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Adequacy: markers and state diagrams

In every crossing of a diagram ) we can introduce
+ or — marker (Fig. 1). The state diagram obtained
from D by introducing in all vertices + or — markers
will be denoted by s,(D), and s_(D)), respectively.

The circles obtained in s, (D), and s_(D) are called

/

state circles.

(a) +marker; (b) -marker. The broken lines represent the edges of the associated graph
G, connecting state circles represented by dots.




State circles State graph




Definition 1. A diagram D is +adequate if, at each
crossing, the two segments of s, (D)) that replace
the crossing are in different state circles. Similarly,
D is —adequate if the segments of s_(D)) are in
different circles. If a diagram is neither +adequate
nor —adequate it is called inadequate. If a diagram is

both +adequate and —adequate, it is called adequate,
and if it is only +adequate or —adequate, it is called
semi-adequate.




Semiadequate link 2,2,-2



We can also consider the other states different from
s+ (D), and s_(D), which have markers of different
sighs. To every state we of a diagram DD we can
associate the graph G (D)), whose vertices are state
circles of s(D)), and edges are lines connecting state
circles via smoothed crossings in ). The graph G4(D)

Is adequate if it has no loops.

Definition 2. A link is adequate if it has an adequate
(+adequate and —adequate) diagram. A link is semi-
adequate if it has a + or —adequate diagram. A link
is inadequate If it is neither + or —adequate.




m Theorem: Every alternating diagram without nugatory crossings
Is adequate (Thistlethwalte, Lickorish, 1988).

m Hence, alll alternating links are adequate

m Theorem: An adequate diagram has minimal crossing number
(Lickorish, Thistlethwaite, 1988).

m This theorem can be used to prove minimality of some
m non-alternating link diagrams.

m Problem: recognition of semi-adequate links.




First adequate non-alternating link:
2,2,-2,-2

s_adequate

Non-alternating sum of strongly alternating tangles



First non-alternating adequate knot
10155 (3,2) (3, 2)

Non-alternating sum of strongly alternating tangles



Minimality and adequacy
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Figure 3: Semi-adequate knot 150154563 which has only minimal diagram 10** —
1.—20.20:: .2 0 20.—20 which is inadequate and non-minimal 16-crossing diagram
11*20. - 1. — 2. —1.30. — 1.20 :: —1 which is semi-adequate [Stoi3].




Inadequate link 2.-2 0.-2.2 0




Inadequate knot 2 0.-2 1.-2 0.2




Lemma 1. A/l minimal diagrams of the same
alternating link have the same number of adequate

states.

Lemma 2. The number of adequate states a(L) is
the invariant of a family of alternating links L and it

is realized in any minimal diagram of the link family.

S. Jablan: Adequacy of Link Families (2008)
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Tutte polynomial

Two operations are essential to understanding the Tutte polynomial definition.
These are: edge deletion denoted by G — e, and edge contraction G/e. The latter

involves first deleting e, and then merging its endpoints as follows:




Iptte polynomial

Definition  The Tutte polynomial of a graph G(V,FE') is a two-variable polyno-
mial defined as follows:

[ 1 E(0) (1)

T(C) T (G/e) e € E and ¢ is a bridge (2)
|:, LT | = ; I o : _ N = . 'I
ozt l y’r |-._ (_1: =g _.-| £ & E ;_'-1.]']_{?1 €15 a _l{:u:}p |-.. 3 )
T(G—e)+T(G/e) ec E and e is neither a loop or a bridge (4)
The definition of a Tutte polynomial outlines a simple recursive procedure for
computing it, but the order in which rules are applied is not fixed.

Rem: An edge of a connected graph is a bridge iff it does not lie on any cycle.



http://mathworld.wolfram.com/Iff.html

Tutte polynomial- general formula

+

2.1. Famuly p

The first family we consider is the family p (p > 1), which consists of the knots
and links 11, 27, 31, 47, 51, ... Graphs corresponding to links of this
family are cycles of length p, which we can denote by G(p). By deleting one edge

1

G:(p) gives the chain of edges of the length p — 1 with the Tutte polynomial xP~*,
and by contraction it gives G(p — 1). Hence, T(G(p)) — T(G(p — 1)) = xP~!, and
T'(G(1)) =y, so the general formula for the Tutte polynomial of the graph G(p) is

i BlER e
T(G(p)) = - + 4.
' r—1



Tutte polynomial- general formula

2.2, Family pq

Figure 2: Graph G(pgq).

