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3-coloring and other elementary invariants of
knots1

Józef H. Przytycki 2

Classical knot theory studies the position of a circle (knot) or of several circles (link) in

R3 or S3 = R3 ∪∞. The fundamental problem of classical knot theory is the classification

of links (including knots) up to the natural movement in space which is called an ambient

isotopy. To distinguish knots or links we look for invariants of links, that is, properties of

links which are unchanged under ambient isotopy. When we look for invariants of links we

have to take into account the following three criteria:

1. Is our invariant easy to compute?

2. Is it easy to distinguish elements in the value set of the invariant?

3. Is our invariant good at distinguishing links?

The number of components of a link, com(L), is the simplest invariant. A more inter-

esting link invariant is given by the linking number, defined in 1833 by C.F.Gauss using a

certain double integral [Ga]. H.Brunn noted in 1892 that the linking number has a simple

combinatorial definition [Br].

Definition 0.1 Let D be an oriented link diagram. Each crossing has an associated sign:

+1 for and −1 for . The global linking number of D, lk(D), is defined to be half of

the sum of the signs of crossings between different components of the link diagram. If the

diagram has no crossings, we put lk(D) = 0.

To show that a function defined on diagrams of links is an invariant of (global isotopy)

of links, we have to interpret global isotopy in terms of diagrams. This was done by

Reidemeister [Re,1927] and Alexander and Briggs [A-B,1927].

1An extended version of two talks given at the Mini-semester on Knot Theory at the Stefan Banach

International Mathematical Center in Warsaw, July 17- August 18 1995.
2Supported by USAF grant 1-443964-22502 while visiting the Mathematics Department, U.C. Berkeley.

http://arXiv.org/abs/math/0608172v1


Theorem 0.2 (Reidemeister theorem)

Two link diagrams are ambient isotopic if and only if they are connected by a finite sequence

of Reidemeister moves R±1
i , i = 1, 2, 3 (see Fig.0.1) and isotopy (deformation) of the plane

of the diagram. The theorem holds also for oriented links and diagrams. One then has to

take into account all possible coherent orientations of diagrams involved in the moves.

R 3

R 3

R 2

R 1
or

Fig. 0.1

Exercise 0.3

Show that lk(D) is preserved by Reidemeister moves on oriented link diagrams. Thus lk is

an invariant of oriented links.

Example 0.4

lk( ) = 0, lk( )= 1, lk( )= −1. Therefore the global linking number allows

us to distinguish the trivial link of two components, T2, the right-handed Hopf link, 21, and

the left-handed Hopf link, 2̄1.
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1 The tricoloring

The tricoloring invariant (or 3-coloring) is the simplest invariant which distinguishes be-

tween the trefoil knot and the trivial knot. The idea of tricoloring was introduced by R.Fox

around3 1960, [C-F,Chapter VI,Exercises 6-7], [F-2], and has been extensively used and

popularized by J.Montesinos [Mon] and L.Kauffman [K].

Definition 1.1 ([P-1]) We say that a link diagram D is tricolored if every arc is colored

r (red), b (blue) or y (yellow) ( we consider arcs of the diagram literally, so that in the un-

dercrossing one arc ends and the second starts; compare Fig.1.1), and at any given crossing

either all three colors appear or only one color appears. The number of different tricolor-

ings is denoted by tri(D). If a tricoloring uses only one color we say that it is a trivial

tricoloring.

Fig. 1.1. Different colors are marked by lines of different thickness.

Lemma 1.2 The tricoloring is an (ambient isotopy) link invariant.

Proof:

We have to check that tri(D) is preserved under the Reidemeister moves. The invariance

under R1 and R2 is illustrated in Fig.1.2 and the invariance under R3 is illustrated in Fig.1.3.

�

Fig. 1.2

3Added for e-print: I would rather think now that Fox developed the concept around 1956 when he

was explaining Knot Theory to undergraduate students at Haverford College (“in an attempt to make the

subject accessible to everyone” [C-F]). I am also glad to report other articles attempting popularization of

Knot Theory to middle and high school teachers and students [Cr, Vi, P-6].
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Fig. 1.3

Because the trivial knot has only trivial tricolorings, tri(T1) = 3, and the trefoil knot

allows a nontrivial tricoloring (Fig.1.1), it follows that the trefoil knot is a nontrivial knot.

Exercise 1.3 Find the number of tricolorings for the trefoil knot (31), the figure eight knot

(41) and the square knot (31#3̄1, see Fig.1.4). Then deduce that these knots are pairwise

different.

Lemma 1.4 tri(L) is always a power of 3.

Proof: Denote the colors by 0, 1 and 2 and treat them modulo 3, that is as elements of

the group (field) Z3. All colorings of the arcs of a diagram using colors 0, 1, 2 (not necessarily

allowed 3-colorings) can be identified with the group Zr
3 where r is the number of arcs of

the diagram. The (allowed) 3-colorings can be characterized by the property that at each

crossing the sum of the colors is equal to zero modulo 3. Thus (allowed) 3-colorings form a

subgroup of Zr
3 . �

The elementary properties of tricolorings, which we give in Lemma 1.5, follow immedi-

ately from the connections between tricolorings and the Jones and Kauffman polynomials

of links. We will give here an elementary proof of (a)-(c) of Lemma 1.5. There is also an

elementary proof of (d) (based on the flow-potential idea of Jaeger, see [Ja-P]), but it is

more involved4; compare Lemma 2.2.

Lemma 1.5 (a) tri(L1)tri(L2) = 3tri(L1#L2), where # denotes the connected sum of

links (see Fig. 1.4).

