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This article consists of six lectures on the categorification of the
Burau representation and on link homology groups which categorify
the Jones and the HOMFLY-PT polynomial. The notes are based
on the lecture course at the PCMI 2006 summer school in Park City,
Utah.
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Introduction

These notes are based on lectures delivered by the second author at the
PCMI summer school in Utah in the summer of 2006. The goal was to give
an informal introduction at the graduate level to the ideas and construc-
tions of combinatorial homology theories that categorify various quantum
invariants of knots and links. We made an emphasis on the theories lift-
ing the Jones polynomial and the HOMFLY-PT polynomial. Ideally, a link
homology theory is a functor from the category of link cobordisms to some
algebraic category, such as the category of abelian groups. A model example
is worked out in Lectures 3-5. In Lecture 3 a categorification of the Jones
polynomial to a bigraded link homology theory is sketched. In Lectures 4
and 5 we explain how to generalize this theory to tangles and tangle cobor-
disms. This generalization encodes a simple proof that the homology theory
is functorial and extends to link cobordisms. Prior to that, in Lectures 1
and 2, we introduce a toy model of the story, a categorification of the Burau
representation, which produces invariants of braids and braid cobordisms. In
Lecture 6 we describe a triply-graded link homology theory categorifying the
HOMFLY-PT polynomial.

In the past few years link homology has become an extensively researched
area, with a significant body of literature, which we won’t try to fully survey
in these short introductory lectures. Although neither knot Floer homology
nor contact homology is discussed here, we refer the reader to the survey
papers [50], [53] on these topics and to [74] for another set of lecture notes
on link homology.

The final version of this work will appear in the AMS lecture notes from
the Graduate Summer School program on Low Dimensional Topology held
in Park City, Utah, on June 25 - July 15, 2006.

M.A. and M.K. would like to thank John Polking, the editor of the se-
ries, Tom Mrowka and Peter Ozsváth, the organizers of the summer school,
for their encouragement and patience with the authors. The authors are
indebted to Alexander Schumakovitch for providing knot homology tables
for Lecture 3 and for enlightening discussions. M.A. was partially supported
by the NSF grant DMS-0504199. M.K. was partially supported by the NSF
grant DMS-0706924. This work was finished while the second author was
at the Institute for Advanced Study, and he would like to thank the Insti-
tute and the NSF for supporting him during that time through the grant
DMS-0635607.
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1 A braid group action on a category of com-
plexes

1.1 Path rings

Definition 1.1. An oriented graph  (see a picture below) consists of finitely
many vertices and oriented edges. For an edge  let s( ) and t( ) be the
source and the target vertices of  . A path  is a concatenation of some
edges  1, ...,  k, so that t( i) = s( i+1) for i = 1, ..., k − 1. We define s(  ),
t(  ), and the path length |  | to be s( 1), t( k), and k, respectively. A path
may be denoted by (a1|a2|...|ak) where ai’s are the vertices in the order that
the path goes through, as long as there is only one such path.

The path ring Z  is a free abelian group with a basis given by all the paths
in  , equipped with the following product: for paths  and  ,   is their
concatenation if t(  ) = s(  ) and zero otherwise. We extend the product to
Z  by linearity; this multiplication operation is associative.

Example 1.2.  =
b cα βa

. There are six paths in  :  ,  ,   ,
and (a), (b), (c), where the last three are the length zero paths consisting of
a vertex. Note that   = 0, (a)(a) = (a), (a)  =  =  (b), and so on.

Exercise 1.3. Check that in the above example, (a) + (b) + (c) is the unit
element of the path ring Z  . For any oriented graph  , the sum of the vertices
(i.e. length zero paths) is the unit of Z  .

Example 1.4.  =
α

. Then Z  = Z[  ] is the polynomial ring in one
variable.

Let mod-Z  be the category of right Z  -modules. Each object M of
mod-Z  decomposes into the direct sum

M =  
a

M (a),
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over the vertices a of the graph, as an abelian group. Multiplication by
an edge  with s( ) = a and t( ) = b is an abelian group homomorphism
M (a)  M (b). Vice versa, a right Z  -module is determined by a collection
of abelian groups, one for each vertex of the graph, and homomorphisms
between these groups, one for each edge.

Exercise 1.5. (1) Give a similar description of left Z  -modules.
(1) Describe Z  -module homomorphisms in this language.

Converting Z into a field k, we arrive at the notion of path algebra k  .
These algebras have homological dimension one (any submodule of a pro-
jective module is projective), just like rings of integers in number fields and
rings of functions on smooth a  ne curves. Their representation theory is a
spectacular story in progress; you can get a first taste of it from [15].

In this lecture we consider a very special quotient of a certain path ring.
In general, if paths  1, . . . ,  m all have the same source vertex and the same
target vertex, we can quotient the path ring by the relation

 1  1 +  2  2 + · · · +  m  m = 0

for some  1, . . . ,  m  Z.

1.2 Zigzag rings An

For an n > 2 consider the graph  with vertices labelled from 1 to n and
oriented edges from i to i ± 1:

1 2 3 n

We define the ring An as the quotient of Z  modulo the following relations

1. = 0, that is, (i|i + 1|i + 2) = 0;

2. = 0, that is, (i|i − 1|i − 2) = 0;

3.
i

=
i

: (i|i − 1|i) = (i|i + 1|i).

If we label all edges pointed to the right (resp. left) by ∂1 (resp. ∂2),

1 2 3 n∂ 1∂ 1∂ 1 ∂ 1

∂ 2∂ 2∂ 2 ∂ 2
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the relations become

∂2
1 = 0, ∂2

2 = 0, ∂1∂2 = ∂2∂1.

These are the relations for a bicomplex. In fact, the category of An-modules
(either left or right) is equivalent to the category of mixed complexes of
abelian groups, bounded above by n [41, 2.5.13]. The algebra An is iso-
morphic to its opposite, hence its categories of left and right modules are
equivalent. If we make An graded, by assigning degree 1 to all arrows going
to the right and degree 0 to all arrows going to the left, then the category of
graded An-modules is isomorphic to the category of bicomplexes of abelian
groups, with a suitable boundedness condition.

We will use a di erent grading on An, by path length. Any path of length
at least three is zero in An. Indeed, the first two relations imply that a non-
trivial path should stay within some interval [i − 1, i]. If its length is more
than two, we can flip a part of it, as illustrated below, to get zero.

= 0
i ii−1 i−1 i+1

=

It is easy to check that An is a free abelian group with the basis of

• length zero paths:
 

  (i) |i = 1, ..., n
 

• length one paths:
 

i i+1, i i+1 |i = 1, ..., n − 1
 
,

• length two paths:
 
X i := i or i |i = 1, ..., n

 

1.3 A functor realization of the Temperley-Lieb alge-
bra

In this section we make the Temperley-Lieb algebra act by functors on the
category of An-modules. The Temperley-Lieb algebra T Ln+1 over the ground
ring R = Z[q, q −1] has generators u1, . . . , un and relations

u2
i = (q + q −1)ui,

uiui ±1ui = ui,
uiu j = u j ui, |i − j | > 1.
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The Temperley-Lieb algebra has a graphical interpretation, via the following
assignment:

ui =

i1 2... n+1i+1... n

,

while the product of generators corresponds to concatenation

ba =
a

b

...

...

By setting the value of the closed loop to q + q −1:

= q + q −1,

and allowing arbitrary isotopies rel boundary, we obtain the relations in
T Ln+1 (see [26] for more).

An, as a left module over itself, decomposes into the direct sum An =
n
 

i=1
Pi. Here

Pi = An(i) = spanZ {
i
} .

is a left projective An-module spanned over Z by paths that end in vertex i.
As an abelian group, Pi is a free or rank 4 with the basis

{(i), (i − 1|i), (i + 1|i), X i }

if 1 < i < n and free of rank 3 if i = 1, n.
Likewise, define the right projective An-module

iP := (i)An = spanZ {
i

} .

Exercise 1.6. The following holds:

iP  A n Pj =

 
 

 

0 if |i − j | > 1,
Z(i|j ) if j = i ± 1,
Z(i)  Z X i if i = j

(think of the LHS as spanned by paths that start in i and end in j ).
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Consider An-bimodules

Ui := Pi  Z iP.

Claim 1.7. There are bimodule isomorphisms

Ui  A n Ui
 = Ui  Ui,

Ui  A n Ui ±1  A n Ui
 = Ui,

Ui  A n Uj = 0, |i − j | > 1.

Proof. We prove the first equality (the rest is equally easy to check). We use
Exercise 1.6:

Ui  A n Ui
 = Pi  Z (iP  A n Pi)  Z iP
 = (Pi  Z Z(i)  Z iP )  (Pi  A n Z X i  Z iP )
 = (Pi  Z iP )  (Pi  Z iP )  = Ui  Ui.

The equalities immediately remind us of the relations in T Ln+1 at q = 1.
The bimodule Ui plays the role of the generator ui, tensor product of bimod-
ules is analogous to the multiplication in T Ln+1, direct sum of bimodules lifts
addition in the Temperley-Lieb algebra, etc. Due to the degenerate nature of
our example, the tensor product Ui  A n Uj = 0 when |i − j | > 1 rather than
just being isomorphic to the opposite tensor product. Thus, we get a bimod-
ule realization of the quotient of T Ln+1 at q = 1 by the relations uiu j = 0 if
|i − j | > 1 (we will construct a non-degenerate example in Lecture 4). The
unit element 1 of the Temperley-Lieb algebra corresponds to An, viewed as a
bimodule over itself. The canonical isomorphism An  A n M  = M , functorial
in a bimodule M , lifts the identity 1m = m for m  T Ln+1.

We now bring q into the play. Recall that An, Pi, iP and Ui are graded
by path length. We work with graded modules and bimodules and denote
by {m} the grading shift up by m. Redefine Ui by shifting its grading down
by 1:

Ui = Pi  Z iP { −1} .
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For instance, the element (i)  (i) of Ui now sits in degree −1. It is easy to
see that there are isomorphisms of graded bimodules

Ui  A n Ui
 = Ui {1}  Ui { −1} ,

Ui  A n Ui ±1  A n Ui
 = Ui,

Ui  A n Uj = 0, |i − j | > 1.

In this way, multiplication by q becomes the grading shift {1} .
To interpret the meaning of the minus sign in our bimodule realization of

the Temperley-Lieb algebra we need to work with complexes of modules and
bimodules, and take a small detour in the next subsection to review their
basics.

1.4 The homotopy category of complexes

Let A be an abelian category (for instance, the category of modules over some
ring). Denote by Kom(A) the category with objects–complexes of objects
of A and morphisms–homomorphisms of complexes. A morphism t from an
object M = { · · ·  M i −1  M i  M i+1  . . . } to N = { · · ·  N i −1  
N i  N i+1  . . . } is a collection of morphisms ti : M i  N i that make the
following diagram commute

M · · · M i M i+1 M i+2 · · ·

N · · · N i N i+1 N i+2 · · ·

 d

 

ti

 d

 

ti + 1

 d

 

ti + 2

 d

 d  d  d  d

Kom(A) is still an abelian category. Recall that a chain map t is null-
homotopic (we write t  0) if there are maps hi : M i  N i −1 such that
t = dh + hd (in more detail, ti = dN hi + hi+1dM ).

M · · · M i M i+1 M i+2 · · ·

N · · · N i N i+1 N i+2 · · ·

 d

 
 

 
  

h

 
t

 d

 
 

   

h

 
t

 d

 
 

   

h

 
t

 d

 d  d  d  d
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We define Com(A) as the quotient category of Kom(A) by the ideal of null-
homotopic morphisms.

Exercise 1.8. Check that null-homotopic morphisms constitute an ideal in
Kom(A). First you need to define the notion of an ideal in an abelian or an
additive category.

