VIRTUAL KNOTS AND LINKS
IN CONWAY NOTATION
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Virtual KLs

m Interpretations

m Non-realizable Gauss codes (non-planar 4-valent graphs)
m Virtualization of crossings
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Virtual KLs (Louis Kauffman)
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m KLs on different surfaces

Hopf link n=1 Borromean rings n=5




m Planar isotopies (Reidemeister
moves)

classical Reidemeister moves
a) virtual Reidemeister moves

b) forbidden move

Virtual KLs

KX KX




Conway notation
for virtual KLs

Trefoil: 3=1,1,1=13
Virtual trefoil i,1,1=i,12

Information about original
real knot is preserved.

Gauss Code: U1+02+01+U2+

Kamada code: {{{1,3},{2,0}},{1,1}}

PD-notation:
PDI[X[3,1,4,2],X[2,4,3,1]]
(Dror Bar Natan)

In all other codes virtual crossings
are . The information
about real KL from which a virtual
KL is obtained can be recovered,
but in a complicated way.




Virtual KLs in Conway notation

PD[t[1,6,2,7],X[2,11,3,12],X[8,3,9,1],X[4,11,5,10],X[9,6,10,5],X[12,8,4,7]]
Conway notation: 6*i.-1.(2,i)




Virtual KLs in Conway notation

PD[X[1J£,6,1,7],X[10,2,11,1],X[2,1O,3,9],X[11,3,12,4],X[8,4,9,5],X[5,7,6,8]]

Gauss Code: 0O1+U2-03-U4+U5+06+U1+U6+05+U3-02-04+
Conway notation: (1,i) 2,(i,2),(i,1,i) (10 crossings)




Virtual braids- notation

AbBBbcABCc

Ab”BbcA”c

Ab2BbcA2¢c



Simplest family: 1,1" (n=1,2,3,4,...)

0 OOD

i,1,1=i,12 ARERE 1,1,1,1,1=i,14
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Polynomials of the family 1,1,...1

Sakolek:

1,11 1-s-t+s t

1,12 -(-1+s) (-1+t) (-1+st)

M 1-s-t+st

1,14 -(-1+s)(-1+t)(-1+st-s2t2+s3t3)

N 1-s-t+st

1,16 -(-1+S)(-1+t)(-1+st-s2t2+s3(3-54t4+551°)

1,17 1-s-t+st

1,18 -(-1+8)(-1+t)(-1+st-s%t2+s3t3-s4t4+55t°-5610+57t7)
1,19 1-s-t+s't

1,110 -(-1+4S)(-1+t)(-1+St-S2t2+S3t3-54t4+5°15-55t0+5717-58t8+5°19)




Polynomials of the family i,17-%

Bricket (Jones):

1,11 1+A2

)12 1+A2-AS8

1,13 1+A2-A8+A10

.14 1+A2-A6+AL0-Al4

i’15 1+A2-A6+A10-A144+A18

i,16 1+A2-A6+A10-A144+ A18_A22

i’l7 1+A2-A6+A10_A144 AL18_A224 A26
i,18 1+A2-A6+A10-A144+AL8_A224 A26_A30

RE 1+A2-A6+A10-A144 A18_A224 A26_A304 A34
110 1+A2-A6+AL0_AL44 AL A224 A26_A304A34_A38
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Bracket undistinguishable

11,11,01,11,11,11,1,1,1 11;11a1010,1,41.31.41.1




Proposition (L. Kauffman): The bracket polynomial does not detect virtual tangle
that consists of a real crossing flanked by two virtual crossings.

Sawolek polynomial detects them. However:

Fniav‘oitrary k, Sawolek polynomial does not distinguish KLs (i,1°) q and (i,1°*2k)
g, KLs (i,1P) q,r,s,...t and (i,1P*2¥) g,r,s,...,t, 6*(1,1P) g and 6*(1,1P) (g+2k) etc. In
general, on the basis of tangles (i,1°*2k) q or (i,1P) (g+2Kk) it is possible to
construct infinite number of Sawolek undetectable families of alternating prime
virtual KLs, detectable by bracket.