4Added for e-print: there is another elementary proof based on the idea of interpreting tangles as

Lagrangians in a symplectic space of all 3-colorings of boundary points of the tangle [DJP] (see also

[P-3, P-4, P-5]).
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(b) Let L+, L−, L0 and L∞ denote four unoriented link diagrams as in Fig.1.5. Then,

among four numbers tri(L+), tri(L−), tri(L0) and tri(L∞), three are equal one to

another and the fourth is equal to them or is 3 times bigger.

in particular:

(c) tri(L+)/tri(L−) = 1 or 3, or 1/3.

Part (b) can be strengthened to show that:

(d) Not all the numbers tri(L+), tri(L−), tri(L0) and tri(L∞) are equal one to another.

L L
1 2

L1 #L 2 31 # 13
-

Fig. 1.4

+L -L L 0 L 8

Fig. 1.5

Proof:

(a) An n-tangle is a part of a link diagram placed in a 2-disk, with 2n points on the disk

boundary (n inputs and n outputs); Fig.1.6. We show first that for any 3-coloring of

a 1-tangle (i.e. a tangle with one input and one output; see Fig. 1.6(a)), the input arc

have the same color as the output arc. Namely, let T be our 3-colored tangle and let

the 1-tangle T ′ be obtained from T by adding a trivial component, C, below T , close

to the boundary of the tangle, so that it cuts T only near the input and the output;

Fig.1.6(b). Of course the 3-coloring of T can be extended to a 3-coloring of T ′ (in

three different ways), because the tangle T ′ is ambient isotopic to a tangle obtained

from T by adding a small trivial component disjoint from T . If we, however, try to

color C, we see immediately that it is possible iff the input and the output arcs of T

have the same color.
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Thus if we consider a connected sum L1#L2, we see from the above that the arcs

joining L1 and L2 have the same color. Therefore the formula, tri(L1)tri(L2) =

3tri(L1#L2), follows.

(b) Consider a crossing p of the diagram D. If we cut out of D a neighborhood of

p, we are left with the 2-tangle, TD (see Fig.1.6(c)). The set of 3-colorings of TD,

Tri(TD), forms a Z3 linear space. Each of the sets of 3-colorings of D+,D−,D0

and D∞, Tri(D+), T ri(D−), T ri(D0) and Tri(D∞), respectively form a subspace of

Tri(TD). Let x1, x2, x3, x4 be generators of Tri(TD) corresponding to arcs cutting

the boundary of the tangle; see Fig.1.6(c). Then any element of Tri(TD) satisfies the

equality x1−x2+x3−x4 = 0. To show this, we proceed as in part (a). Any element of

Tri(D+) (resp. Tri(D−), Tri(D0) and Tri(D∞)) satisfies additionally the equation

x2 = x4 (resp. x1 = x3, x1 = x2 and x1 = x4). Thus Tri(D+) (resp. Tri(D−),

Tri(D0) and Tri(D∞)) is a subspace of Tri(TD) of codimension at most one. Let F

be the subspace of Tri(TD) given by the equations x1 = x2 = x3 = x4, that is the

space of 3-colorings monochromatic on the boundary of the tangle. F is a subspace of

codimension at most one in any of the spaces Tri(D+), Tri(D−), Tri(D0), Tri(D∞).

Furthermore the common part of any two of Tri(D+), Tri(D−), T ri(D0), T ri(D∞)

is equal to F . To see this we just compare the defining relations for these spaces.

Finally notice that Tri(D+) ∪ Tri(D−) ∪ Tri(D0) ∪ Tri(D∞) = Tri(TD).

We have the following possibilities:

(1) F has codimension 1 in Tri(TD).

Then by the above considerations:

One of Tri(D+), T ri(D−), T ri(D0), T ri(D∞) is equal to Tri(TD). The remaining

three spaces are equal to F and (d) (thus also (b)) of Lemma 1.5 holds.

(2) F = Tri(D+) = Tri(D−) = Tri(D0) = Tri(D∞) = Tri(TD),

(3) F has codimension 2 in Tri(TD). Then 3|F | = tri(D+) = tri(D−) = tri(D0) =

tri(D∞) = 1
3tri(TD)

This completes the proof of (b) and (c) of Lemma 1.5. To complete (d) of Lemma 1.5

one must exclude cases (2) and (3). This can be done by showing that tricolorings can

be interpreted via the so called Goeritz matrix of the link diagram; compare Lemma

2.2 and see [J-P].

�
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TD

Fig. 1.6

Part (c) of Lemma 1.5 can be used to approximate the unknotting (Gordian) number

of a knot, u(K); compare [Mur].

Corollary 1.6

u(K) ≥ log3(tri(K))− 1. In particular for the square knot: u(31#3̄1) = 2.

Corollary 1.7 If L is a link with k-bridge presentation5 then tri(L) ≤ 3k.

I noticed the connection between tricolorings and the Jones polynomial when I analyzed

the influence of 3-moves on the 3-coloring and the Jones polynomial [P-1].

Definition 1.8

The local change in a link diagram which replaces parallel lines by n positive half-twists is

called an n-move; see Fig.1.7.

Lemma 1.9 Let the diagram D+++ be obtained from D by a 3-move (Fig.1.7(a)). Then:

(a) tri(D+++) = tri(D),

(b) VD+++(e2πi/6) = ±i(com(D+++)−com(D))VD(e2πi/6), where V is the Jones polynomial,

(c) FD+++(1,−1) = FD(1,−1), where F is the Kauffman polynomial.

3-move n-move
n half twistsD D

+++
(a) (b)

Fig. 1.7

Proof: We prove (a) and (c) leaving (b) as an exercise.

(a) The bijection between 3-colorings of D and D+++ is illustrated in Fig. 1.8.