The quotient category has the same objects as Kom(A) but fewer mor-
phisms:

HomCom(A)(M , N ) = HomKom(A)(M , N ) /  .

Two morphisms f , g become equal in Com(A) if their di erence is null-
homotopic.

Although we did not change objects when forming the quotient category,
there are now more relations between them.

Exercise 1.9. Check that for any nontrivial object K of A complexes

0  K id K  0 and 0  0  0  0

are isomorphic in Com(A) but not in Kom(A).

The category Com(A) is no longer abelian but triangulated (see [17], [77])
and comes with the following operations.
(1) Shift. For M  Ob C(A) define M [j ] to be the chain complex obtained
from M by shifting it j steps to the left, M [j ]i = M i+j , and multiplying the
di erential by (−1)j .
(2) Cone of a morphism f : M  N . The mapping cone of f is the chain
complex C(f ) := M [1]  N with the di erential D := −dM + f + dN . Note
that C(f )i = M i+1  N i.

M i M i+1 M i+2

N i −1 N i N i+1

 − d M

 
 

  
f  

   
f

 − d M

 d N  d N

From here on we specialize to categories of modules and bimodules. For a ring
A we denote by C(A) the category Com(A − mod) of complexes of A-modules
up to chain homotopies. If A is graded and we’re working with graded
modules, we’ll use the same notation C(A) for the category of complexes of
graded A-modules up to chain homotopies. The di erential of a complex of
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graded modules must preserve the grading. We can view a complex of graded
A-modules as a bigraded A-module with a di erential of bidegree (1, 0) which
commutes with the action of A.

Denote by Ae = A  Aop the tensor product of A and its opposite ring.
A-bimodules can also be described as left or right Ae-modules. We denote by
C(Ae) the category of complexes of A-bimodules up to chain homotopy (and
the category of complexes of graded A-bimodules, whenever necessary).

Tensoring with a given A-bimodule is an endofunctor in the category of
A-modules and an endofunctor in the category of A-bimodules. Likewise,
tensoring with a complex of A-bimodules is an endofunctor in C(A) and
C(Ae). The tensor product of M , N  C(Ae) is the complex of bimodules
given by placing the bimodule M i  A N j into the (i, j )-node of the plane and
then collapsing the grading onto the principal diagonal, so that the degree k
term of M  A N is the direct sum

 
i  Z

M i  A N k − i,

with the di erential combining those of M and N :

d(m  n) = d(m)  n + (−1)im  d(n), m  M i.

1.5 Braid group representation

There exists a representation π : Brn+1 −  T L  
n+1 of the braid group on

n + 1-strands into the group of invertible elements in the Temperley-Lieb
algebra given on the standard generators of the braid group by π(  i) =
1 − qui. Graphically,

π

 

i

 

=
i

− q
i

.

What would the meaning of 1 − qui be in our bimodule interpretation of
the Temperley-Lieb algebra quotient? It should become the “di erence” of
graded bimodules An and Ui {1} = Pi  Z iP, which we interpret as the complex

0 −  Pi  Z iP
 i−  An −  0

for the bimodule homomorphism  i which takes x  y  Pi  Z iP to xy  An.
This grading-preserving map composes a path which ends in i with a path

11



which starts in i:

ii
  

i

Thus,
 i

i

  (0  Ui {1}  i An  0).

We denote this complex of graded bimodules by Ri and normalize it so that
An sits in cohomological degree 0.

The homomorphism π : Brn+1  T L  
n+1 takes  −1

i to 1 − q −1ui. To
interpret this di erence we consider the complex R 

i given by

0 −  An
 i−  Ui { −1} −  0,

with the bimodule map  i determined by the condition

 i(1) = (i − 1|i)  (i|i − 1) + (i + 1|i)  (i|i + 1) + X i  (i) + (i)  X i

(for 1 < i < n; for i = 1, n omit one of the terms in the sum), and An placed
again in cohomological degree 0.

Theorem 1.10. There are isomorphisms in C(Ae
n) of complexes of graded

bimodules:

Ri  Ri ±1  Ri
 = Ri ±1  Ri  Ri ±1, (1)

Ri  R j
 = R j  Ri, |i − j | > 1, (2)

Ri  R 
i

 = An
 = R 

i  Ri (3)

The last relation tell us that Ri and R 
i are mutually inverse complexes of

bimodules. The first two are the braid relations. The middle relation holds
already in the abelian category of complexes of bimodules, before modding
out by homotopies, but not the other two. The proof can be found in [35]
(also see the next lecture). This action was independently discovered by
R. Rouquier and A. Zimmermann [63]; its algebraic geometry counterparts
are studied in [65].

The theorem implies that there is a braid group action on C(An) and on
C(Ae

n) in which the generator  i of the braid group Brn+1 acts on a complex
M of graded An-modules (or bimodules) by tensoring it with Ri:

 i(M ) := Ri  A n M ,
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while
 −1

i (M ) := R 
i  A n M .

More precisely, the theorem is about a group action in the weak sense. A weak
action of a group G on a category C assigns an invertible functor Fg : C −  C
to each element of G such that Fgh

 = Fg Fh. For a weak action to be an action
requires a specific choice of isomorphisms Fgh

 = Fg Fh for all g, h  G subject
to the associativity relation that the diagram below is commutative for all
g, h, k  G:

Fghk
 =−−−  FghFk

 =

    =

   

Fg Fhk
 =−−−  Fg FhFk

P. Deligne [16] gave a simple criterion for when a weak action of a braid
group on a category can be upgraded to an action. His criterion holds in our
case, and the weak action described above lifts to an actual action of Brn+1

on C(An) and C(Ae
n). Furthermore, we have:

Theorem 1.11. The above action of the braid group Bn on C(An) is faithful.

We say that an action of the group G on a category C is faithful if the
functors Fg are not isomorphic for di erent g  G. See the next lecture for a
sketch of a proof of the last theorem.

2 More on braid group actions

2.1 Invertibility of R i

We begin the lecture with a sketch of isomorphisms:

Ri  R 
i

 = An
 = R 

i  Ri

from Theorem 1.10. The double complex corresponding to Ri  R 
i has the

form
0 0
  

0  Ui  Ui  An  Ui { −1}  0
  

0  Ui {1}  An  An  An  0
  
0 0

13



Noting that Ui  Ui
 = Ui {1}  Ui { −1} from Claim 1.7, we obtain the total

compex

Ri  R 
i = (0  Ui {1} d An  Ui {1}  Ui { −1} d Ui { −1}  0).

Exercise 2.1. Write an explicit formula for the di  erential d above and
check that the complex decomposes into a direct sum

(0  Ui {1} 1 Ui {1}  0)  (0  An  0)  (0  Ui { −1} 1 Ui { −1}  0).

The first and the last summands are null-homotopic, implying that

Ri  R 
i

 = (0  An  0) = An.

2.2 Braid group action on complexes of projective mod-
ules Pi and topology of plane curves

In this section we explain how to prove that the braid group action on the
homotopy category C(An) is faithful. For simplicity, we write  (P ) for the
object F  (P ) given by applying the functor F  to P  C(An). We will give
a geometric presentation of  (Pi) for all  in the braid group Brn+1.

First, let’s look at a couple of easy examples.

Example 2.2.

 i(Pi) = Ri  Pi
 = (0  Pi  Z iP  A n Pi −  Pi  0)

The subcomplex
0 −  Pi  (i)  (i) 1−  Pi −  0

is contractible and the quotient complex is 0 −  Pi  X i  (i) −  0 with
the nontrivial term in cohomological degree −1. The degree of X i is two and
hence Pi  X i  (i)  = Pi {2} as a graded module. thus  i(Pi)  = Pi[1]{2} .

Example 2.3. By induction on m > 0 one can check that

 m
i (Pi+1)  = (0  P1 {2m − 1} X i−  ... X i−  P1 {3} X i−  Pi {1}

(i|i+1)
−  Pi+1  0).

14



We set up the following ingredients. Consider a disk with n + 1 marked
points aligned on a line as below.

n+1
....

1 2 3 4 n

The braid group Bn+1 is isomorphic to the the mapping class group of the
disk that fixes the boundary and permutes the marked points. In particular,
Bn+1 acts on isotopy classes of simple curves in the disk which have marked
points as their endpoints and don’t contain marked points in their interior.
We assume that the generator  i acts on the disk by permuting the vertices
i and i + 1 counterclockwise. We fix a chain of curves c1, . . . , cn as follows

....
1 2 3 4 n n+1

c1 c2 cn

The curve ci connects marked points i and i + 1. The braid group action
on the disc induces a braid group action on the isotopy classes of unoriented
arcs that connects pairs of marked points. Any such isotopy class has the
form  (ci) for any i and some braid  . Curves c1, . . . , cn represent some of
these isotopy classes. We would like to relate the braid group action on our
category of complexes with the braid group action on the isotopy classes of
curves.

Consider vertical dotted lines e1, . . . , en orthogonal to c1, . . . , cn.

....

e1
e2 en

15



Given an isotopy class c of an arc in the disc with marked endpoints, we can
choose a representative c in the minimal position relative to the system of
intervals e1, . . . , en, in the sense that the number of intersection points of c
with each of ei is the minimal possible among curves in the isotopy class c.
Such representative is unique in the appropriate sense and can be obtained
from any generic diagram in c by a sequence of simplifications

=  

Here’s an example of the minimal representative.

e1
e2 e3 e4

To a isotopy class c of arc we assign a complex P (c) of projective An-
modules as follows. Let c be the minimal representative of c. The vertical
lines cut c into segments. Discard two segments containing the endpoints of
c and orient each remaining segment bounded by vertical lines ei and ei+1

clockwise around the marked point i + 1, the only marked point between
these vertical lines.

e1
e2 e3 e4

To each intersection point of the curve with the vertical line ei assign number
i. Now, pull the curve with these additional decorations out of the disk and

16



draw it on the plane so that all orientations look to the right.

2
2

2

1

34

We next put Pi at each vertex labeled i and take the direct sum vertically.
Define the di erential as the sum of contributions from each arrow. To an
arrow from i to i ± 1 assign the module homomorphism Pi −  Pi ±1 which
takes a to a(i|i ± 1). To an arrow from i to i assign the homomorphism
Pi −  Pi of multiplication by X i. We obtain a chain complex; for the
example above it has the form

P1 P2

  P2

P4 P3 P2

 (1|2)

   
X 2

 (4|3)  (3|2)    X 2

which we can also write as

0  P4 −  P1  P3 −  P2  P2 −  P2  0.

In this way to an isotopy class c of arcs we assign a complex P (c) of projective
An-modules. We did not specify the overall grading shift for P (c); the reader
can find this and other information in [35]. It is also possible to keep track
of the internal grading and view P (c) as a complex of graded An-modules.
For c = ci the complex P (ci) = (0 −  Pi −  0).

Theorem 2.4. For any braid  and any number i between 1 and n the
complex P (  ci) is homotopy equivalent to  Pi.

This theorem [35] tells us how a braid  acts on projective modules Pi,
and that the action can be read o the braid group action on isotopy classes
of arcs.

Exercise 2.5. Rethink Example 2.3 via this theorem.
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To prove that the braid group action on C(An) is faithful it su  ces to
check that for any nontrivial braid  we can find some i so that  Pi is not
isomorphic to Pi in the homotopy category. Our description of  Pi implies
that if it is isomophic to Pi then  ci = ci. If  ci = ci for all i then  is central
and is a multiple of the full twist. But it is easy to compute that the full
twist takes Pi to Pi[j ] for some j  = 0 (compare with Example 2.2).

Exercise 2.6. Find this j .

The faithfullness of the action follows, modulo Theorem 2.4, not proved
in these notes.