Definition: A virtual KL is alternating if it can be obtained from an alternating KL
diagram by virtualization of crossings.

This definition is different from the “standard” definition of alternating virtual KL,
whefre virtual crossings are disregarded (see, e.g., P. Zinn-Justin tables of
altefnating virtual links).

between real and virtual KL families: all KLs
belonging to the same family of real alternating KLs are detectable even by
Alexander polynomial.

There exist families of virtual alternating KLs which are not detectable even by
bracket polynomial.

Definition: A link is called prime if in every decomposition into a connected sum,
one of the factors is unknotted. Otherwise, the link is called composite.

A virtual link is called prime if it can be obtained from a prime link by
virtualization of crossings. Otherwise, the virtual link is called composite.




Composite virtual KLs

For knots, the following properties hold:
) if K1=K2, then for any K, K1#K=K_2#K;
AE-)—for any K1, K2, K1#K2=K2#K1 (commutativity);
) for any K1, K2, K3, (K1#K2)#K3=K1#(K2#K3) (associativity);
4) for any K, K#1=K, where 1 is an unknot (neutral element).

For virtual KLs, composition of links (connected sum or concatenation)
Is not well defined, since it is positional.
. Conway notation for composite virtual KLs!
Moreover, composition of two virtual unknots can be knotted.
Example: Kishino knot(s).

Kishino Kishino 1




Unlink detectabllity

Real knots: there exist (infinite “families” of) Jones unlinks
(E&}hau, Kauffman, Thistlethwaite, 2003).

OPEN QUESTION: search for Jones unknot.

9*3:-1.-1.2.-1.-1:-3 9512:-1.-1.2.-1.-1:-5-1 -2




Unknot detectability of virtual knots

Infinite family of prime virtual knots with trivial bracket polynomial (Jones):
‘ 1,1%,i,-1%-1) beginning from Kauffman example i,1,1,i,-1=i,12,i,-11,

etectable by Sawolek polynomial.




Family of virtual knots with trivial bracket

iawolek polynomial detects them as well.

(1,i,-1) (i,1) (12,i,-1?) (i,1) (13,i,-13) (i,1)




Composite unknot-undetectable virtual knots

Families of composite virtual knots, beginning from Kishino knot (H. Dye),
all (?) detectable by Miyazawa polynomial, 3-cabled Jones and Kauffman arrow

‘polynomial

Dye A: generalization t, t,




New unknot-undetectable virtual knot family

Family of prime virtual knots (1X,i,-1%) i (1k,i,-1K) beginning from knot
(1,i,-1) i (1,i,-1), undetectable by all polynomials except 2-colored Jones.

(13,i,-13) i (13,i,-13) (1K,i,-1K) i (1X,i,-1K)




Another undetectable family

Family of prime virtual knots (1k+1,i,-1k) i (1,i) beginning from knot
(}‘,“’-1) (1,i), undetectable by all polynomials except 2-colored Jones.

(14,1,-13) (1,1) (1%+Li,-1K) (1,i)




Kauffman arrow polynomial

+

Markers in a crossing




Kauffman arrow polynomial

inf2s;= K="(1,1) -1,(-1,1,1),(1,-1)";
FAlexVirt[K]
fJonesVirt[K]
fSawollek[K]
tMiyazawaPoly [K]
fKauffmanExtendedBracket [K]

out[26]= O

(1,i) -1,(-1,i,1),(i,-1) 2:1 C2AKL? - /'if AK2, 14K 2K2)

Virtual knot undetectable by all polynomials except 2-cabled Jones,
but detectable by Kauffman arrow polynomial




Kishino knot

(-1,i, )#(L,i,-1)

K="(-1,1,1#{1,3i,-1}";
fRauffmanExt endedBracket [K]

= dle —oeatozrlt - -atR1T 42Kz, 3- 4K . 2K2)

