided up into equal parts
(except at the ends, where half a
division is left), and the points
thus found are joined, so as to [}
form a network of diagonal lines.
The plait is then drawn over these
lines, in the manner shown on
the accompanying diagram. The
setting-out lines ought really to
be double so as to define the
width of the band composing
the plait, but they are drawn
single on the diagram in order
to simplify the explanation.

If now we desire to make a
break in the plait any two of the
cords are cut asunder at the point
where they cross each other, leaving four loose ends
A, B, C,D. To make a break the loose ends are joined
together in pairs. This can be done in two ways only:
(1) A can be joined to C and D to B, forming a vertical

SN SN\ N L

epee’ D

Regular plaitwork without
any break

/ cCB l. kS C,*~.B
/ \ / CB \ / \
Method of making breaks in plaitwork
break ; or (2) A can be joined to D and C to B, forming

a horizontal break. The decorative effect of the plait is
thus entirely altered by running two of the meshes




Jones Polynomial Table

TABLE 3.1.
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Knots and surfaces

Theorem: The genus g (i.e. the number of holes) classifies the orientable
compact, connected surfaces (up to homeomorphism).

g=1-x/2, where x(2) = # vertices - # edges + # faces
(the Euler characteristic) for any triangulation of the surface 2.



Surfaces with boundary

Seifert Theorem
(Give a proof!)




Knots and planar graphs
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Knots and Statistical Mechanics

The Potts model (that explains the melting of the ice) has a partition function
that corresponds to the Jones polynomial.

Planar graph of molecules.
Each molecule has a spin.

e E(0)= 2 0(0i,09)
the energy of a state o.

e Z=2exp(-E(0)/KT)
the partition function.

 The function Z satisfies the rules
of the dichromatic polynomial.

A state o is a selection of spin for
each vertex.






J. Goldman & L.H. Kauffman: The electrical conductance, c=1/R, IS an
iIsotopy invariant of an electrical network. (Show it!)

1/t=1/r+1/s or t=rs/(r +s)

Connection in parallel Serial
connection



Rational tangles and rational knots

@ numerator dennmmatnr /\
5 C/) closure w clc}sure J
=[2,-2, 3]

N(T)




Arational tangle is an embedding of two arcs in a ball (with the endpoints on
the boundary), which is homeomorphic to two trivial unlinked arcs.
Equivalently, a rational tangle is obtained from two horizontal or two vertical
arcs by consecutive twistings of neighbouring endpoints.




S I :
Operations: [~ ) ) -
+ = (Addition) / \ /
("\’)\ T/\\j'\ RT\J T=

/\
- T
[ | ) T iplicat
=1 . - ' (Multiplication) (Invertion)
A
A
1 ) 1 1
. 1 % = d —x T =
Lemma 1: ml T+ " [ 1+ [n]
_ B . 1
Corollary 1: T = [[a1], [a2], ..., |a.]] := [a1] + @+ . ]1+ :
n—1 m

Lemma 2: Every rational number can be written (not uniquely) as a finite
continued fraction. Moreover, formally, 9°= 1/0.

p/q: [alaa’%”wan] =0y + 1

E.g. [4,-2,3] = 17/5 = [3,2,2]



Classification of rational tangles (Conway, 1970): Two rational tangles are
isotopic iff they correspond to the same rational number or o0 .

Proofs: (Conway), Burde&Zieschang, Montesinos, Goldman&Kauffman
(combl), S.L.&Kauffman (combl).

Lemma 3: Every rational tangle is

\ alternating.
i / .

Find an alternating and a non-alternating representation for the rational
tangle [15/4].

;
<




Rational knots

9= &

T=[[2], [-2], [3]] N(T)

Theorem 2 (Schubert, 1956) Suppose that rational tangles with fractions
f and % are given (p and q are relatively prime. Similarly for p' and ¢'.) If

K(%) and K(’;—:) denote the corresponding rational knots obtained by taking

numerator closures of these tangles, then K(;i) and K(Z_:) are isotopic if and
only if

1. p=p' and
2. either ¢ = ¢ modp or qq = 1modp.

Proofs: Schubert, Burde, S.L.&Kauffman (combl).



N([3/11]) ~ N([[11,[2]]) = N([3/2])

f’

[3/11] = [[0L,[3],[1],[2]] N([3/11])

o K

T=[-3]






J )
K200 + (X000,

T =120+ 1/([3] + 1/[4]) = R
W@: N(T) = N(S)
1 30 L 0
F(T)=2 =— and F(S)=4 =7
( ) _|_3_|—i 13 arn ( ) +3+% 7

7-13 = 1mod30

Theorem 4 (Palindrome Theorem) Let {ay,as,...,a,} be a collection of
n non-zero integers, and let -g— = [ay,0a3,...,a,] and % = Gy Byt 5 5 5 5 B o

Then P = P' and QQ' = (—1)"*! mod P.
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rational knots:
B 5 B K
L3099
16 8.8 8
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DNA Recombination




Knotted DNA




Site-specific recombination. Enzymes: TopoisomerasesTn3 Resolvase
and Recombinase. We would like to understand how exactly and
where exactly the enzymes act.

Product




, 1989

Tangle Model: Ernst & Sumners



Tangle Model: Ernst & Sumners, 1989

THEOREM 1: Suppose that tangles S, T, and R satisfy the
following eguations: (i) N(S + T) = [1] (the unknot); (ii)
N(S + R) = [2] (the Hopf link); (iii)) N(S + R+ R) =
[2,1,1] (the figure-8 knot). Then {S,R} = {(-3,0),(1)},
{3,0),(-1)}, {(—2,-3,-1),(1)}, or {(2,3,1),(—1)}.