2.3 Reduced Burau representation

A braid takes a complex of (graded) projective An-modules to a complex of
(graded) projective An-modules. One can check that any finitely-generated
projective An-module is isomorphic to a direct sum of Pi’s, and the multi-
plicity of Pi in this decomposition is an invariant of the projective module.
Likewise, any finitely-generated projective graded An-module is isomorphic
to a direct sum of Pi { j } , and the multiplicity of Pi { j } is an invariant of the
module. For the rest of this section all modules are assumed to be left, graded
and finitely generated. We introduce a formal symbol [P ] of each projective
module P . Let K0(An) be the Z[q, q −1]-module generated by these symbols
subject to relations

[P  Q] = [P ] + [Q], [P { j } ] = q j [P ].

The direct sum decomposition property mentioned above implies that K0(An)
is a free Z[q, q −1]-module generated by symbols of indecomposables [P1], . . . , [Pn].
The reader familiar with K-theory will recognize K0(An) as the group K0 of
the category of graded finitely-generated An-modules (see [61] for an excellent
introduction to algebraic K-theory).

Given a bounded complex P of projective An-modules

0  · · ·  P i  P i+1  · · ·  0,

we define its Euler characteristic as

 (P ) =
 

i

(−1)i[Pi]  K0(An).
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If two complexes are chain homotopy equivalent, they have equal Euler char-
acteristic; shifting the complex by 1 adds a minus sign to the Euler charac-
teristic,  (P [1]) = −  (P ).

The action of the braid group on the category of complexes of projective
An-modules (a subcategory of C(An)) descends to a Z[q, q −1]-linear action of
the braid group on K0(An). To determine this action, we write how  i acts
on Pj :

 i(Pi)  = Pi[1]{2}
 i(Pi ±1)  = 0  Pi {1}  Pi ±1  0

 i(Pj )  = Pj if |i − j | > 1,

and pass to the Euler characteristic (  [P ] = [  (P )] by definition):

 i[Pi] = −q2[Pi]
 i[Pi ±1] = [Pi ±1] − q[Pi]

 i[Pj ] = [Pj ] if |i − j | > 1.

The resulting action is isomorphic to the reduced Burau representation of
the braid group. Hence, we can view the braid group action on the category
of complexes of projective An-modules as a categorification of the Burau
representation.

To elements of the braid group we assign functors and it turns out that
this assignment can be extended to braid cobordisms. A braid cobordism is
a surface in R4 that goes from one braid to the other. The condition that
braids have no critical points when projected onto the z-axis extends to the
condition that a braid cobordism is a simple branch covering when projected
onto the (z, w)-plane in R4. To a braid cobordism between braids  and  
it is possible to assign a natural tranformation between functors F  and F  

(modulo the issue of the overall sign) in a consistent way which respects
compositions of braid cobordisms, see [36]. This example is the simplest way
to get an algebraic invariant of a toy sector of four-dimensional topology
(braid cobordisms) from homological algebra (of complexes of An-modules).
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3 A Categorification of the Jones polynomial

3.1 The Jones polynomial

The Jones polynomial [22] is an isotopy invariant of oriented links in R3

that takes values in Z[q, q −1] and satisfies the following skein relation for link
diagrams:

q2J
  

− q −2J
  

= (q − q −1)J
  

. (4)

This equation implies

J
 
L  

 
= (q + q −1)J(L), (5)

that is, the Jones polynomial of the disjoint union of a link L and the un-
knot is the Jones polynomial of L times q + q −1. Adding the unknot to a
link multiplies the Jones polynomial by q + q −1. Hence, it is convenient to
normalize the invariant to take this value on the unknot:

J
  

= q + q −1. (6)

We also extend the invariant to the empty link, by setting J(  ) = 1.
Inductive simplification via the skein relation (4) implies that the Jones

polynomial is uniquely determined by this relation and its value on the un-
knot. A simple way to prove existence was found by Louis Kau man [25].
Define the Kau man bracket polynomial  D  of an unoriented link projection
D by expanding every crossing

  
=

  
− q −1

  
(7)

and requiring that  D  = (q + q −1)k if D is a crossingless diagram with k
circles (the skein relation above di ers slightly from Kau man’s original one,
which has more symmetry). The Kau man bracket of a planar diagram is
invariant under the Reidemeister moves up to rescaling by plus or minus a
power of q. To get rid of these scaling factors, define the Kau man bracket
of an oriented planar diagram by

K (D) := (−1)x(D)q2x(D)− y(D)  D  , (8)

where x(D), respectively y(D), is the number of negative , respectively
positive , crossings of D , and D is viewed as an unoriented diagram in
the rightmost term of (8).
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Exercise 3.1. Show that K (D) = J(L) for any planar diagram D of L.

Thus, the Kau man bracket is a link invariant, equal to the Jones poly-
nomial. The two modifications of a crossing that appear on the right hand
side of (7) will be called resolutions. We call modification  the
0-resolution, and modification  the 1-resolution.

3.2 Categorification and a bigraded link homology the-
ory

In one of its manifestations, categorification, a term introduced by Louis
Crane and Igor Frenkel [14], lifts natural numbers to vector spaces or free
abelian group. Going in the opposite direction (decategorifying), to a finite-
dimensional vector space V we assign its dimension dim(V ) and to a finitely-
generated free abelian group V its rank rk(V ). Operations on vector spaces
or free abelian groups mirror those on natural numbers. Direct sum of vector
spaces corresponds to the sum of numbers, tensor product to multiplication:

dim(V  W ) = dim(V ) + dim(W ), dim(V  W ) = dim(V ) dim(W ).

Thus, we have an informal correspondence

n  Zn or kn, for a field k,
n + m  V  W, where rk(V ) = n, rk(W ) = m,

nm  V  W.

Lifting negative numbers and di erences n − m requires stepping beyond the
category of vector spaces and considering the category of complexes of vector
spaces or free abelian groups. The analogue of the dimension of a vector space
is the Euler characteristic of a complex. In the simplest instance, if positive
integers n and m have become vector spaces V and W of dimension n and m,
then the di erence n− m is the Euler characteristic of the complex 0  V d−  
W  0 for any linear map d, with V sitting in even cohomological degree.
More generally, if we have already lifted integers n and m to complexes V
and W , then n − m can be interpreted as the Euler characteristic of the
complex Cone(f ) for some map f : W −  V of complexes (alternatively, as
the Euler characteristic of Cone(g)[±1] for a map g : V −  W ).
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The standard example of categorification is passing from the Euler char-
acteristic  (X ) of a topological space X to its homology groups H  (X , Z).
We recover the Euler characteristic by taking the alternating sum of ranks

 (X ) =
 

i

(−1)irk Hi(X , Z). (9)

Homology can be built from the Euler characteristic by a lifting as above,
starting with a CW-decomposition X  of X , taking the formula for  (X )
as the alternating sum of the number of i-dimensional cells, lifting each ±1
term in the sum to the complex 0 −  Z −  0 in the corresponding degree,
and forming the complex C(X  ) with the homology H  (X , Z). Notice the
multitude of benefits that the homology of X provides compared to the Euler
characteristic of X :

• The invariant is not just an integer but a graded abelian group, encod-
ing more information about X .

• Homology extends to functor from the category of topological spaces
and continuous maps modulo homotopies to the category of graded
abelian groups and grading-preserving homomorphisms. Thus, it pro-
vides information about continuous maps as well, associating to f :
X −  Y the homomorphism

H  (f ) : H  (X , Z) −  H  (Y, Z).

The Euler characteristic does not give any information about continu-
ous maps.

• Homology groups (singular homology) are defined for any topological
space. The Euler characteristic, in its naive version, is only defined for
topological spaces admitting finite CW-decomposition. Once homology
becomes available the Euler characteristic can be defined for a wider
range of spaces via equation (9), assuming that H  (X , Z) has finite rank.
Still, for many spaces (CP ∞ or a discrete infinite space are the simplest
examples) the formula (9) does not help due to H  (X , Z) having infinite
rank. For such X the Euler characteristic cannot be defined but the
homology still makes sense.

• Relatives of homology groups such as the cohomology groups of X and
the K -theory of X provide even more information via the multiplication
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in cohomology and in K -theory, cohomological operations, etc. We get
a highly sophisticated theory called algebraic topology.

Now take a math book, find there a structure which is manifestly inte-
gral, with all the structure constants, coe  cients, etc. being integers, and try
to categorify it. This means consistently lifting integers to vector spaces or
complexes of vector spaces. A book on combinatorics is a good place to start
(you’re likely to have less luck with a book on analysis since integral struc-
tures are not common there). The end result of your categorification e orts
must be a richer and more beautiful structure then the one you started with,
living one level above the original. Normally, in many cases your attempts
will fall apart or the result will look artificial or shallow, but eventually you
might be onto something.

Today we will look at a successful case of categorification–a categorifica-
ton of the Jones polynomial. The Jones polynomial J(L) of a link L takes
values in Z[q, q −1], so its coe  cients are integers:

J(L) =
 

j

aj (L)q j , aj (L)  Z.

We will realize each coe  cient as the Euler characteristic of a Z-graded link
homology theory. Taking all co  cients together, we’ll get bigraded homology
groups associated to a link

H (L) =  
i,j

H i,j (L)

so that

aj (L) =
 

i

(−1)irkH i,j (L), j  Z, J(L) =
 

i,j

(−1)iq j rkH i,j (L).

The homology will be constructed by lifting the Kau man bracket formula
for the Jones polynomial to complexes. To a diagram D we will assign a
complex C(D) of graded free abelian groups

· · · −  C i −1(D) d−  C i(D) d−  C i+1(D) d−  · · ·

with a grading-preserving di erential; C i(D) =  
j
C i,j (D). For a given degree

j the complex restricts to a complex of free abelian groups

· · · −  C i −1,j (D) d−  C i,j (D) d−  C i+1,j (D) d−  · · · ,
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with aj (L) being its Euler characteristic.
It is convenient to imagine groups C i,j (D) as sitting in the (i, j )-square

on the plane and di erential going one step to the right. The grading shift
{1} moves everything one step up, and the shift [1] moves the diagram one
step to the left. We refer to the i-degree as horizontal/cohomological degree
and the j -degree as vertical/internal degree and also as q-degree.

First, we directly categorify the inductive formula for  D  for an unori-
ented diagram D and turn  D  into the Euler characteristic of a complex
C(D). Next, orienting D , we’ll define

C(D) := C(D)[x(D)]{2x(D) − y(D)} , (10)

mirroring the formula (8).
We start with the simplest diagrams. For the empty diagram    = 1,

and we define C(  ) = Z in bidegree (0, 0). For a single circle diagram   =
q + q −1. Let A = Z1  Z X be a free graded abelian group with the basis
{1, X } such that deg(1) = −1 and deg(X ) = 1 (the reason for notation 1
will soon become clear). The graded rank of A is q + q −1 and we declare that

C( ) = A,

viewed as a complex of graded abelian groups 0 −  A −  0 sitting in
cohomological degree 0 (necessarily with the trivial di erential). In general,
consider an arbitrary plane diagram D without crossings. Such diagram D
consists of k disjoint circles embedded into the plane, possibly in a nested way.
To such D we assign the complex C(D) := A  k with the trivial di erential
and A  k sitting in the cohomological degree 0. The graded rank of A  k is
(q + q −1)k =  D  .