At Lt




Virtual KLs

jL' Tables of virtual knots:
m 1. Kishino

m Jeremy Green (PD), tables of virtual knots with at
most /7=4 crossings

m Naoko Kamada (Kamada codes ~ Gauss codes),
tables of virtual knots with at most /7=4 crossings

m P.Zinn-Justin: tables of alternating virtual links with
at most n=8 crossings (without notation)

m Jablan-Sazdanovic: tables of prime virtual

knots and links in Conway notation derived from
knots and links with at most /7=8 crossings = 2607
prime virtual knots and 3687 virtual links




Tables of virtual knots in Conway notation

(1,1,1)) (1,1) (1,1,i,-1) (1,-1)




Tables of virtual knots in Conway notation

(1,1,|,1) (1,|) (|11111|) (_11_1) (1111|11) (|,-l)

(1,i,-1) 1 (i,-1) (1,i,-1) 1 (-1,i) (1,1,)) -1 (1,-1)




Tables of virtual knots in Conway notation

(1,1,1) -1 (1,1)

(1,1,1) -1 (1,-1)

(1,1,)) 1 (1,1) (1,1,1) 1 (i,-1) (1,1,)) 1 (i,-1)

(1,1,1) -1 (1,1) (1,1,1)) -1 (-1,i) (1,,1)i1(1,1) (1,1,1) 1 (1,1




Tables of virtual knots in Conway notation

(1) 1-1G1) (1) -11 (i-1) (1) 11(,-1) (1,i) -1 -1 (-1,i)




Tables of virtual knots in Conway notation

(1,1,1)#(1,1,-1) (1,1,1)#(,-1,-1) (1,1,1)#(1,1,i)

(1,1,)#(-1,1,1) (1,1,)#(-1,i,-1) (1,1,)#(i,-1,-1) (1,1,1)#(-1,i,-1)

(1,1,)#(1,1,1) (1,1,)#(1,1,1) (1,1,)#(1,1,i) (1,1,)#(1,1,1)




Tables of virtual knots in Conway notation

(1,) 1 -1 (i,-1) (1) 11(1,i) (1) 11(1) (i,1) 11 (1,)




Families of undetectable knots

1,1,1,-1,i
(1,i,-1) (1,i)
(1,1,i,-1) (1,i)
(1,1,-1,i) (1,1)
(1,i,-1) 1 (1,i)
(1,i,-1) 1 (1,2)
(1,i,-1) i (1,1)
(1,1) -1 -1 (1,i)

(1,i,-1) (L,i,-1)
(1,i,-1) (-1,i,1)

1k, -1k1)j

(1k,i,-1K) (L,i)

(1k,i,-1K) (L,i)

(1k,i,-1K,i) (12m)
(1k,i,-1K) 1 (1,i)
(1k,i,-15) 1 (i,1)
(1k,i-1K) i (1,1)
(-1K,i,1K) -1 -1 (1m,j,-1m)

(1K,i,-1K) (1K,i,-1K)
(1K,i,-1K) (-1,i,1K)

Subfamily (12k,i,-12%,i) (12m)
with all trivial polynomials
except 2-colored Jones
(example k=1,m=2)

(1K,i,-1K) (1K,i,-1%)




Knot (1,1,i,-1,-1,1) (1,1) undetectable by arrow polynomial

Extended bracket and arrow bracket for this knot and all knots from

the family (12k,i,-12%,i) (12m) reduces to classical bracket. This family can be
distinguished from unknot only by 2-cabled Jones polynomial.

The same property holds for knots:

(1,1 (2,)ii(1,1) (1,1) (1%1i,-1%1i(1,1) (k=0,1,...)
(1,1,i,-1,-1,i) (-1,-1) (12k,i,-12%i) (-12M)

(1,i,-1,-1,i) (1,1) (12k-1)i,12k+1 1) (1,1)




Virtual knots with trivial polynomials

Among 55 prime virtual knots derived from knots with at most n=6
crossings, 8 of them have trivial bracket. Each of them is extendable to a
mily of undetectable virtual knots.

From 2607 prime virtual knots derived from knots with at most n=8
crossings, 331 (about 12%) have trivial bracket. Among these 331 knots,
21 have trivial Sawollek polynomial, and 12 knots have all trivial polynomials
including Miyazawa polynomial. From them, Kauffman arrow polynomial
detects 5, and remaining 7 knots are undetectable by Kauffman arrow
polynomial as well. All of them have non-trivial 2-cabled Jones.