5Let L be a link in R3 which meets a plane E ⊂ R3 in 2k points such that the arcs of L contained in

each halfspace relative to E possess orthogonal projections onto E which are simple and disjoint. (L, E) is

called a k-bridge presentation of L; [B-Z].
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3-move 3-move
D

(a) (b)
D

+++
D

+++
D

Fig. 1.8

(c) FD+++(1,−1) = −FD+(1,−1)−FD++(1,−1)−FD∞
(1,−1) = −FD+(1,−1)+FD(1,−1)+

FD+(1,−1) + FD∞
(1,−1) − FD∞

(1,−1) = FD(1,−1).

�

One can easily check that for a trivial n-component link, Tn, tri(Tn) = 3n = 3V 2
Tn

(e2πi/6) =

3(−1)n−1FTn
(1,−1). Furthermore it follows from Lemma 1.9 that as long as a link L can

be obtained from a trivial link by 3-moves we have: tri(L) = 3|V 2
L (e2πi/6)| = 3|FL(1,−1)|.

It may look strange that such a natural problem, whether any link can be reduced to

an unlink by 3-moves is an open problem6.

Conjecture 1.10 (Montesinos-Nakanishi)

Any link can be reduced to a trivial link by a sequence of 3-moves.

Remark 1.11 Nakanishi first considered the conjecture in 1981. Montesinos analyzed 3-

moves before, in connection with 3-fold dihedral branch coverings, and asked a related but

different question. Conjecture 1.10 holds for algebraic links (in the Conway sense). It would

be a “finite” check whether conjecture holds for links with braid index at most 5 (and bridge

index at most 3) as Coxeter (1957) showed that the quotient of the braid group Bn/ < σ3
1 >

is finite for n ≤ 5.

According to Nakanishi (1994) the smallest known obstruction to the conjecture is the

2-parallel of the Borromean rings (notice that it is a 6-string braid), Fig. 1.9.

6Added for e-print: It was showed by M.K.Da̧bkowski and the author that Borromean rings cannot be

reduced by 3-moves to a trivial link. We also found a smaller example – a closed 3-braid of 20 crossings.

The method we develop is that of Burnside groups of links which can be interpreted as noncommutative

version of Fox colorings [D-P-1].
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Fig. 1.9

Lemma 1.5 suggests the following stronger conjecture7.

Conjecture 1.12

Any 2-tangle can be reduced, using 3-moves, to one of the four 2-tangles of Figure 1.10. We

allow additional trivial components in the tangles of Fig.1.10.

+L -L S 0 S 8SS

Fig. 1.10

Conjecture 1.10 suggests that the formula linking tricoloring with the Jones and Kauff-

man polynomials holds for any link. This is, in fact, the case.

Theorem 1.13

(a) tri(L) = 3|V 2
L (e2πi/6)|

(b) tri(L) = 3|FL(1,−1)|.

The proof of (a) in [P-1] uses Fox’s interpretation of 3-coloring and the connection with

the first homology group of the branched 2-fold cover of S3 branched over the link. Now

however we can give totally elementary proof based on Lemma 1.5(d).

Proof: Because tri(L) is a power of 3, we can consider the signed version of the tricoloring

7Added for e-print: the Conjecture 1.12 does not hold as it is stronger than the Montesinos-Nakanishi

conjecture which has been disproven in [D-P-1].
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defined by: tri′(L) = (−1)log3(tri(L))tri(L). It follows from Lemma 1.5 (d) that

tri′(L+) + tri′(L−) = −tri′(L0)− tri′(L∞).

This is however exactly the recursive formula for the Kauffman polynomial FL(a, x) at

(a, x) = (1,−1). Comparing the initial data (for the unknot) of tri′ and F (1,−1) we

get generally that: −3FL(1,−1) = tri′(L) = (−1)log3(tri(L))tri(L), which proves part (b)

of Theorem 1.13. Part (a) follows from Lickorish’s observation [Li], that FL(1,−1) =

(−1)com(L)V 2(e2πi/6). �

The value of the Jones polynomial VL(e2πi/6) is a slightly more delicate invariant than

the tricoloring, tri(L), or FL(1,−1) (essentially it is just a “sign”). P. Traczyk has given,

however, an idea8 which allows us to utilize this sign to approximate the unknotting number

in a better way than in Corollary 1.6.

Theorem 1.14 Let r(L) = log3|V 2
L (e2πi/6)| (= log3(tri(L)) − 1). If a knot K can be

trivialized by changing r(K) crossings and VK(e2πi/6) = ǫK(i
√

3)r(K), where ǫK = ±1,

then the number of negative crossings, which are changed, is congruent to l(ǫK) modulo 2,

where (−1)l(ǫK) = ǫK .

Proof: Let t1/2 = −e2πi/12, then for any link L: VL(e2πi/6) = ǫLicom(L)−1(i
√

3)r(L). Consider

a pair of oriented links L+ and L−. From the skein relation of the Jones polynomial, one

gets:

1

2
((1− i

√
3)ǫL+icom(L+)−1(i

√
3)r(L+) − (1 + i

√
3)ǫL−

icom(L−)−1(i
√

3)r(L−)) =

−iǫL0i
com(L0)−1(i

√
3)r(L0)

One can see immediately that the above equation cannot hold for |r(L+)− r(L−)| ≥ 2. For

r(L+)− r(L−) = 1 it simplifies to:
1
2((3+i

√
3)ǫL+−(1+i

√
3)ǫL−

) = (−1)(
com(L0)−com(L+)−1

2
)ǫL0(i

√
3)(r(L0)−r(L−)). This equation

holds iff ǫL+ = ǫL−
. Similarly, for r(L+)−r(L−) = −1 one gets ǫL+ = −ǫL−

. This completes

the proof of Theorem 1.14, because for the trivial knot, T1, ǫT1 = 1. �

Examples 1.15 (a) Let K = 31#3̄1, then u(K) = 2. Furthermore if K is trivialized

using two crossing changes, then one positive and one negative crossing, have to be

changed. Namely VK(e2πi/6) = 3 = −(i
√

3)2 and Theorem 1.14 can be used.