Next, we need to tackle diagrams with crossings and interpret the relation
(7) in our framework. Assuming that complexes for the two diagrams on
the right hand side of (7) have already been defined, we could look for a
homomorphism of complexes

f : C( ) −  C( ) (11)

and define C( ) as the cone of f shifted one degree to the right (compare
with []). The relation (7) would then hold for the Euler characteristics of
these three complexes. Here’s how it works in the simplest cases.
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Example 1: a kinked diagram D = of the trivial knot. Resolutions of

the crossing produce two circles, respectively one circle:

0 − resolution 1 − resolution

A  2 A { −1}

To the 0-resolution we assign A  2, to the 1-resolution we assign A { −1} .
The shift { −1} mirrors multiplication by q −1 in the formula (7). The minus
sign indicates that these two terms should live in cohomological degrees of
di erent parity, and the simplest guess gives us the complex

0 −  A  2 m−  A { −1} −  0, (12)

where we placed the first term in cohomological degree 0. We denoted the
di erential in the complex by m since it looks like a multiplication map.
This map must preserve internal grading and the cohomology of the complex
should be Z  Z, those of the unknot, since we want our theory to give an
invariant of links and not just their diagrams. With these restrictions, there
is very little choice available to us. We define

m(1  a) = m(a  1) = a, for a  A, m(X  X ) = 0.

This makes A into an associative commutative unital algebra. If we shift
the grading of A up by 1, the multiplication becomes grading-preserving and
we can identify A with the integral cohomology ring of the 2-sphere. With
this choice of m the cohomology of the complex (12) is the subgroup of A  2

spanned by X  1 − 1  X and X  X . Thus, up to overall grading shift
(which we’ll take care via equation (10)), the cohomology is isomorphic to
A.

Example 2: the opposite kink D = . Similarly to example 1 take two
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resolutions:

0 − resolution 1 − resolution

A A  2 { −1}

and form the chain complex

0  A ∆−  A  2 { −1}  0.

It is suggestive to call the di erential ∆, which is the usual symbol for co-
multiplication. The bases in each chain group, sorted by the internal degree
j , are

j A A  2 { −1}
1 X X  X

−1 1 X  1, 1  X
−3 0 X  1

and we choose ∆ to be

∆(1) = 1  X + X  1, ∆(X ) = X  X .

The cohomology of the resulting complex is isomorphic to A, as a bigraded
group, up to overall grading shift.

We can now guess the definition of C(D) for an arbitrary D with m
crossings. Each crossing has two resolutions, and the number of complete
resolutions of D is 2m. Each complete resolutions is a crossingless diagram
and has A  k assigned to it, where k is the number of circles. If r0, r1 are
two complete resolutions that di er only in one place (near one crossing),
with r0, resp. r1 being the 0-resolution, resp. 1-resolution there, then two
things can happen. Either two circles of r0 become one circle in r1 or vice
versa. If the first case we have a natural map C(r0) −  C(r1) which is
m : A  2 −  A on the two A’s corresponding to these two circles times the
identity map Id : A  (k −1) −  A  (k −1) on the tensor product of the copies of
A corresponding to circles that don’t change as we go from r0 to r1. Thus,
the map is the composition

C(r0)  = A  (k+1) m  Id−  A  k  = C(r1).
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In the second case, when r1 has more circles than r0, we have a similar map
C(r0) −  C(r1) using ∆ in place of m.

Given an unoriented diagram D with m crossings we associate to it an
m-dimensional cube with graded abelian groups A  k (plus a grading shift)
written in its vertices and maps m  Id, ∆  Id assigned to its edges.

Exercise 3.2. Check that every square facet of this cube is a commutative
diagram.

We add signs to some of the edge maps so that each facet anticommutes
and collapse the m-dimensional cube into a complex of graded abelian groups.
The terms in the complex are given by direct sums of graded abelian groups
sitting in vertices contained in a given hyperplane perpendicular to the main
diagonal. We place the first term in cohomological degree 0 and the last in
cohomological degree m. The result is a complex of graded abelian groups,
denoted C(D), with a grading-preserving di erential. Let us look at an
example.

Example 3 A 3-crossing diagram D = 2

3

1

of a trefoil. We ignore the ori-

entation of D and label the crossings by 1, 2, 3; the resolutions are as follows.
Arrows parallel the arrow labelled di correspond to modifications at the i-th
crossing. The sequence 010 written above the bottom left diagram indicates
that the first and the third crossings are modified via the 0-resolution and
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the second crossing–via the 1-resolution, etc.

001 101

000 100

011 111

010 110

 

 

 d1

 
 

 
  d3

 

d2

 

 
 

 
  

 

 

 

 
 

 
  

 
 

 
  

The corresponding groups and maps are (we write m instead of m  Id on
top left arrows)

A  2 { −1} A { −2}

A  3 A  2 { −1}

A { −2} A  2 { −3}

A  2 { −1} A { −2} ,

 m

 

∆ m
 

 
   m

 

m
 
∆

 
 

   m

 

m

 m

 
m

 
 

   m

 
 

   
∆
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where each m, ∆ is applied according to the topology change:

m

∆

A A  2

For tensor factors for the circles that do not change, we apply Id. We add
minus signs to make each square anticommutative and pass to the total
complex of the cube. Due to anti-commutativity of each facet, d2 = 0 holds.
The total complex has the form

C(D) =

 

    
 
0  A  3 d 

A  2 { −1}
 

A  2 { −1}
 

A  2 { −1}

d 

A { −2}
 

A { −2}
 

A { −2}

 A  3 { −3} d 0

 

    
 

.

For an arbitrary oriented diagram D we define the complex C(D) by shift-
ing the complex C(D) as in the formula (10). An even more elementary
definition, avoiding explicit use of tensor powers, can be found in Viro [75],
together with other interesting observations. The complex C(D) starts in
homological degree −x(D), where x(D) is the number of negative crossings
and ends in homological degree y(D), the number of positive crossings of D .
For D in example 3, x(D) = 3 and y(D) = 0.

Finally, define H (D) as the cohomology of the complex C(D). Note that
H (D) is bigraded and, from the construction, the Euler characteristic of
H (D) is the Kau man bracket (the Jones polynomial) of L.

Exercise 3.3. Compute H (D) for the above diagram of the trefoil.

The following holds [27]:

Theorem 3.4. If two diagrams D1 and D2 are related by a chain of Reide-
meister moves, the complexes of graded abelian groups C(D1) and C(D2) are
homotopy equivalent and homology groups H (D1) and H (D2) are isomorphic.

Define the link homology H (L) := H (D) for a diagram D of L. Homology
groups H (L) are known as Khovanov homology. We have

J(L) =  (H (L)) =
 

i,j  Z

(−1)iq j rkH i,j (L).
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Notice that the above theorem only says that the isomorphism class of H (L)
as a bigraded group is an invariant of L. We’ll discuss the issue of functo-
riality under link di eomorphisms and, more generally, link cobordisms, in
Lecture 5.

Exercise 3.5. Let D1, D2 be diagrams of links L1, L2. Check that C(D1  
D2)  = C(D1)  C(D2), and derive the Künneth formula for the homology
of the disjoint union L1  L2. This formula categorifies the multiplicativity
property of the Jones polynomial, J(L1  L2) = J(L1)J(L2), in our normal-
ization.

3.3 Properties and examples

At least three programs, by D. Bar-Natan [3], A. Shumakovitch [66], D. Bar-
Natan and J. Green [5] are available for computation of H (L). The following
tables, provided to us by A. Shumakovitch, show Khovanov homology of
several knots. Given a diagram D of a knot, the complex C(D) (and, hence,
its homology) is nontrivial in odd internal degrees only. Thus, even q-degrees
are not shown in the tables.

-3 -2 -1 0 1 2 3 4 5 6 7

5 1

3 4, 12

1 1 6, 42

-1 4 9, 62

-3 7 10, 82

-5 8 10, 102

-7 10 8, 102

-9 10 6, 82

-11 8 3, 62

-13 6 1, 32

-15 3 12

-17 1

H omology of t he knot 101 2 1 (in R olfsen notation )

The first table displays the homology of an alternating 10-crossing knot 10121.
A single integer entry a says that the homology group in that bidegree is free
of rank a. Two integers a, b separated by a comma indicate that the homology
group is the direct sum of Za and (Z /2)b. For instance, H 5,−13  = Z6 and
H 1,−3  = Z10  (Z /2)8. Calculations done by Shumakovitch [67] show that
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the only torsion in the homology of knots with 14 or fewer crossings is Z /2-
torsion. Shumakovitch found several knots with 15 and 16 crossings whose
homology contains a copy of Z /4. One of these knots is the (4, 5)-torus knot.
For more information and results on torsion see [67], [2].

Looking at the table, we notice that the homology spans horizontal de-
grees from -3 to 7, and the knot has homological width 10, equal to the
number of crossings of the diagram. By the homological width of L we mean
the di erence between the largest i such that H i,j (L)  = 0 for some j and the
minimal i with the same property. The homological width of L gives a lower
bound on the crossing number of L (the smallest number of crossings in a
planar diagram of L).

Exercise 3.6. Determine the geometric condition on D which ensures that
C(D) has nontrivial homology in the leftmost and in the rightmost degrees
(such diagrams D are called adequate).

Thus, if L has an n-crossing adequate diagram, the crossing number of L
is n. This was originally proved by Thistlethwaite [73] using the 2-variable
Kau man polynomial (not to be confused with the Kau man bracket, which
is a one-variable polynomial). One of the Tait conjectures about the cross-
ing number of alternating links (originally proved with the help of the Jones
polynomial [25], [49]) follows from this result. This alternative approach
to the Thistlethwaite theorem does not use the internal grading on the ho-
mology, only the horizontal grading, almost invisible on the level of Euler
characteristic.

Apparently, the only known explicit relation between the 2-variableKau -
man polynomial and Khovanov homology is that they both specialize to the
Jones polynomial. Yet, both can be used to prove the Thistlethwaite theorem
and to give upper bounds on the Thurston-Bennequin number of Legendrian
links, see L. Ng [51] and references therein.

Diagonal width of the homology gives a lower bound on the Turaev genus
of a knot [45]. For relations between homology and contact topology see [54]
and references therein.

The total rank of the complex C(D) grows very fast as a function of the
size of D . Thistlethwaite’s spanning tree model for the Jones polynomial
admits a categorification [78], [11], giving a complex of much smaller rank
which also computes H (D), but no combinatorial formula for the di erential
of the resulting complex is known, except in very special cases.
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The homology of 10121 occupies two adjacent diagonals. It is easy to
see that the homology cannot lie on just one diagonal, so two is the mini-
mum. E. S. Lee [39] proved that the homology of any alternating knot L
lies on two adjacent diagonals consisting of (i, j ) with 2i − j = c ± 1 where
c is the signature of L. Computer calculations show this to be true for
most non-alternating knots with 11 or fewer crossings as well [3], [66]. A
partial explanation of this phenomenon was provided by C. Manolescu and
P. Ozsváth [46] by extending Lee’s result to quasi-alternating knots.

The next table shows the homology of the alternating knot 10123. This
knot is amphicheiral, that is, isomorphic to its mirror image.

-5 -4 -3 -2 -1 0 1 2 3 4 5

11 1

9 4, 12

7 1 6, 42

5 4 9, 62

3 6 10, 92

1 9 11, 102

-1 11 9, 102

-3 10 6, 92

-5 9 4, 62

-7 6 1, 42

-9 4 12

-11 1

H omology of t he knot 101 2 3 (in R olfsen notation )

For a link L the mirror image L! is given by reversing the orientation
of the ambient R3 in which the 1-manifold is embedded. By reversing all
crossings of a diagram D of L we obtain the diagram D ! of L!.

Exercise 3.7. Construct an isomorphism of complexes

C(D !)  = HomZ(C(D), Z).