2-cabled Jones polynomial detects all undetectable prime virtual
knots. 3-cabled Jones detects all undetectable composite knots (Dye).




Unlinking number and Bernhard-Jablan Conjecture

+

Definition:

The unlinking number u (L)
of a link L is the minimal
number of crossing changes
required to obtain an unlink
from the link L. The
minimum is taken over all
projections of L.



CLASSICAL DEFINITION
It is allowed to make an ambient isotopy after each crossing change and then

continue with the unlinking process with the newly obtained projection

STANDARD DEFINITION
all crossing changes must be done simultaneously in a fixed projection

If in the standard definition we restrict “all projections” to “all minimal
projections”, we cannot always obtain correct unlinking number (Nakanishi-Bleiler

example).




Unknotting 5 1 4 (10y)

> T D




BERNHARD- JABLAN CONJECTURE

+ 1. u (L) =0, where L is the unknot (unlink)

2. u(L) =min v (L)+1, where the minimum is taken over all
minimal projections of links L-, obtained from a minimal
projection of L by one crossing change.

Algorithm:

Start with a minimal projection of KL

Make a crossing change

Minimize KL obtained

Repeat steps 2&3 for all vertices of a starting KL

Repeat steps 1-4 for all newly obtained KLs until unknot is obtained.

BJ-unlinking number is the number of steps in this recursive
unlinking process.

BJ-unlinkig number of every link L is equal to its
unlinking number.




BJ-unlinking numbers for virtual links

All unlinking numbers are computed from minimal diagrams, where after every
C iIng change KL diagram is minimized.

Crossing changes:
virtualization of a crossing;
2) real crossing change.

Definition:

Is the minimal number of vertex virtualizations
(crossing changes 1) necessary to obtain unlink.
Mixed BJ-unlinking number mug; is the minimal number of virtualizations and real
crossing changes (crossing changes 1 and 2) necessary to obtain unlink.

Real BJ-unlinking number rug, is the minimal number of real crossing changes
(crossing changes 2) necessary to obtain unlink.

For real knots all three unlinking numbers are finite, but for virtual links the
real unlinking number is not always finite, because real crossing change
IS not necessarily an unlinking operation for virtual links.




Unlinking numbers of virtual KLs

Eiample: virtual knot with =Mmug;=1, and infinite rug;.

(1,i,1) (i,1) (1,i,1) (i,i) = unknot




Infinite real unknotting number

(19191) (I:-l)




Family of virtual knots with infinite unknotting number

(1,1,51) (1,9)

(lﬂ'i!l!iﬂlﬂi’l) (lﬂi)



Nakanishi-Bleiler for virtual unknotting number: fixed projection can be
unknotted with ate least 3 virtual crossing changes, and =2




Virtual knot with =rug,=3, and mixed unknotting number mug ;=2

(1,1,1,9) (1,1,1)




Unknotting and BJ-Conjecture for virtual KLs

Real crossing changes: “real” rig, (possibly
Infinite!). Example: (1,1,1) (i,1): non-minimal
diagrams?

Virtualization of real crossings: virtual (finite,
upper limit, difficult knots)

Mixed unknotting /mu; (“Unknott me fast as you
can!”)

Rational virtual unlinks (general form)
Virtual links with unlinking number 1




Virtual KLs

+

m Open guestions:
m Link tables (?)

m tangles, classification (rational, stellar,
polyhedral), g, hard unknots,
amphicheirality, undetectability, new
powerful invariants (Kauffman extended
bracket), connections with real knots (Jones
unknot) (L.Kauffman, D. Silver and S.

Williams), unlinking number...




Acknowledgements: Kauffman arrow polynomial (Louis Kauffman),
cabled Jones (Jeremy Green), Miyazawa polynomials (Naoko Kamada),
undetectable knots (Heather Dye)




webMathematica:
http://math.ict.edu.rs
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