THEOREM 2: Suppose that tangles S, T, and R satisfy the
following equations: (i) N(S + T) = [1] (the unknot); (ii)
N(S + R) = [2] (the Hopf link); (iii) N(S + R + R) =
[2,1,1] (the figure-8 knot); (iv) N(S + R + R + R) =
[1,1,1,1,1] (the Whitehead link). Then, S = (=3,0), R =
(1), and NS + R+ R+ R + R) = [1,2,1,1,1].

For such experiments Ernst and Sumners [12] used the classification of
rational knots in the unoriented case, as well as results of Culler, Gordon,
Luecke and Shalen [9] on Dehn surgery to prove that the solutions S+ n R must
be rational tangles. These results of Culler, Gordon, Luecke and Shalen tell the
topologist under what circumstances a three-manifold with cyclic fundamental
group must be a lens space. By showing when the 2-fold branched covers of
the DNA knots must be lens spaces, the recombination problems are reduced
to the consideration of rational knots. This is a deep application of the three-
manifold approach to rational knots and their generalizations.



Knots and graphs in space

Let K, be the complete graph on n vertices.

An embedding of K, in 3-space
IS @ homeomorphic image.

E.g. for n=7:



Theorem (Conway & Gordon, 1977, 1983):
1) Every embedding of Kz contains a non-trivial link.
i) Every embedding of K, contains a non-trivial knot (a Hamilton cycle).

1 2 1 2
6 3 6 € 3
5 4 5 4

Idea: For (i) use the linking number. For (ii): Two embeddings of a graph I will
differ by isotopy and possibly by crossing switches. So, we are looking for a
knot invariant that does not change under crossing switches. Such an
example is the arf invariant. We then show that there exists an
embedding of K’ with non-trivial sum of arf invariants, summing over all
cycles in the graph.



Knots in Chemistry (Polymers)

For many molecules chemists are interested in constructing in the lab
other molecules, the structure of which is related to the structure of the
original molecule, but has better physical properties. Topological
iIsomers comprise such an example. These are molecules with the
same abstract graph but, as embedded graphs, one cannot be isotoped
to the other. So, it is important to decide theoretically if two molecules
with the same abstract graph are not topologically equivalent.

/\h/‘\
° A pair of topological isomers

Q““ C% A o ;
wfé 6&) P @

\\/\\/\_/\/' \/wu\/
Another example: ‘ T A_j . @
(A

E. Flapan, J. Simon,....



Future applications

Topological Analysis of Linear Polymer Melts

Christos Tzoumanekas* and Doros N. Theodorouf
Department of Materials Science and Engineering, School of Chemical Engineering,
National Technical University of Athens, Zografou Campus, 15780 Athens, Greece and
Dutch Polymer Institute (DPI), The Netherlands
(Dated: 21st September 2005)

We introduce an algorithm for the reduction of computer generated atomistic polymer samples to
networks of primitive paths. By examining network ensembles of Polyethylene and cis-1,4 Polybu-
tadiene melts, we quantify the underlying topologies through the radial distribution function of
entanglements and the distribution of the number of monomers between entanglements. A suitable
scaling of acquired data leads to a unifying microscopic topological description of both melts.




Quantum Gravity and the Standard Model

Sundance O. Bilson-Thompson*
CSSM, School of Chemistry and Physics, University of Adelaide, "y,
Adelaide SA 5005, Australia

Fotini Markopoulou' and Lee Smolin? () () (c)
Perimeter Institute for Theoretical Physics,
Waterloo, Ontario N2] 2W9, Canada,
and
Departmient of Physics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada
(Dated: February 28, 2006)

FIG. 1: (a) A trinion. (b) A trinion decomposition of a 2-surface
S is a ribbon graph T'.

We show that a class of background independent models of quantum spacetime have local excita- A = ’\—/ —
tions that can be mapped to the first generation fermions of the standard model of particle physics. L= \
These states propagate coherently as they can be shown to be noiseless subsystems of the microscopic g
quantum dynamics[1]. These are identified in terms of certain patterns of braiding of graphs, thus %
giving a quantum gravitational foundation for the topological preon model proposed in [12]. Ay = * e ( ®)
These results apply to a large class of theories in which the Hilbert space has a basis of states B \
given by ribbon graphs embedded in a three-dimensional manifold up to diffeomorphisms, and the N R
dynamics is given by local moves on the graphs, such as arise in the Wf quantum_ As = >< — > ; <
groups. For such models, matter appears to be already included in the microscopic kinematics and YN 4/ N\

FIG. 2: The three generators of evolution on the ribbon graph
space H. They are called expansion, contraction and exchange
moves.

FIG. 5: A simple braid inside a ribbon graph S VAS N \f\ P

FIG. 7: A possible evolution of the braid under an exchange
move.



Arthroscopic Knots: Determining the Optimal Balance of Loop
Security and Knot Security

Ian K. Y. Lo, M.D., FR.C.S.C., Stephen S. Burkhart, M.D., K. Casey Chan, M.D., and
Kyriacos Athanasiou, Ph.D., P.E.
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IGURE 1.  Sliding knot configurations evaluated. (A) Duncan loop. (B) Nicky’s knot. (C) Tennessee slider. (D) Roeder knot. (E) SMC knot.

F) Weston knot

FIG 3. (A) U-shaped rotator cull lear. (B) Partial side-to-side re-
pair causes a ‘‘margin convergence’’ of the tear toward the greater
tuberosity. This increases the cross-sectional area and decreases the
length of the tear, thereby decreasing strain (since elongation is
directly proportional to the length of the tear and inversely propor-
tional to the cross-sectional area).
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