Thus, the dual C(D)  of the of complex C(D) is naturally isomorphic
to C(D !). This duality takes C i,j (D) to the dual of the free abelian group
C − i,− j (D). Passing to homology, we see that the free part of H i,j (L) becomes
the dual of the free part of H − i,− j (L!). By the free part of a finitely-generated
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abelian group G we mean the quotient G/Tor(G) of G modulo torsion. In
particular, abelian groups H i,j (L) and H − i,− j (L!) have the same rank. The
torsion of H i,j (L) is the dual of the torsion of H − i+1,− j (L!) (notice the grading
shift), in particular, the two torsion groups have the same rank. The reader
can see this duality in the above homology table of 10123  = 10!123. The first
integer in the (i, j )-entry equals the first integer in the (− i, − j )-entry. The
torsion, only present on the upper diagonal, stays on the upper diagonal after
dualization, due to the shift by 1. For instance, H 5,−9  = Z /2 becomes, after
dualization, the torsion subgroup Z /2 of H −4,9.

Recall that, for the singular chain complex C(X ) of a topological space
X which computes the homology groups of X , the dual complex C(X )  

computes the cohomology groups of X . In the link homology framework, the
duality works in a di erent way–the underlying link is converted to its mirror
image. This manifests our terminological imperfection in calling groups H (L)
the homology groups of L. We would be equally justified in calling them
cohomology groups. In the next two lectures we’ll discuss functoriality of H .
To a link cobordism S from L1 to L2 we assign a homomorphism H (S) :
H (L1) −  H (L2), which, over all S, gives a covariant functor. However,
there is an equally natural construction that assigns to S the homomorphism
going in the opposite direction, producing a contravariant functor. We see
that H (L) exhibits both covariant and contravariant behaviour and, in a
flexible terminological environment, we are free to call H (L) either homology
of cohomology. Another solution is to call H (L) bivariant (co)homology
groups.

-2 -1 0 1 2 3 4 5 6 7 8 9

1 1

-1 12

-3 1 2

-5 1 1, 12 1

-7 1 1, 12 1, 12

-9 1 2, 12 1, 12

-11 1 2, 12 2, 12

-13 1 1, 12 1, 22

-15 1 2 1, 12

-17 1 1, 12

-19 1 12

-21 1

H omology of t he knot 11n
3 1 (in K notscape notation )
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In the third table we see an 11-crossing non-alternating knot whose ho-
mology occupies 3 adjacent diagonals. This knot is adequate, and the width
of the homology is 11. This diagram D has 2 negative and 9 positive cross-
ings, and the groups are bounded by homological degrees −2 and 9. Unlike
the previous two examples, each homology group has small rank (at most
two).

-7 -6 -5 -4 -3 -2 -1 0

13 1

11 12

9 1 1

7 1, 12

5 1 12

3 1 1

1 12 1

-1 1 1

H omology of t he (-3,4,5)-p ret zel knot

The fourth table shows the (-3,4,5)-pretzel knot and its homology. This
time the rank of each group is at most one. Homological width of this knot
equals 7, much less then 12, the crossing number of the knot.

The simplest knot known to have odd torsion in its homology is the (5,6)-
torus knot, see the table below. It has a Z /3-summand in bidegree (14,-43)
and Z /5-summands in bidegrees (11,-35) and (12,-49).

This is a positive knot (all the crossings look like in the planar diagram
D given by the closure of the braid (  1  2  3  4)6), so it has homology groups in
nonnegative homological degrees only. You can check by hand the correctness
of the table in the homological degree 0 by computing the kernel of the
leftmost di erential

0 −  C0(D) d−  C1(D) −  . . .

in the diagram D . For various results on homology of positive and torus
knots and links see [68], [69].
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-19 1

-21 1

-23 1

-25 12 1

-27 1 1 1

-29 1 1 12 1

-31 1 1, 12 2

-33 1 1, 12 1

-35 2 12 12 15 1

-37 12 2 1

-39 12 15 1

-41 1 1

-43 13

H omology of t he (5,6)-tor us knot

4 Flat tangles and bimodules

4.1 Two-dimensional TQFTs and Frobenius algebras

Definition 4.1. A 2-dimensional TQFT (topological quantum field theory)
is a tensor functor from the category of two-dimensional oriented cobordisms
between oriented closed one-manifolds to an additive tensor category.

Such functor F satisfies F (X  Y )  = F (X )  F (Y ) for 1-manifolds X , Y
and F (f  g) = F (f )  F (g) for cobordisms f , g. We won’t define here
additive tensor categories, but rather provide examples:

• the category of vector spaces over a field,

• the category of graded vector spaces over a field,

• the category of free modules over a commutative ring R,

• the category of complexes of free modules over a commutative ring R
modulo chain homotopies.

In these examples the tensor structure is the obvious one (the tensor product
is taken over R in the last two). We restricted to free R-modules since, in
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homological algebra, for general R-modules the tensor product M  R N must
be redefined via a free or projective resolution of M or N .

A 2-dimensional TQFT F with values in the category of free R-modules
must assign R to the empty 1-manifold, F (  ) = R, and some free R-module

A to the circle, F ( ) = A. Then

F ( · · ·    
j

) = A  j

since the functor F is tensor. To the identity cobordism F assigns the identity
map

F
  

= idA .

To the inverted pants cobordism

A  2

 m
A

F assigns a homomorphism m : A  2 −  A, associative due to the equality
of cobordisms

 =

The two upper legs of the multiplication cobordisms may be permuted with-

out changing the di eomorphism type of the cobordism. Thus m is commu-
tative as well.

The following three cobordisms induce three more maps between tensor
power of A, denoted ∆,  and  , respectively, which make A into a commu-
tative Frobenius algebra over R.

A
 ∆

A  2

k
  
A

A
  
k
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It is well known [37], [6, Section 4.3], [23] that two-dimensional TQFTs with
the target category being the category of free modules over a commutative
ring R are classified by commutative Frobenius R-algebras A. The Frobenius
property means that

A  = A  := HomR(A, R)

as an A-module. The isomorphism takes 1  A to an R-linear trace map  :
A −  R which is non-degenerate, meaning that the above map a  −   (a  )
from A to A  is an isomorphism. When R is a field,  is nondegenerate i 
 a  A \ {0}  b such that  (ab)  = 0. Given  as above, we can reconstruct
∆ as the dual of m:

∆ : A  = A  m  

−  A   A   = A  A.

Example 4.2. The direct sum of even-dimensional cohomology groups H even(M , R)
of a closed oriented 2n-dimensional manifold M is a commutative Frobenius
R-algebra, with the trace map given by the integration over the fundamental
2n-cycle.

Example 4.3. Let R be a field and f  C[x1, . . . , xm] a polynomial. If
the quotient algebra A of C[x1, . . . , xm] by the ideal generated by all partial
derivatives ∂ f

∂x1
, . . . , ∂ f

∂xm
is finite-dimensional then A is Frobenius. This ex-

ample comes up in singularity theory, see [1].

The above two types of Frobenius algebras have a nonempty intersection.
For instance, if f = xn+1  Q[x] in the second example then A = Q[x] /(xn),
isomorphic to the cohomology ring of the complex projective space CPn −1.
Notice that we only get a countable number of commutative Frobenius al-
gebras (up to isomorphism) from Example 4.2, but an uncountable number
from Example 4.3. Both examples are important sources of 2-dimensional
TQFT’s.

4.2 Algebras H n

Our goal in this lecture and the next one is to extend link homology to tangles
and tangle cobordisms. We start with an arbitrary Frobenius algebra A over
R and construct an invariant of flat (or crossingless) tangles.

Consider 2n points on a horizontal line and denote by Bn the set of
crossingless matchings of these points by n arcs lying in the lower half-plane.
The cardinality of Bn is the n-th Catalan number 1

n+1 ( 2n
n ) .
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Example 4.4. The set B3 has 5 elements

Let W (b) be the reflection of a matching b along the horizontal line. For
a, b  Bn, the composition W (b)a makes sense and can be viewed as a closed
1-manifold.

b

W (b)

a

W (b)a

Applying the functor F to it, we get F (W (b)a), which is a tensor power of
A.

For each n ≥ 0 we define the ring H n by

H n :=  
a,b  B n

F (W (b)a).

The multiplication in H n is built out of compositions

F (W (c)b)  F (W (b)a) −  F (W (c)a)

induced by cobordisms from W (c)bW (b)a to W (c)a which contract b with
W (b):

W (c)
b

W (b)
a

S

−  W (c)a

 F
F (W (c)b)  F (W (b)a) −  F (W (c)a)

  
H n  H n m−  H n
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For x  F (W (d)c) and y  F (W (b)a) the product xy = 0 if c  = b. For n = 0
the set B0 contains only the empty diagram, and H 0 = R, the ground ring.

Example 4.5. The set B1 consists of the single diagram { } which we
denote a. H 1 = F (W (a)a) = A. The product is given by F (S) : A  2  A,
where

W (a)a
W (a)a

W (a)a

S

Thus, the product in H 1 is the multiplication in A and H 1  = A as an asso-
ciative R-algebra.

Example 4.6. For n = 2 the set B2 has two elements a = and
b = .

H 2 = F (W (a)a)  F (W (b)a)  F (W (a)b)  F (W (b)b)
A  2 A A A  2

An example of multiplication

F (W (a)b)  F (W (b)a) −  F (W (a)a)

is the composition of morphisms:

W (a)
b

W (b)
a

−  

W (a)

a

−  

W (a)

a

A  2 m−  A ∆−  A  2

Exercise 4.7. Functor F is defined on oriented cobordisms only. Find a
consistent way to equip 1-manifolds W (b)a and the multiplication cobordisms
with orientations to make legitimate the above application of functor F .

Exercise 4.8. Use the functoriality of F to show that the multiplication in
H n is associative.
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Exercise 4.9. Define 1a  H n as 1  n  A  n  = F (W (a)a). Show that
x1a = x for any x  F (W (b)a) and 1ay = y for any y  F (W (a)b). Check
that {1a }a  B n are mutually orthogonal idempotents and

1 =
 

a  B n

1a

is the unit element of H n.

Remark 4.10. Observe the similarity with the setting of the ring An from
Lecture 1, with idempotents 1a of H n analogous to idempotents (i) of An.
The latter were used to define projective An-modules Pi = An(i). Likewise,
any a  Bn produces a left projective H n-module

Pa := H n1a =  
b  B n

F (W (b)a)

and a right projective H n-module

aP := 1aH n =  
b  B n

F (W (a)b).

To summarize, H n is a unital associative R-algebra built out of a commu-
tative Frobenius R-algebra A. For n > 1 the algebra H n is noncommutative.

4.3 Flat tangles and their cobordisms

By a flat or crossingles tangle we mean a finite collection of arc and circles
properly embedded in R × [0, 1].

1 2n

1 2 2m

We require that the number of top endpoints be even, which implies that the
number of bottom endpoints is even as well, and call a flat tangle with 2m
top and 2n bottom endpoints a flat (m, n)-tangle. We also fix once and for
all the position of 2n points on R, to make flat tangles easy to compose. The
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composition of a flat (k, m)-tangle and a flat (m, n)-tangle is a flat (k, n)-
tangle.

By a cobordism S between flat (m, n)-tangles T, T  we mean a surface
properly embedded in R × [0, 1] × [0, 1] with the boundary comprised of T, T  

and the product 1-manifold ∂T × [0, 1]  = ∂T  × [0, 1]. We think of ∂T × {0}
as the boundary of T and ∂T  × {1} as the boundary of T  .

T

T  

S

The upper part of T  is shown by dashed lines; the corner R’s of the 3-
manifold R × [0, 1] × [0, 1] are indicated by dashed-dotted lines. Surface S
has 4n + 4m corner points.