The link family p g gives the family of graphs, illustrated in Fig. 2, satisfying
the relations
T(G(pa) - T(G((p— 1)) = 2" TG (@)
where (G(7) is the dual of the graph G(q). Since the Tutte polynomial of the graph
G(0q)is T(G(0q)) = y?, the general formula for the Tutte polynomial of the graphs
G(pq) is

r(xP —1)(x? —1)

. )@t —
) = e D1

+ P +y? —1.




Jones polynomial

Jones polynomial of an
—\— alternating link, up to a factor, can be obtained from Tutte
polynomial by replacements: x— -x and y — -1/x.

Consequence: From general formulas for Tutte polynomials we
obtain general formulas for Jones polynomials.

{=10. Number of knots: 123. N=11. Number of knots: 367. N=12. Number of knots: 1288. N=13. Number of knots: 4878.

“Packman”

Xiao-Song Lin: Zeroes of Jones polynomial




“Packman”



Zeroes of Jones polynomial

| Basic polyhedra (2n)*
=Y Wheel graphs Wh(n+1)

S.-C.Chang, R.Shrock: Zeroes of Jones polynomials for families
of knots and links, 2001




Jones zeros

Rational knots and links, n<13
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Jones zeros

Rational amphicheiral
knots and links




Jones zeros

Alternating pretzel
knots and links




Alexander zeros

Rational knots
and links




Particular links

Alternating pretzel links Non-alternating pretzel links

p:q=r=50




Link families

Alternating pretzel Non-alternating pretzel
up to p=q=r=15 up to p=q=r=15




Quasi-alternating links

Definition: The set () of quasi-alternating links is the
smallest set of links such that

e the unknot is in Q;

e if the link L has a diagram D with a crossing ¢ such
that

1. both smoothings of ¢, Ly and L., are in Q;
2. det(L)=det(Ly)+det(Lo)




Quasi-alternating links

-{all-alternating links are quasi-alternating;

m quasi-alternating links with a higher number of crossings can be obtained as
extension of links which are already recognized as quasi-alternating: every
guasi-alternating crossing ¢ can be replaced by alternating rational tangle of
the same sign as ¢ (Champanarekar, Kofman, 2008). For the application,
see T. Widmer (2008)

m Obstruction for quasi-alternating links:
m 1) Quasi-alternating links have H-thin Khovanov homology (over 2);

m 2) Quasi-alternating links have H-thin Heegaard-Floer homology (over 22)
(C. Manolescu, P. Ozsvath, 2007). This theorem works for odd homology as
well.

m Remark: in odd homology link is thick if its odd homological width
ohw(L)>1 (including torsion).

m Problem: find candidates for homologically thin knots that are not quasi-
alternating.




Quasi-alternating links

m For along time, knots 9,5 = 3,3,-3 and 10,,, = 4,3,-3 have been the main
candidates. However accordlng to A. Shumaokowtch s computations by
KhoHo both are odd- homology thick, so they are not quasi-alternating. The
same property holds for all knots of the family p,3,-3 up to /=16 crossings:

I knots of this family have 3-torsion.

|
s 1 Jrl ]
I O

I | N I I I O

ho = fEhoHoOddHom [K]

K="10,3,-3";
ho = fEKhoHoOddHom [K]




Quasi-alternating links

m The knot 11ng has two minimal diagrams: (3,-2 1) (2 1,2) and 6*2.2 1.-2
0.-1.-2 The first diagram is not quasi-alternating, and the second is quasi-
alternating. Moreover, all minimal knot diagrams of the family derived from

4~k'not 11ngs, (3,-p 1) (2 1,2) and 6*2.2 1.-p 0.-1.-2 (p>1) which represent
the same knot have this property: the first is not quasi-alternating, and the
other is quasi-alternating.

m  Open problem: find a quasi-alternating knot/link without a minimal quasi-
alternating diagram.