(b) The unknotting number of the knot 77 is 1; see Fig.1.11. However this knot cannot be

trivialized by changing a positive crossing. Namely V77(e2πi/6) = −i
√

3. Notice that

the signature of 77 is equal to 0 and the Tait number of the minimal diagram is equal

to +1.
8Added for e-print: see [Tr].
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7
7

the trivial knot

Fig. 1.11

2 n-coloring

Tricoloring of links can be generalized, after Fox, [F-1;Chapter 6], [C-F;Chapter VIII,Exercises

8-10], [F-2], to n-coloring of links as follows:

Definition 2.1 We say that a link diagram D is n-colored if every arc is colored by one of

the numbers 0, 1, ..., n − 1 in such a way that at each crossing the sum of the colors of the

undercrossings is equal to twice the color of the overcrossing modulo n.

The following properties of n-colorings, can be proved in a similar way as the tricoloring

properties. However, an elementary proof of the part (g) is more involved and requires an

interpretation of n-colorings using the Goeritz matrix [Ja-P].

Lemma 2.2 (a) Reidemeister moves preserve the number of n-colorings, coln(D), thus

it is a link invariant,

(b) if D and D′ are related by a finite sequence of n-moves, then coln(D) = coln(D′),

(c) n-colorings form an abelian group, Coln(D),

(d) if n is a prime number, then coln(D) is a power of n and for a link with b bridges:

b ≥ logn(coln(L)),

(e) coln(L1)coln(L2) = n(coln(L1#L2)),

(f) if n is a prime odd number then among the four numbers coln(L+), coln(L−), coln(L0)

and coln(L∞), three are equal one to another and the fourth is either equal to them

or n times bigger,

More generally: If L0, L1, ..., Ln−1, L∞ are n+1 diagrams generalizing the four diagrams

from (f); see Fig.2.1 then:

(g) if n is a prime number then among the n+1 numbers coln(L0), coln(L1), ..., coln(Ln−1)

and coln(L∞) n are equal one to another and the (n + 1)’th is n times bigger,

11



(h) if n is a prime number, then u(K) ≥ logn(coln(K))− 1.

......

LLLL L 8

k210

Fig. 2.1

Corollary 2.3 (i) For the figure eight knot, 41, one has col5(41) = 25, so the figure eight

knot is a nontrivial knot; compare Fig.2.2.

(ii) u(41#41) = 2.

0

0

0

0

1

4

4

4

1

1

3

3

3

Fig. 2.2

By Lemma 2.2(b), any 5-move preserves the number of 5-colorings. On the other hand,

Corollary 2.3 suggests that the move of Fig.2.3 also preserves col5(L).

Lemma 2.4 If two links are related by a sequence of moves as in Fig.2.3 (allowing the

mirror image of Fig.2.3), then they have the same number of 5-colorings.

x y

x y

2x-y

3x-2y 2x-y

y
x+y 3y-x

2 2

Fig. 2.3
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Proof: It suffices to notice that for x and y of Fig.2.3:

3x− 2y ≡ x+y
2 mod 5 and 2x− y ≡ 3y−x

2 mod 5. �

It was noticed in [H-U], that the moves of Fig.2.3 are more general than the 5-moves.

Lemma 2.5 ([H-U]) A 5-move is a combination of moves of Fig.2.3 (and isotopy).

Proof: This is illustrated in Fig.2.4. �

isotopy

isotopy

Fig. 2.4

It has been noticed in [P-2] that there are links which cannot be changed to trivial links

using 5-moves. In particular, the figure eight knot cannot be reduced to a trivial link by

5-moves (this is an easy application of the Jones polynomial evaluated at t = eπi/5). It is

however an open problem whether any link can be changed to a trivial link by moves of

the type shown in Fig.2.3 [Nak] (it holds for links up to 7 crossings9, in particular for the

Borromean rings). More generally, it holds for algebraic knots (in the sense of Conway).

The immediate generalization of the move of Fig.2.3 is a move which changes p horizontal

half twists into q vertical half twists. Let us call such a move (and its mirror image) a

[p, q]-move; see Fig. 2.5.

9Added for e-print; It holds for links up to 8 crossings but the knot 949 cannot be reduced to a trivial

link by these moves [D-P-2].

13



. . .

. .  .
(p,q)-move

p half-twists

q half-twists

Fig. 2.5

Exercise 2.6 (a) Show that a [p, q]-move preserves the number of (pq + 1)-colorings.

(b) Show that a (2p + 1)-move is a combination of a [p, 2]-move and a [2, p]-move.

It is not always true that a (pq + 1)-move is a composition of [p, q]-moves (and their

inverses).

(c) Use linking numbers to show that if p, q are odd numbers and p + q is not a divisor

of pq + 1 (e.g. p = q ≥ 3), then a (pq + 1)-move is not a composition of [p, q]-moves

(and their inverses). Show in particular that the torus link of type (10, 2) is not [3, 3]

equivalent to the trivial link of 2 components (that is the torus link cannot be obtained

from the trivial link by the sequence of [3, 3]-moves).

(d) Use the Kauffman polynomial to show that the 17-move is not a composition of [4, 4]-

moves.

Hint to (d). Analyze how the Brandt-Lickorish-Millett polynomial, QL(x) = F (1, x) changes

under [p, q]-moves and (pq + 1)-moves; compare [P-2]. Figure 2.6 illustrates the fact that a

[4, 4] move preserves, up to the factor −1, the QL(x) polynomial modulo x4 + x3− 2x2 + 1.