There are two ways to compose these cobordisms. If S1 is a cobordism
from T to T  and S2 a cobordism from T  to T   , we can glue them along T  to
produce the cobordism S2  S1 from T to T   . If S1 is a cobordism between flat
(m, n)-tangles T1 and T  

1 and S2 a cobordism between flat (k, m)-tangles T2

and T  
2, we can compose S2 and S1 along the one-manifold {2m points} × [0, 1]

to get the cobordism S2S1 from T2T1 to T  
2T  

1.
This structure can be encoded into the 2-category of flat tangle cobor-

disms. The objects of this 2-category are nonnegative integers n, one-morphisms
from n to m are flat (m, n)-tangles T , two-morphisms from T to T  are iso-
topy classes rel boundary of flat tangle cobordisms S.

To a given flat (m, n)-tangle T we assign the R-module

F (T ) :=  
a  B n ,b  B m

F (W (b)T a).

In other words, we consider all possible ways to close up T by crossingless
matchings a and b at the bottom and the top, respectively, to produce a

41



closed 1-manifold W (b)T a, and apply the functor F to each closure.

W (b)

a

T

F (T ) is actually an (H m, H n)-bimodule, that is, it has a right H m-action and
a commuting left H n-action. In the rest of the notes, we call an (H m, H n)-
bimodule simply an (m, n)-bimodule, and assume that in these bimodules
the left and the right action of R are equal. The action of H m on F (T )
comes from maps

F (W (c)b) × F (W (b)T a) −  F (W (c)T a)
   

H m × F (T ) −  F (T )

Example 4.11. F applied to the identity flat (n, n)-tangle produces H n

viewed as an H n–bimodule:

F
  

 = H n.

Example 4.12. A crossingless matching a  Bm is a flat (m, 0)-tangle and
the bimodule F (a) is simply the left H m-module Pa, see Remark 4.10 (notice
that (m, 0)-bimodules are just left H m-modules, since H 0 = R, the ground
ring). Likewise, F (W (a))  = aP is a right projective H m-module.

Example 4.13. A flat (0, 0)-tangle T is a closed 1-manifold embedded in the
plane, (0, 0)-bimodules are just R-modules, and F (T ) = A  r , where r is the
number of components of T .

The composition of flat tangles T2T1 corresponds to the tensor product
of bimodules

F (T2T1)  = F (T2)  H m F (T1)

for a flat (k, m)-tangle T2 and a flat (m, n)-tangle T1, see [28, Theorem 1].
If we fix n and consider only flat (n, n)-tangles T and H n-bimodules F (T )

we get a functor realization of the Temperley-Lieb algebra T L2n. In Lecture
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1 we already constructed a realization of T Ln+1 by An-bimodules, with the
generators

ui =

i1 2... n+1i+1... n

of the Temperley-Lieb algebra represented by An-bimodules Ui. Recall that
Ui  Uj = 0 if |i − j | > 1, while uiu j  = 0 in T L algebra, so our bimodule
realization was degenerate. On the other hand, F (T ) is a non-trivial bimod-
ule for any flat (n, n)-tangle T . Also, in the current setting a closed loop
evaluates to the R-module A. For instance, F (uiui)  = F (ui)  R A. When we
pass to ranks, the value of the closed loop becomes the rank of A as a free
R-module, a positive integer.

To get more general values for the closed loop we extend the framework
of commutative Frobenius R-algebras A and rings H n to the graded case, by
requiring that A be a graded R-algebra and the morphism F (S) associated
with a 2-dimensional cobordism S be homogeneous of degree proportional
to the Euler characteristic of S. Under these assumptions, the rings H n and
bimodules F (T ) become graded [28]. A closed loop still corresponds to A.
Upon decategorification, closed loop evaluates to the graded rank of A as
R-module and takes value in N[q, q −1]. In the simplest nontrivial case of
the graded pair (R, A) described in Lecture 3 the value of the closed loop is
q + q −1, the standard value of the loop in the Temperley-Lieb algebra.

Let S be a cobordism in R × [0, 1] × [0, 1] between flat (m, n)-tangles T1

and T2. To S we assign a homomorphism

F (S) : F (T1) −  F (T2)

between (m, n)-bimodules. For a  Bn and b  Bm we can compose S with
the identity cobordism Ida from a to a and the identity cobordism IdW (b) from
W (b) to W (b) to get the cobordism IdW (b)SIda from the closed 1-manifold
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W (b)T1a to W (b)T2a.

T1

T2

S

IdW (b)

Ida

IdW (b)SIda

This cobordism induces a homomorphism F (W (b)T1a) −  F (W (b)T2a).
Summing over all a and b we get a homomorphism of (m, n)-bimodules
F (S) : F (T1) −  F (T2). It is straightforward to check that F (S) is nat-
ural with respect to both types of compositions of cobordisms. When all the
properties are written down, we discover that F becomes a 2-functor from
the 2-category of flat tangle cobordisms to the 2-category of (m, n)-bimodule
homomorphisms. Objects of the latter 2-category are nonnegative integers
n, 1-morphisms from n to m are (m, n)-bimodules and 2-morphisms are bi-
module homomorphisms. Composition of bimodules is given by the tensor
product. The 2-functor F is the identity on objects, n  −  n, takes a flat
tangle T to the bimodule F (T ), and flat tangle cobordism S to the bimodule
homomorphism F (S). This 2-functor converts topological information about
1-manifolds embedded in the plane and 2-manifolds embedded in R3 into the
algebraic information provided by bimodules and bimodule homomorphisms.

The following table summarizes the construction of the 2-functor F .

2-category of flat
tangle cobordisms

F=  2-category of bimodule
homomorphisms

objects n = 0, 1, 2, . . .  −  n = 0, 1, 2, . . .
1-morphisms flat (m, n)-tangles T  −  (m, n)-bimodules F (T )
2-morphisms flat tangle cobordisms S  −  bimodule homomorphisms F (S)
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5 A homological invariant of tangles and tan-
gle cobordisms

5.1 An invariant of tangles

In the previous lecture we described a 2-functor from the 2-category of cobor-
disms between flat tangles to the 2-category of bimodule maps. Such functor
exists for any Frobenius R-algebra A. In this lecture, for a specific (R, A), we
extend the construction to a 2-functor from the 2-category of tangle cobor-
disms to the 2-category of homomorphisms between complexes of bimodules
(up to chain homotopy). Going one dimension up, from flat tangles, which
are 2-dimensional objects, to tangles, which are 3-dimensional, exactly corre-
ponds to passing from the abelian category of bimodules to the triangulated
category of complexes of bimodules. Ditto for cobordisms, which are 3-
dimensional between flat tangles and 4-dimensional between tangles. Thus,
in the framework described here, the key transformation in algebra

abelian categories =  triangulated categories

is mirrored in low-dimensional topology by the transformation

(2+1)-dimensional structures =  (3+1)-dimensional structures.

We specialize the construction of the previous lecture to R = Z and
A = Z[X ] /(X 2) with the trace  (X ) = 1,  (1) = 0. The ring H n is made
graded by defining H n =  

a,b  B n
F (W (b)a){n} . The multiplication in H n is

grading-preserving and deg(1a) = 0. For a flat (m, n)-tangle T the (m, n)-
bimodule F (T ) is graded.

Start with an oriented (m, n)-tangle T . Just as in the flat case, we assume
that T  R2 × [0, 1] has 2n bottom endpoints placed in the standard position
on the plane R2 × {0} and 2m top endpoints in standard position on R2 × {1} .
Oriented tangles can be composed in the same way as flat tangles, assuming
that the orientations at the endpoints match. A tangle cobordism S between
(m, n)-tangles T1, T2 is an oriented smooth surface in R2 × [0, 1]2 subject
to the boundary conditions mirroring those for flat tangles. In particular,
the boundary of S consists of four pieces, two of which are T1, T2 and the
other two are product 1-manifolds. Let CobT be the 2-category of tangle
cobordisms. Its objects are finite sequences of pluses and minuses, its 1-
morphisms are tangles with prescribed orientations at the endpoints, and
2-morphisms are tangle cobordisms up to rel boundary isotopies.
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We choose a diagram D of a tangle T , a generic projection of T onto
the plane, with the endpoints projecting in the standard way. Assume that
D has a single crossing. Let D0, D1 be unoriented flat tangles obtained by
resolving the crossing of D .

D

D0 D1

Cobordism S

Let S be the simplest cobordism between D0 and D1; it has one saddle point
for the projection S  R × [0, 1]2 −  [0, 1]. Cobordism S induces a degree 1
morphism F (S) : F (D0) −  F (D1) between graded (m, n)-bimodules. We
define F  (D) as the chain complex

F (T ) := (0  F (D0)
F (S)

 F (D1){ −1}  0)

of graded bimodules with a grading-preserving di erential, with F (D0) in
homological degree 0. Recalling that D is a diagram of an oriented tangle T ,
we set

F (D) := F  (D)[x(D)]{2x(D) − y(D)} ,

where, as before, x(D) and y(D) is the number of negative and positive
crossings of D .

If D is an arbitrary tangle diagram, decompose D as the composition of
diagrams with at most one crossing each, D = Dk · · · D2D1

D=

D1

D2

Dk
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and define
F (D) := F (Dk)  · · ·  F (D2)  F (D1),

with the tensor product over rings H k, for suitable k’s equal to half the
number of top/bottom endpoints for intermediate diagrams D i. This is a
complex of graded (m, n)-bimodules. Let Cm,n be the category of complexes
of graded (m, n)-bimodules up to chain homotopies.

Theorem 5.1. If diagrams D1, D2 of an (m, n)-tangle T are related by a
chain of Reidemeister moves, then F (D1)  = F (D2) in Cm,n.

The proof consists of constructing an explicit homotopy equivalence F (D1)  =
F (D2) for two diagrams related by a Reidemeister move [28].

Example 5.2. n = m = 0. In this case the tangle T is a link, and the
ring H 0 = Z. F (D)  = C(D) is a complex of graded abelian groups, and its
homology groups H (F (D)) coincide with the link homology H (T ).

5.2 Tangle cobordisms

Let S be a tangle cobordism from tangle T0 to tangle T1. The two tangles can
be represented by their planar diagrams D0, D1. Likewise, we can represent
S by a sequence of planar diagrams of intersections of S and R2 × [0, 1] × { t }
for various t  [0, 1] . Such representation is called a movie of S. Consecutive
diagrams D0 = D0, D1, . . . , Dm = D1 in a movie di er by either a Reidemeis-
ter move or a move that corresponds to going through a critical point of the
projection S −  [0, 1]. There are 3 types of critical point moves. The saddle
move  correspond to passing through an index 1 critical point.

Creation and annihilation moves   correspond to critical points of
index 0 and 2, respectively. An example of a movie is as follows.

S =

D0 = D0 D1 D2 D3 D4 = D1

We often denote a movie representing a cobordism S by S as well. To a Rei-
demeister move between D i and D i+1 we assign the isomorphism F (D i)

 =−  
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F (D i+1) mentioned earlier. To a degree 0 critical point move from D i to
D i+1 we assign the map

F (D i)  = F (D i)  Z Id   −  F (D i)  A  = F (D i+1)

induced by the unit map  : Z −  A from F (  ) to F (circle). To a degree 2
critical point move we assign the map induced by the trace homomorphism
 : A −  Z. The map assigned to a degree 1 critical point move was
essentially described earlier in the lecture, as the bimodule homomorphism
induced by the standard cobordism between two resolutions of a crossing.
For instance, in S shown above, diagrams D1 and D2 are related by such a
move (saddle move). We can decompose each D1 and D2 as the composition
of 3 diagrams, with only the middle diagrams being di erent

D1 D2

and define F (D1) −  F (D2) as the composition of the identity map on the
first and the third terms and the homomorphism of the middle terms induced
by the saddle point cobordism between two crossingless tangles.

We define F (S) as the composition of homomorphisms F (D i) −  F (D i+1)
associated to frame changes D i −  D i+1. Notice that homomorphisms asso-
ciated to Reidemeister moves are invertible in Cm,n, the category of complexes
of graded (m, n)-bimodules modulo chain homotopies. For instance, for the
movie S drawn above, the homomorphism F (D1) −  F (D2) is the only
non-invertible one.