(3,-21) (2 1,2) 6*2.2 1.-2 0.-1.-2




Thin non quasi-alternating links

m As the first candidate for a thin non-QA knot we proposed Montesinos knot
1in,, = -2 2,2 2,3 = MO0;(5,-2),(5,2),(3,1))= M1;(5,3),(5,2),(3,1)) without
guasi-alternating diagrams up to /=12 crossings. Three weeks later, Josh
Sreene at Knots in Washington proved that 11n., is not QA.

m Among 11-crossing links we proposed two candidates: (2,2+) -(2 1,3), and
6*2.(2,-2):2 0. For the first two J. Greene proved that they are not QA.

D @

For p>5 knots of the family -2 2,2 2, p have 5-torsion, but KLs of the family

(p,2+)-(2 1,3) are thin up to 16 crossing, so this is maybe the first infinite family of
thin KLs which are not QA..




Thin non QA knots and links

m Candidates for 12-crossing thin knots that are not QA

Candidates for 12-crossing thin links that are not QA:
(21,3),2,(2,-2), 6*2:.(-2 1,3) 0, 6*3.(2,-2):2 0,

8*2.-2 1 0::2, 8%(2,-2):-2 0

S. Jablan and R. Sazdanovic: Quasi-alternating links and odd homology:
computations and conjectures (2009)




Input:
knots and links in Conway notation

{v INFUTING KLs IN COHWAY HOTATIOH +)
E="6,4,2";

pdata = fCreatePData[K]

ShowEnot fromPdata[pdatal

v, 118, 10, 12,



Conversion functions

+

K="8 11;
.f F| n d CO n fClassicToCon[K]
'fCl ass | CTO CO n ShovEnot fromPdatal fCreatePDatalfClassicToCon[EK]]]
sfPdataFromDow
sfPDataFromDowker
=DowfromPD
sfKnotscapeDow

=fSignsKL



Minimal DT codes & Mutants

K2=".(2,3).2";
SamefltConEL [K1, K2]

ShovEnot fromPdata[ fCreatePData[K1]]
ShovEnot fromPdata[ fCreatePData[K2?]]

Su

.1.'!'-!'{.

AN E N,
S




Different projections of knots
and links

K= fDiffProjectionsR1tEL[" {3,2) 1 (3,2)"]
kl = fCreatePData[K[[1, 1]1]1]: k2 = fCreatePData[K[[2, 1]]1]:
ShovEnot fromPdata[kl] Showd#not fromPdatal[k?]

03,2 ,1) 03,2, ({11}, {6, 8, 1la, &, 18, 22, 4, 20, 10, 14, 16} }},
{l,(2,3)) (3,2), {{11}, {6, &, 12, 2, 14, 18, 4, 20, 22, 10, 16}}}}




Torus KLs

m="1
n=4;
fTorusEL [m, n]

Braid word: abcabcabcabcabe

Pdata: {{15}, {24, 17, 10, 30, 23, 16, 6, 298, 22, 12, 5, 28, 1§, 11, 4}}
Braid word: abcabcabcabcabc

Crossings: 15

Mumber of components: 1

Urknotting number: &

Bridge number: 4

Alexander polynomial: 1-x+xxfen®_x

Signature: 8

Murasugl signature:

({15}, {24, 17, 10, 30, 23, 16, 6, 29, 22, 12, 5, 26, 1§, 11, 411




Rational KLs

n=12;
BRR = Rationalk¥L[n]

RationalK
Is given [

JCI

1
2 1
1
1
ol
1
1
1

111111
11111 411111lz 2111
11111%2,31111111%2,211111111



Open problem:

UnKnOtLink Continued fractions and unlinking

number of rational KLs

+

<t K2ZKC1NEW .nb *

The function UnKnotLink calculates
unknotting/unlinking No. of a given KL and if it coincides
with half of the signature than it is given without ¢question
mark.

UnKnotLink["5 1 1 1 3"]

Tnlinking nmumber: 37

UnKnotLink["6+"]

Tnlinking number: 2



VIRTUAL KNOTS AND LINKS
1 IN CONWAY NOTATION

6*(,1,,1),01),@1),21.1
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aoko Kamada), undetectable knots (Heather Dye)...




webMathematica:
http://math.ict.edu.rs
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