A 17-move can change the polynomial |QL(x)|.

14



L Ln
n

... n-times
...

n-times

= =

Fig. 2.6

Consider the Brandt-Lickorish-Millett polynomial of L4(x) and L4(x). From the rela-

tion QLn
= xQLn−1 −QLn−2 + xQL∞

one obtains10

QL4 = (x3 − 2x)QL1 − (x2 − 1)QL0 + (x3 + x2)QL∞
, and

QL4 = (x4 − 3x2 + 1)QL0 − (x3 − 2x)QL−1 + (x4 + x3 − x2)QL∞ =

(x4 − 3x2 + 1)QL∞
− (x3 − 2x)QL1 + (x4 + x3 − x2)QL0 . Therefore for x such that

x4 + x3 − 2x2 + 1 = 0, QL4 = −QL4. On the other hand consider the torus link L17,2,

which can be reduced to the trivial link of 2 components by a 17-move. If a 17-move was

the combination of [4, 4]-moves then QL17,2(x) = ±2−x
x for x4 + x3 − 2x2 + 1 = 0. One can

check however that x
2 (QL17,2(x) + 2−x

x ) is an irreducible polynomial of degree equal to 17

and QL17,2(x) − 2−x
x = 2x−1

x (1 − 4x − 10x2 + 10x3 + 15x4 − 6x5 − 7x6 + x7 + x8)2, which

for x = q + q−1 gives 2 q−1+q−1

q+q−1 q−16( q17−1
q−1 )2. Thus L17,2 is not [4, 4] equivalent to the trivial

link of 2 components.

It is a nice exercise in linear algebra to show that the number of n-colorings is preserved

by certain generalizations of n-moves.

Let t∆,k denote the righthanded half-twist performed on k strings; see Fig.2.7.

. . . . . .
. . .

D t ,k

Fig. 2.7

Lemma 2.7 (a) t4∆,k preserves coln(D), for odd k and any n.

10It can be easily checked by induction, see [P-2], that generally QLn
= Un−1QL1

−Un−2QL0
+ x

x−2
(Un−1−

Un−2−1)QL∞ where Ui(x) is the Chebyshev polynomial of the second type defined by: U0(x) = 1, U1(x) = x,

Ui(x) = xUi−1(x) − Ui−2(x).
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(b) t2n
∆,k preserves col2n(D), for an even k.

(c) Lemma 2.2(b) is stronger than (b) for k = 2, and can be written as:

tn∆,2 preserves coln(D).

3 Coloring and algebraic topology

It is useful to look at Lemma 2.2 from the point of view of algebraic topology.

Definition 3.1 Consider the abelian group of all colorings of arcs of a diagram using in-

tegers as colors. In other words consider the free abelian group spanned by all arcs of the

diagram. Let each crossing give the relation: the sum of the colors of the undercrossings is

equal to twice the color of the overcrossing. Let HD denote the described group.

Lemma 3.2

(a) HD is preserved by Reidemeister moves, therefore it is a link invariant, HL,

(b) HD reduced modulo n (i.e. HD ⊗ Zn) is the group of n-colorings of D.

Theorem 3.3 HL is the direct sum of the first homology group of the cyclic branched

double cover of S3 with branching set L and the infinite cyclic group. That is: HL =

H1((ML)(2), Z)⊕ Z.

Before we offer two proofs of the theorem we can carry our combinatorial construction one

step further.

Definition 3.4 ([F-R])

GD is the group associated to the diagram D as follows: generators of GD correspond to

arcs of the diagram. Any crossing vs yields the relation rs = yiy
−1
j yiy

−1
k where yi corresponds

to the overcrossing and yj, yk correspond to the undercrossings at vs.

The group GD was introduced by R.Fenn and C.Rourke [F-R] as an example of a rack’s

functor. They call it the associated core group of a link; compare with the core group of

Joyce [Joy], an example of an involutory quandle. Joyce refers to the 1958 book of Bruck

[Bruc] as the source of the idea; compare paragraphs 1, 2 and 19 of [Joy]. The topological

interpretation of GD was given by M.Wada [Wa]; see Theorem 3.6.

Lemma 3.5 (a) GD is preserved by Reidemeister moves, thus it is a link invariant, GL,

(b) The abelianization of GD yields HD.

Lemma 3.5(b) and Theorem 3.3 suggest that GD may be related to the fundamental group

of the branched 2-fold cover over D. This is in fact the case.
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Theorem 3.6 ([Wa])

GL is the free product of the fundamental group of the cyclic branched double cover of S3

with branching set L and the infinite cyclic group. That is: GL = π1((ML)(2)) ∗ Z.

We will give later an elementary proof of the Wada theorem.

To prove Theorems 3.3 and 3.6, we need a combinatorial definition of another, well

known, group.

Definition 3.7 ΠD is the group associated to an oriented link diagram D as follows: gen-

erators of the group, x1, ..., xn, correspond to arcs of the diagram; any crossing vs yields the

relation rs = x−1
i x−1

j xixk or rs = xixjx
−1
i x−1

k , where xi corresponds to the overcrossing and

xj, xk correspond to the undercrossings at vs and the first relation comes from a positive

crossing, Fig.3.1(a), and the second comes from a negative crossing, Fig.3.1(b).

x
i

x

x
j

x
i

x
k

j
x
k

(a) (b)

Fig. 3.1

Lemma 3.8 (a) ΠD is preserved by Reidemeister moves, thus it is a link invariant,

(b) Abelianization of the group ΠD is a free group of com(D) generators.