It is a theorem of S. Carter and M. Saito [7] that two movies represent the
same tangle cobordism S i they can related by a sequence of movie moves.
A movie move converts a certain sequence of frames to another sequence of
frames representing the same cobordism. Here’s an example:

S0 =

D0 D1

S1 =

D0 D1
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We refer the reader to [7] or [29] for a complete list of movie moves.

Theorem 5.3. If movies S0 and S1 represent isotopic tangle cobordisms,
F (S0) = ± F (S1) in Cm,n.

Proving this statement amount to checking the invariance of F up to a
sign for each movie move. We only explain it for the above example of a
movie move. We have two morphisms: F (S0), F (S1) : F (D0)  F (D1).
They are isomorphisms of complexes of bimodules in the homotopy category
Cn,n, since both movie moves S0, S1 are compositions of Reidemeister moves.
Then f = F (S1)−1F (S0) is an isomorphism of F (D0). Note that F (D0) is an
invertible complex of bimodules, since it is represented by a braid. Tensoring
it with the complex associated with the inverse braid will give us the identity
bimodule H n. Therefore, the group of automorphisms of F (D0) in Cn,n is
isomorphic to the group of automorphisms of H n. Automorphisms of the
H n-bimodule H n are multiplications by invertible central elements of H n.
Moreover, automorphisms in the category Cn,n should preserve the internal
grading of H n. It is a simple exercise to check that there are only two such
automorphisms, ±Id. Thus, f = ±Id and F (S1) = ± F (S0).

This argument works for any movie move where each movie is a sequence
of Reidemeister moves. Taking care of other movie moves is only slightly
more complicated [29].

Putting everything together, we get a (projective) 2-functor from the 2-
category of oriented tangle cobordisms T C to the 2-category C. The objects
of the latter are nonnegative integers, 1-morphisms are complexes of graded
(m, n)-bimodules, and 2-morphisms are homogeneous homomorphisms of
complexes modulo chain homotopies. The word projective refers to the sign
indeterminancy in Theorem 5.3. Objects of T C are even length sequences
of pluses and minuses. One-morphisms are tangles with prescribed orienta-
tions at the top and bottom endpoints; 2-morphisms are isotopy classes of
tangle cobordisms. The 2-functor F assigns n to a signed sequence of length
2n, complex of graded bimodules F (T ) to a tangle T , and homomorphism
± F (S) to a cobordism S.

Specializing from tangles to links, we get a (projective) functor from the
category of link cobordisms to the category of bigraded abelian groups [21],
[29]. To a link L it assigns Khovanov homology H (L), to a link cobordism S
between L0 and L1 it assigns a homomorphism ± H (S) : H (L0) −  H (L1)
of bidegree (0, −  (S)). The sign indeterminacy in Theorem 5.3 has been
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eliminated by D. Clark, S. Morrison and K. Walker [13] and C. Caprau [10]
at the cost of certain decorations of tangles and cobordisms.

For more information on rings H n and related topological invariants
see [12], [70], [71] and references therein.

5.3 Equivariant versions and applications

The ring H n and complexes C(D) can be defined for any commutative Frobe-
nius R-algebra A. Requiring that C(D) be invariant under the first Reide-
meister move implies the condition that A is a rank two free R-module [31].
It turns out that there are many examples of rank two Frobenius pairs (R, A)
giving rise to link homology, tangle and tangle cobordism invariants. They
were originally described by D. Bar-Natan [4] in a more categorical language,
avoiding the use of H n.

One of these rank two Frobenius pairs is given by R = Q[t] and A = Q[X ],
with the condition that X 2 = t, making A an R-algebra. The trace map is
 (X ) = 1,  (1) = 0. It is natural to think of R as the SU(2)-equivariant
cohomology of a point and A as the SU(2)-equivariant cohomology of the
2-sphere, with SU(2) acting via the surjective homomorphism onto SO(3):

R = H  
SU(2)(pt, Q) = H  (BSU(2), Q) = H  (HP ∞ , Q)  = Q[t],

A = H  
SU(2)(S2, Q)  = H  

SO(2)(pt, Q)  = Q[X ].

Construction of Lecture 3, done for this (R, A), produces a functorial link
homology theory, which we denote Ht. It extends to tangles and tangle cobor-
disms via the framework described in Lecture 4 and the first two sections of
Lecture 5. A cobordism S between links L0, L1 induces a homomorphism
Ht(S) : Ht(L0) −  Ht(L1), well-defined up to overall minus sign. Groups
Ht(L) are bigraded finitely-generated Q[t]-modules, with the multiplication
by t shifting the bigrading by (0, 4). Let T or(L)  Ht(L) be the torsion
submodule; it consists of elements of Ht(L) annihilated by some power of t.
Homomorphisms Ht(S) take T or(L1) into T or(L2), thus T or is a functorial
subtheory of Ht. Let H  (L) = Ht(L) /T or(L). The quotient theory H  is
functorial with respect to link cobordisms, and each H  (L) is a free bigraded
Q[t]-module. It follows from [40] that H  (L) has rank 2m, where m is the
number of components of L. Moreover, when L is a knot, H  (L) lives in
cohomological degree 0 and

H  (L)  = Q[X ]{ −s(L) − 1}
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for some even integer s(L) called the Rasmussen invariant of L. The Ras-
mussen invariant tells us where the internal grading of H  (L) starts: in q-
degree −s(L) − 1. By writing Q[X ] = Q[t] · 1  Q[t] · X , we see two copies
of Q[t] with the relative grading shift by 2.

Rasmussen [58] showed that, given a connected cobordism S between
knots L0, L1, the induced homomorphism of Q[X ]-modules H  (S) : H  (L0)  
H  (L1) is nontrivial. Moreover, this homomorphism has degree −  (S). Since

H  (L0)  = Q[X ]{ −s(L0) − 1} , H  (L1)  = Q[X ]{ −s(L1) − 1} ,

nontriviality of the homomorphism implies that the absolute value of the
di erence s(L0) − s(L1) is bounded by twice the genus of S,

|s(L0) − s(L1)| ≤ 2g(S) = −  (S).

In particular, L  −  s(L) descends to a homomorphism from the knot con-
cordance group to 2Z. Specializing to cobordisms from the trivial knot to L,
one gets a lower bound on the slice genus of L:

|s(L)| ≤ 2g4(L).

The slice genus g4(L) of a knot L is the minimum genus of a smooth oriented
surface in the four-ball D4 that bounds L  S3 = ∂D4. It is also the
minimum genus of a cobordism between the trivial knot and L.

Generally, both the slice genus g4(L) and the Rasmussen invariant s(L)
are very di  cult to compute. For positive knots, however, the computation
of s(L) is straightforward. If L is a positive knot with a positive diagram D ,
the complex Ct(D) starts in cohomological degree 0, and H 0

t (D) is the kernel
of the di erential C0

t (D) −  C1
t (D). This allows us to determine H 0

t (D),
its quotient H  (D), and find the Rasmussen invariant s(L). It is equal to
n + 1 − c, where n is the number of crossings of D , and c is the number of
Seifert circles. At the same time, Seifert’s algorithm gives a Seifert surface
for L of genus n+1− c

2 , so the ordinary genus g(L) ≤ n+1− c
2 . The chain of

inequalities

g(L) ≥ g4(L) ≥
|s(L)|
2

=
n + 1 − c

2
≥ g(L)

implies that all of them are equalities, and the slice genus of L is n+1− c
2 . As

a special case, this argument proves the Milnor conjecture, also known as
Kronheimer-Mrowka theorem, that the slice genus of the torus knot Tp,q is
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(p −1)(q −1)
2 . The first proof of theMilnor conjecture was given by P. Kronheimer

and T. Mrowka [38] via Donaldson theory. The above much more recent
proof, due to Rasmussen, is algebraic. The sketch, presented here, uses the
graded theory Ht instead of its filtered version, utilized by Rasmussen [58].

Two 1’s in the zero column of the homology table for T5,6, depicted at
the end of Lecture 3, are all that’s left of H  (T5,6) in the homology groups
H (T5,6), where t = 0 and Q[X ] becomes A. The Rasmussen invariant of this
torus knot equals 20.

Extension of the link homology to tangles, in addition to giving an easy
proof of functoriality, also helps with computing link homology, as demon-
strated by D. Bar-Natan and J. Green, who produced a fast program for
computing Khovanov homology [5]. One puts a link L in ”thin” position,
namely a position minimizing the number of intersection points of horizontal
planes with L, as illustrated below.

...

T1

T2

T3

Tk

Write L as the product of tangles with at most one crossing each, L =
Tk . . . T2T1. To compute H (L) = F (L), one starts with F (T1), then computes
F (T2T1), F (T3T2T1), etc. Each F (Ti . . . T2T1) is a complex of projective H m-
modules, where 2m is the number of top endpoints of Ti. At each step,
one simplifies F (Ti . . . T2T1) as much as possible by removing null-homotopic
components, isomorphic to 0  Pa

1 Pa  0, where Pa are projective H m-
modules described earlier and labelled by crossingless matchings a. After
that, the reduced complex is tensored with F (Ti+1), and the simplification
procedure is repeated. This method gives the most e  cient algorithm at
present for computing link homology.
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6 Categorifications of the HOMFLY-PT poly-
nomial

6.1 The HOMFLY-PT polynomial and its generaliza-
tions

The HOMFLY-PT polynomial [20], [56] is a generalization of the Jones poly-
nomial which is determined by the skein relation

aP
  

− a−1P
  

= (q − q −1)P
  

and its value on the unknot

P
  

=
a − a−1

q − q −1 .

For P (L) to really be a (Laurent) polynomial, one should change variables
in the above formulas by introducing b = q − q −1, for then P (L)  Z[a±1, b±1].
Variables a, q are natural from the representation-theoretical viewpoint, though,
since the one-variable specialization Pn(L) := Pa=q n (L) of P (L) for n > 0
can be extended [60] to an invariant of tangles via representation theory of
Uq(sl(n)), a Hopf algebra deformation of the universal enveloping algebra
U(sl(n)). For the first few values of n, the polynomial Pn(L) is as follows:

• P0(L) is the Alexander polynomial of L.

• P1(L) = 1 for all L is a trivial invariant.

• P2(L) = J(L) is the Jones polynomial of L.

We already discussed a categorification of P2(L). A categorification of P0(L)
(the Alexander polynomial) has been constructed by P. Ozsváth, Z. Szabó [52]
and, independently, J. Rasmussen [57]. It is a bigraded homology theory,
known as the knot Floer homology, which comes in several versions and has
found a multitude of applications in low-dimensional topology, see [53] and
references therein. The invariant P1(L) is trivial, so there’s nothing to cate-
gorify. Polynomial Pn(L) was categorified in [30] for n = 3 (see [42], [48] for
extension to tangles and for equivariant versions) and in [33] for all n > 1.
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Both constructions employ a generalization of the Kau man’s bracket de-
composition of the crossing, which for n > 2 takes the form

q1−n −nq= −

q n−1 q n= −
Each crossing of a diagram is resolved in two possible ways, and a complete
resolution of a diagram produces a planar graph of a particular type. The
invariant Pn(L) extends to these graphs and has a positive evaluation on each
of them: Pn(  )  N[q, q −1] for a planar graph  . To categorify Pn(L) one
first categorifies Pn(  ), which become graded dimensions of graded Q-vector
spaces Hn(  ) (that’s the trickiest part of the construction). These vector
spaces are then put into the vertices of an m-dimensional cube, where m is
the number of crossings of the diagram, and for each edge of the cube one
constructs a linear map between the spaces. Homology of D is defined as
the homology of the total complex of the cube and checked to be invariant
under the Reidemeister moves. The result [33] is a family of bigraded link
homology theories

Hn(L) =  
i,j  Z

H i,j
n (L), n > 1,

with each group H i,j
n (L) a finite-dimensional Q-vector space, and the Euler

characteristic
Pn(L) =

 

i,j  Z

(−1)iq j dim H i,j
n (L)

(when n = 2, we recover Khovanov homology, tensored with Q.) These
invariants extend to tangles and tangle cobordisms in a way conceptually
similar to the one described in Lectures 4 and 5 for H (L).

There are now several strikingly di erent constructions of graded [44] and
bigraded [72], [9], [43], [47] homology theories of links which exhibit behavior
similar to Hn and might all be isomorphic to Hn or mild modifications of the
latter (see also [64], [8], [70] for prior constructions in the n = 2 case).

In the rest of the lecture we discuss a triply-graded homology theory [34],
[32] which categorifies the 2-variable HOMFLY-PT polynomial P (L).
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6.2 Hochschild homology

Let R be a ring, and M (resp. N ) be a right (resp. left) R-module. The
tensor product M  R N is an abelian group. In homological algebra various
functors need to be redefined to make them exact in a suitable category.
For general M , tensor product with M is only a right exact functor on the
category of left R-modules. To convert it into an exact functor (on a bigger
category, say the derived category of the original category), we consider a
projective resolution of M , that is, a chain complex of projective R-modules
(Pi,  i) so that the vertical chain map in the following diagram is a quasi-
isomorphism (i.e. isomorphism on homology).

· · ·  P2
 2 P1

 1 P0  0
  
0  M  0

This simply means that the chain complex is exact everywhere except the
last term, where M  = P0 / Im  1.

Consider the chain complex M
L
 N := (Pi,  i)  R N = (Pi  R N ,  i  id).

We call the i-th homology of this complex the i-th derived tensor product of
M and N . It is known that derived tensor products do not depend on the
choice of projective resolution, and that if we projectivize N instead of M ,
we get the same answer as well.

Exercise 6.1. Determine the derived tensor product of Z-modules Zn and
Zm.

We represent a right R-module M and a left R-module N graphically as

M

N

R-action is depicted by wires, and ”left” is seen as ”up”, ”right” is ”down”.
Turn your head 90 degrees clockwise or, alternatively, turn the paper 90

degrees counterclockwise to see the match. We represent M
L
 N by the

following picture:
M

N

55



If M and N are R-bimodules, we depict them and their derived tensor prod-

uct M
L
 N as follows:

M N

M

N

(compare with Lecture 4). The top and the bottom wires of the diagram
for a bimodule M indicate left and right actions of R. A single vertical
undecorated wire denotes R viewed as an R-bimodule.

The space of R-coinvariants of an R-bimodule M is

MR := M / [R, M ],

the quotient of M by the abelian subgroup generated by expressions rm − mr
over all r  R, m  M . The functor M   MR is right exact.

Remark 6.2. “Quotient object” functors (such as the R-coinvariants func-
tor) between abelian categories are often right exact. The “subobject” functors
tend to be left exact. An example of a “subobject” functor is M  −  M R ,
which to a bimodule M assigns its R-invariants

M R := {m  M |rm = mr for all r  R } .

Graphically, passing from M to its R-coinvariants should correspond to
joining the two wires of M . If we imagine elements of R moving along the
wires, the equations rm = mr that hold in MR for all r and m mean that r
can jump from the top to the bottom wire and back without changing the
value of the diagram. The easiest way to achieve this geometrically is by
closing o the two ends of the diagram:

M = M / [R, M ] = MR . (13)

This is only an approximation, though, since M  −  MR is not left exact
and we need to form its derived functor, known as Hochschild homology.
Notice that R-bimodules are the same as left (or right) modules over the ring
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Re := R  Rop. If we are viewing R as a k-algebra, for some commutative
ring k, often a field, the tensor product in the definition of Re should be
taken over k. The group MR equals the tensor product M  Re R of a right
Re-module M and a left Re-module R (right and left here can be transposed).
We define the i-th Hochschild homology of M as the i-th derived functor of
the tensor product:

HHi(R, M ) := Hi(M
L
 Re R),

HH  (R, M ) :=  
i ≥0

HHi(R, M ).

Going back to diagrammatics, we should interpret the closure of a bimodule
diagram as taking the entire Hochschild homology of M rather than just MR ,
its degree 0 part:

M = HH  (R, M ).

The Hochschild homology exhibits ”tracial” behaviour, since there are (func-
torial in M and N ) isomorphisms

HH  (R, M
L
 N )  = HH  (R, N

L
 M ).

These isomorphisms acquire topological interpretation

N

M
 N

M  
N

M
,

that is, bimodule boxes can be dragged along the wires. Hochschild homology
of a bimodule can be viewed as a categorification of the trace of a linear
operator.

To compute the Hochshild homology of M , it su  ces to construct a pro-
jective resolution of R as an R-bimodule, tensor with M over Re and take
homology.
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Example 6.3. Let R = Q[x], viewed as a Q-algebra. Note that Rop  =
R. The following is a free resolution of R as R  R-module called Koszul
resolution

0  Q[x]  Q[x]   Q[x]  Q[x]  0,

where  is the R  R-module map determined by  (1  1) = x  1 − 1  x.
Tensoring with M , we get

(M  Re (0  Re   Re  0))  = (0  M   M  0),

where  (m) = xm − mx (notice that M  Re Re = M ). Therefore,

HH0(R, M )  = MR , HH1(R, M )  = M R ,

and all higher Hochschild homology groups vanish.

Example 6.4. R = Q[x1, . . . , xn]. We have a resolution of R by free Re-
modules

n 

i=1

(0  Q[xi]  Q[xi ]
 i Q[xi]  Q[xi]  0)

= (0  R  R  · · · (R  R)  (n
k)  · · ·  R  R  0),

where  i(1  1) = xi  1 − 1  xi. One may consider the k-th term as

(R  R)  (n
k)  = R  R   kV,

where V := spanQ {y1, ..., yn } , and the di  erential is given by

d(z1  z2  yr1  · · ·  yrk ) =
k 

j=1

(−1)j (xr j z1  z2 − z1  z2xr j )yr1  · · ·  yr j · · ·  yrk .

Tensoring with M , we get the complex 0  M  · · ·  M  (n
k)  · · ·  

M  0 which computes Hochschild homology of M . For the boundary terms,
we get

HH0(R, M ) = MR , HHn(R, M ) = M R .
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6.3 A categorification of the HOMFLY-PT polynomial

We use R = Q[x1, . . . , xn] as in Example 6.4. For the transposition si =
(i, i + 1) in the symmetric group Sn let

Ri := Rs i = Q[x1, ..., xi −1, xi + xi+1, xixi+1, xi+2, ..., xn]  R,

be the space of si-invariants under the permutation action of Sn on R. As
an Ri-module, R is free of rank 2 and can be written as R = Ri · 1  Ri · xi.
We set the degree of xi to 2; this makes R and Ri into graded rings. Then
B i := R  R i R { −1} is a graded R-bimodule, and we have

B i  R B i
 = R  R i (Ri · 1  Ri · xi)  R i R { −1}  = B i {1}  B i { −1} .

Recall that bimodules Ui in Lecture 1 satisfy the same relation. In Lecture
1 we formed chain complexes (0  Ui  An  0) and (0  An  Ui  0)
corresponding to the braid  i; these complexes gave rise to a braid group
action in the homotopy category of complexes. An analogous theory exists
for bimodules B i. Form bimodule complexes

Ci := (0  B i {1} = R  R i R m−  R  0),

C  
i := (0  R   B i { −1}  0),

where  (1) := (xi − xi+1)  1+ 1  (xi − xi+1) and in both complexes R sits
in cohomological degree 0.

Theorem 6.5. (R.Rouquier [62]) In the category of complexes of graded
R-bimodules modulo homotopic to zero morphisms there are the following
isomorphisms:

Ci  C  
i

 = R  = C  
i  Ci,

Ci  Ci+1  Ci
 = Ci+1  Ci  Ci+1,

Ci  C j
 = C j  Ci, if |i − j | > 0.

The theorem say that there is a weak braid group action on the homotopy
category of complexes of graded R-modules. Rouquier also showed that this
weak action lifts to a genuine action. Moreover, just like in the example of
Lectures 1 and 2, this braid group action extends to an action of the category
of braid cobordisms [36].
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This is reminiscent of our previous categorifications, via rings An and H n:

An : Braid cobordisms
categorification

 Burau representations

H n : Tangle cobordisms
categorification

 Jones polynomials

It turns out that the braid group action via complexes of R-bimodules
leads to a categorification of the HOMFLY-PT polynomial of braid closures.

Starting with an arbitrary braid word  , which is a product of  i’s and
their inverses, form the corresponding complex of graded R-bimodules, de-
noted C(  ), the tensor product of Ci’s and C  

i ’s:

C(  ) : · · · d C j (  ) d C j+1(  ) d · · · .

Now, take the Hochschild homology of each term. The di erential map d
induces a mapping of Hochschild homology groups, and we obtain the chain
complex

· · ·  HH(R, C j (  ))
HH(d)

 HH(R, C j+1(  ))  · · · .

Each HH(R, C j (  )) is a Q-vector space with two gradings: the Hochschild
grading and the internal grading (the grading of R by degxi = 2). Therefore,
taking the homology, we get a triply-graded vector space

H(HH(R, C(  )), HH(d)) = HHH(  ).

This triply-graded vector space needs an overall shift, as desribed by Hao
Wu [79]. With it in place, we have

Theorem 6.6. Triply-graded homology groups HHH(  ) is an invariant of
the link  ̂ , the closure of braid  . The Euler characteristic of HHH(  ) is the
HOMFLY-PT polynomial of the link  ̂ .

This construction simplifies a categorification of the HOMFLY-PT poly-
nomial in [34]. There are some problems with this homology theory: HHH
is not functorial under link cobordisms,for instance due to the theory being
infinite-dimensional on non-empty links. It might be possible to make it
finite-dimensional by setting several xi’s in R to 0, one for each component
of the link. It is not clear, though, why the finite-dimensional version should
be functorial under tangle cobordisms. One would also like to define HHH in
a more natural way and extend it to tangles. Overall, it is an open problem
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to develop the homology theory HHH and make it as aethetically pleasing as
the one described in lectures 3-5.

There are ideas on how to generalize this theory to the so-called colored
HOMFLY polynomials and relate it to topological strings [19], [18]. The ho-
mology was computed for a number of knots by Rasmussen [59], and earlier,
via a computer program, by Ben Webster.

The ring R has a geometric interpretation as the GL(n)-equivariant co-
homology of the variety of full flags in Cn. This interpretation was extended
to the Hochschild homology of indecomposable summands of C(  ) in [76].

Similarities between the Hochschild homology and link homology were
originally observed in [55].

To summarize, we’ve seen three categorifications in these lectures.

• Rings An lead to a categorification of the reduced Burau representa-
tion of the braid group. Braids act by complexes of An-bimodules.
The theory can be extended to give invariants of braid cobordisms via
homomorphisms of complexes of bimodules.

• Bimodules over rings H n give a categorification of the Temperley-Lieb
algebra. Complexes of bimodules produce an invariant of tangles; ho-
momorphisms of complexes–invariants of tangle cobordisms. The con-
struction specializes to a bigraded homology theory of links categorify-
ing the Jones polynomial.

• Suitable bimodules over polynomial rings R give rise to a braid group
action. The action extends to braid cobordisms. Taking Hochschild
homology produces a triply-graded link homology theory categorifying
the HOMFLY-PT polynomial.

Exercise 6.7. Choose an integral structure that appears in combinatorics,
or algebra, or topology, etc. and categorify it.
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