(c) ΠD does not depend on the orientation of the link. In particular if we change the

orientation of a component, say D1, of D to get the diagram D′, then the isomorphism

of the group ΠD generated by (x1, ..., xn) onto the group ΠD′ generated by (x′
1, ..., x

′
n)

is given by sending xi to x′
i or x′−1

i depending on whether the arc of xi preserves or

changes orientation when going from D to D′.

The group ΠD and its presentation, which we described, was introduced by W. Wirtinger

at his lecture delivered at a meeting of the German Mathematical Society in 1905 [Wi].

Theorem 3.9 (Wirtinger)
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ΠD is the fundamental group of the complement of the link; i.e. ΠD = π1(S3 −D).

We will not use this theorem, except for further algebraic-topological interpretations. For

the proof see [C-F], [Rol], or [B-Z].

With the group ΠD defined, we can give Fox’s interpretation of n-colorings.

Let Dn denote the dihedral group, i.e. the group of isometries of a regular n-gon. Dn

has a presentation: Dn = {α, s : αn = 1, s2 = 1, sαs = α−1}. The rotations, {αk}, form

a cyclic subgroup, a Zn. Reflections can be written as: sk = sαk.

Lemma 3.10 n-colorings of D are in bijection with homomorphisms from ΠD to Dn, which

send xi to reflections. Namely, for an n-coloring c, the homomorphism φc : ΠD → Dn is

given by: φc(xi) = sk, where k is the color of the arc which correspond to xi.

To prove Theorem 3.3 we need still more preparation.

Let ν : ΠD → Z2 be the modulo 2 evaluation map, that is it sends words of even

length (in the generators x±1
i ) to 0, and words of odd length to one. ν is well defined

because the relations of the group ΠD have even length. Denote by Π
(2)
D the kernel, ker(ν),

of the epimorphism ν. This is a subgroup of index 2 in ΠD. From the point of view of

algebraic topology it is the fundamental group of the 2-fold cyclic covering of S3 − D.

That is Π
(2)
D = π1((S3 −D)(2)). The abelianization of Π

(2)
D is the first homology group of

(S3 −D)(2).

Lemma 3.11 (a) For any n-coloring, c, one has φ−1
c (Zn) = Π

(2)
D .

(b) Any homomorphism φc : ΠD → Dn lifts uniquely to a homomorphism

φ
(2)
c : Π

(2)
D → Zn. In particular φ

(2)
c (x2

i ) = 0.

(c) For any n-coloring, c, the following diagram is commutative:

Π
(2)
D

φ
(2)
c−→ Zn

↓ ↓
ΠD

φc−→ Dn

↓ ↓
Z2 = Z2

(d) Any homomorphism φ(2) : Π
(2)
D → Zn, such that φ(2)(x2

i ) = 0 is a lift of exactly n

homomorphisms φc : ΠD → Dn.

Proof:

(a) This is the case because rotations in Dn (i.e. Zn) are compositions of an even number

of reflections.
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(b) This follows from (a) and reflects the fact that φc sends words of even length to words

of even length.

(c) This summarizes (a) and (b).

(d) Fix xi. To show (d) it suffices to show that for any sj, there is exactly one c such

that φc : ΠD → Dn lifts to φ(2) and φc(xi) = sj. Namely we define φc(w) =

φ(2)(w) if w has an even length, and φc(w) = φ(2)(wx−1
i )sj if w has an odd length.

In particular φc(xk) = φ(2)(xkx
−1
i )sj . We have to check that φc is a homomor-

phism. Consider φc(w1)φc(w2). We have to check four cases, however for w1 of

even length the checking is immediate (e.g. if w2 has odd length then φc(w1)φc(w2) =

φ(2)(w1)φ(2)(w2x
−1
i )sj = φ(2)(w1w2x

−1
i )sj = φc(w1w2)). For the other cases we need

to check first that φ(2)(ww) = 0 for any w of odd length. We will show the slightly

stronger fact that ww lies in the commutator subgroup of the quotient group Π̄
(2)
D =

Π
(2)
D /(x2

i ). Namely, let w = xi1xi2 ...xi2m+1 , then ww = xi1xi2 ...xi2m+1xi1xi2 ...xi2m+1 =

(xi1x1)(x1xi2)...(xi2m+1x1)(x1xi1)... (xi2m
x1)(x1xi2m+1) = (xi1x1)(xi2x1)−1(xi3x1)(xi4x1)−1...

(xi2m+1x1)(xi1x1)−1... (xi2m+1x1)−1. Now we can check that φc(w1)φc(w2) = φc(w1w2))

for w1 of odd length.

(i) If w2 is of odd length then:

φc(w1)φc(w2) = φ(2)(w1x
−1
i )sjφ

(2)(w2x
−1
i )sj = φ(2)(w1x

−1
i )(φ(2)(w2x

−1
i ))−1 =

φ(2)(w1x
−1
i )φ(2)(xiw

−1
2 ) = φ(2)(w1w

−1
2 ) = φ(2)(w1w2)φ(2)(w−2

2 ) = φc(w1w2))

(ii) If w2 is of even length, then using (i) we get:

φc(w1)φc(w2) = φc(w1)φ(2)(w2x
−1
i xi) = φc(w1)φc(w2x

−1
i )φc(xi) = φ(2)(w1w2x

−1
1 )sj =

φc(w1w2).

�

The quotient group Π̄
(2)
D = Π

(2)
D /(x2

i ) can be interpreted as the fundamental group of the

cyclic branched double cover of S3 with branching set D; that is Π̄
(2)
D = π1((MD)(2)).

This interpretation follows from the fact that the elements x2
i correspond to meridians of

boundary components of the unbranched double cover of S3 −D and that these meridians

are “killed” in the branched cover. The homomorphism φ(2), from Lemma 3.11(d), factors

through Π̄
(2)
D , and because Zn is abelian, it factors through the abelianization of Π̄

(2)
D . This

abelianization can be interpreted as the first homology group of the cyclic branched double

cover of S3 with branching set D. We denote this group by H1 = H1((MD)(2), Z). Therefore

we have the following commutative diagram:

Π̄
(2)
D ←− Π

(2)
D

↓ ↓ φ(2)

H1 −→ Zn
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We have also a bijection between homomorphisms H1 → Zn, and homomorphisms φ(2) :

Π
(2)
D → Zn, which satisfy condition (d) of Lemma 3.11. Thus Lemma 3.11 (d) leads to:

Corollary 3.12 To any homomorphism H1 → Zn, there is uniquely associated n different

n-colorings. In particular the trivial homomorphism corresponds to n trivial n-colorings.

Therefore H1⊗Zn⊕Zn = Hom(H1⊕Zn, Zn) has the same number of elements as HD⊗Zn.

Because Corollary 3.12 holds for any n, we have HD = H1 ⊕ Z and the proof of Theorem

3.3 is completed.

Lemma 3.13 Let F = {x1, ..., xn :} be the free group on n generators. Let F (2) be its

subgroup generated by the words of even length and let F̄ (2) be the quotient group F (2)/(x2
i ).

Then:

(a) F (2) is a free group on 2n−1 generators x1xk, x2xk, ..., xk−1xk, xk+1xk, ..., xnxk, x
2
1, x

2
2, ..., x

2
n,

where xk is any fixed generator of F .

(b) F̄ (2) is a free group on n− 1 generators x1xk, x2xk, ..., xk−1xk, xk+1xk, ..., xnxk.

The above lemma is the starting point of our proof, given below, of the Wada theorem

(3.6).

Proof: Let D′ denote the diagram obtained from the diagram D by adding one trivial

component.

Step 1 Π̄
(2)
D′ = Π̄

(2)
D ∗ Z.

Proof: Denote by x1, ..., xn generators corresponding to arcs of the diagram D, and by

xn+1 the generator corresponding to the additional component of D′. Π̄
(2)
D′ is generated

by x2x1, x3x1, ..., xnx1, xn+1x1. Relations of the group are associated to crossings of

the diagram D′ (so D). The general relation is of the form x−1
i xjxix

−1
k or xixjx

−1
i x−1

k

(i, j, k ≤ n); Fig.3.1. Both relations lie in F (2) and in F̄ (2) they are both conjugated to

(xix1)(xjx1)−1(xix1)(xkx1)−1. Π̄
(2)
D′ is a quotient of F̄ (2), by these relations (compare

Lemma 3.14). No relation uses the generator (xn+1x1). Therefore Π̄
(2)
D′ = Π̄

(2)
D ∗ Z. �

Step 2. Consider generators x1xn+1, x2xn+1, ...xnxn+1 of Π̄
(2)
D′ . We can associate them to arcs

of D as follows: xixn+1 corresponds to the arc of D which before was associated to xi.

No generator corresponds to the additional arc of D′. Relations associated to crossings

of D can be found as in Step 1 to be: (xixn+1)(xjxn+1)−1(xixn+1)(xkxn+1)−1, where

i, j, k ≤ n. If we put ys = xsxn+1 for s ≤ n then the relations reduce

to yiy
−1
j yiy

−1
k . We get exactly the presentation of the group GD from Definition 3.4.

Therefore GD = Π̄
(2)
D′ = Π̄

(2)
D ∗ Z. The proof of the Wada theorem is completed.

�
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One can describe the group Π
(2)
D similarly as the group Π̄

(2)
D . A more challenging exercise

is to find the Wirtinger type presentation of the fundamental group of the general k fold

cyclic branched cover of S3 with branching set D, i.e. Π
(k)
D = π1(M (k)). We describe the

result below (compare [B-Z;Ch.4]11).

Theorem 3.14

(a) Let F = Fn+1 = {x1, x2, ...xn+1 : } and let F (k) be the kernel of the map F → Zk

which sends xi to 1. Furthermore let F (∞) = ker(F → Z). Define F̄ (k) = F (k)/(xk
i )

and yi = xix
−1
n+1. Let τ : F → F be an automorphism given by τ(w) = xn+1wx−1

n+1.

(i) F (k) is a free group generated freely by nk + 1 elements τ j(yi), for i ≤ n and

0 ≤ j ≤ k − 1, and xk
n+1.

(ii) F (∞) is freely generated by elements τ j(yi), for i ≤ n and any integer j.

(iii) F̄ (k) is freely generated by n(k− 1) elements τ j(yi), for i ≤ n and 0 ≤ j < k− 1.

Notice that one has relations yiτ(yi)...τ
k−1(yi) = 1, for any i.

(b) (i) Π
(k)
D ∗ Z ∗ Z ∗ ... ∗ Z

︸ ︷︷ ︸

k−1 times

= Π
(k)
D⊔O has the following Wirtinger type description:

There are k−1 generators, τ j(yi), 0 ≤ j < k−1, corresponding to the i’th arc of

the diagram D, and there are k−1 relations τ j(rs)), 0 ≤ j < k−1, corresponding

to any crossing, vs, where rs depends on the sign of a crossing as follows:

(+) In the case of the positive crossing (Fig.3.1(a)): rs = yiτ(yk)(τ(yi))
−1y−1

j .

(-) In the case of the negative crossing (Fig.3.1(b)): rs = yiτ(yj)(τ(yi))
−1y−1

k .

We have to remember that τk−1(yi) = (yiτ(yi)...τ
k−2(yi))

−1.

(ii) Π
(∞)
D ∗ F∞ = {τ j(yi), i ≤ n : τ j(rs), j ∈ Z}, where F∞ is a countably generated

free group.

Corollary 3.15 (i) H1(M (∞)) ⊕ Z[t±1] = Z[t±1](y1, y2, ..., yn)/(r̄s), where r̄s are rela-

tions associated to crossings: (1 − tǫ)yi + tǫyk − yj = 0, where ǫ = ±1 is the sign of

the crossing vs; Fig.3.1.12

(ii) H1(M (k), Z)⊕ (Z)k−1 = Z[t±1]/(1 + t + ...tk−1)(y1, y2, ..., yn)/(r̄s)

(iii) H1(M (k), Zm)⊕ (Zm)k−1 has the following “coloring” description:

Every arc of the diagram is colored by a sequence, (a0, a1, ..., ak−2), of colors taken

from the set of m colors, (0, 1, 2, ...,m−1). These colorings form a Zm module Z
λ(k−1)
m ,

11Added for e-print: We apply Theorem 3.14 and explain in detail in [P-R, DPT],
12We can think of it as Wirtinger type description of the Burau representation. Compare also [Re-

1,Ch.II(14)].
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where λ is the number of arcs in the diagram. Coloring of an arc can be coded by a

polynomial of degree k−2 with coefficients in Zm, w = Σk−2
i=0 ait

i. Now we consider the

space (submodule) of allowed coloring, that is colorings which at any crossing satisfy

the equation: (1 − tǫ)wi + tǫwk − wj = 0, where 1 + t + ...tk−1 = 0 (in particular

t−1 = −1− t− t2− ...− tk−2), ǫ = ±1 as in (i), wl are polynomials of degree k−2 with

coefficients in Zm corresponding to arcs at a crossing as in Fig.3.1. Allowed colorings

form a group H1(M (k), Zm)⊕ (Zm)k−1, Compare [S-W].

We can generalize the group HD in yet another direction. We can consider the |a| by

|v| matrix (bi,j) where |a| is the number of arcs of the diagram and |v| the number of

crossings of the diagram, and where bi,j = 0 if the i’th arc is disjoint from the j’th crossing,

bi,j = 2 if the i’th arc is the overcrossing of the j’th crossing and bi,j = −1 if the i’th arc

is an undercrossing of the j’th crossing. We consider the matrix up to changes caused by

Reidemeister moves. Virtually nothing is known about the invariant given by this matrix

(except the group HD). One should, at least compare this matrix with the Goeritz matrix

and the Seifert matrix (see [Gor]).

4 Coloring and statistical mechanics

Further modification of our method leads to state models of statistical mechanics and the

Yang-Baxter equation. We will illustrate it by two examples. In the first we consider the

state sum corresponding to n-colorings and in the second we give (after Jones) the state

sum approach to the skein (generalized Jones) polynomial.

Example 4.1 For n colors, 0, 1, ..., n − 1, every coloring of arcs of a diagram by these

colors, is called a state of the diagram. We associate to any state, s, and any crossing v, a

weight, w(v, s), depending on the colors of arcs at v. For Fox colorings it will be 1 if twice

the color of the overcrossing is congruent to the sum of the colors of the undercrossings

modulo n. It will be 0 otherwise. We associate to any state, s, the global weight equal to

Πvw(v, s). For a Fox coloring it is 1 if s is an n-coloring and 0 otherwise. Finally we define

the partition function, ZD(n), to be the sum over all states of their global weights, i.e.

ZD(n) = ΣsΠvw(v, s).

In our example we get ZD(n) = coln(D). This state sum description of Fox n-colorings was

given in [H-J], and it is called, in statistical mechanics, a vertex type model.

In our example, colors were associated to arcs of the diagram; in the general case of the

vertex model weights are associated to edges of a graph. So we have to think of the link

diagram as a graph with additional structure (under-over crossing) at the vertices.
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Example 4.2 Let a link diagram be considered as a graph with vertices of valency 4 at

crossings and vertices of valency 2 at maxima and minima. We assume that there is only

finite number of extrema and that crossings are positioned vertically, so that after smoothing

them, one do not introduce new extrema. A state is a function from edges of the diagram

to the set of k colors. We consider weights to be in Z[q±1]. For any vertex, v, of degree 4,

and inputs with colors i, j and output with colors k, l, we associate the weight

w+(i, j; k, l) =







q − q−1 if i < j, i = k, j = l

1 if i = l, j = k, i 6= j

q if i = j = k = l

0 otherwise ,

in the case of a positive crossing, and

w−(i, j; k, l) =







q−1 − q if i > j, i = k, j = l

1 if i = l, j = k, i 6= j

q−1 if i = j = k = l

0 otherwise ,

in the case of a negative crossing; see Fig.4.1.

For any vertex of degree 2, we associate the weight w(i) = q±1/2(2i−k−1), according to the

convention of Fig.4.2.

As proven by Jones [Jo-1] the partition function given by this vertex model is equal to the

version of the skein (homflypt) polynomial for regular isotopy classes of links (associated

with the skein relation qkPL+ − q−kPL−
= (q − q−1)PL0).

i i i i i j i j

i i i i j i j i
i=j i=j

i j

i j i j i j i j

jijiji

i<j i<j i>j i>j

w (i,i;i,i)=q w_(i,i;i,i)=q
w (i,j;j,i)=w_(i,j;j,i)=1

w (i,j;ij)=q-q w_(i,j;i,j)=0 w (i,j;i,j)=0 w_(i,j;i,j)=q  -q
-1 -1

-1

+

+

++

Fig. 4.1

i i
i i

i i
i i

2i-k-1 -2i+k+1
2 2

q qw(i)= w(i)=
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