

2034-22

Advanced School and Conference on Knot Theory and its Applications to Physics and Biology

11 - 29 May 2009

Random Knots and Polymers

Eric Rawdon University of St. Thomas Saint Paul, MN USA

ejrawdon@stthomas.edu Rttp://geogesthomas.edu/rawdon http://george.math.stthomas.edu/rawdon

Random Knots and Polymers

Eric Rawdon

University of St. Thomas Saint Paul, MN

ejrawdon@stthomas.edu
http://george.math.stthomas.edu/rawdon/

May 19, 2009

Outline

- Random polygons and polymers
- Measuring size and shape
- Open problems

Random polygons and polymers

- Polymers are long chains of molecules made of repeated units (e.g. DNA, proteins, plastics)
- Polymers derive their properties from their structure
- Researchers study systems of polymers and single polymers
- We concentrate of studying the structure of single polymer chains, in particular, closed polymers which can form knots
- Basic idea single polymer chains can be modeled by random chains

Polymer Model

- Polymers are modeled as random open and closed chains
 - Walk means open
 - Polygon means closed
- Art generating realistic chains
- Model depends on the level of detail you want and situation
- A number of monomers are modeled as one longer segment with more flexibility
- [1, 2] Arsuaga++, Proc. Natl. Acad. Sci. USA (2002, 2005)
- [3] Micheletti++, J. Chem. Phys. (2006)

Solvents and Polymer Behavior

- Good solvent chains repel each other
 - Chains are given some thickness (swollen, excluded volume)
 - Modeled on the unit lattice (nice because one can prove theorems)
- Bad solvent chains attract each other
 - Several models
- Θ solvent no attraction or repelling
 - Modeled with freely jointed chains (equilateral)
 - Gaussian polygons (edge vectors are Gaussian, not chain lengths)

Radius of gyration

$$R_g = \sqrt{\frac{1}{N} \sum_{k=1}^{N} |r_k - r_{\text{mean}}|^2}$$

Scaling of radius of gyration

- Good solvent $\overline{R_g} \sim N^{0.588}$
- Bad solvent $\overline{R_g} \sim N^{1/3}$
- Θ solvent $\overline{R_g} \sim N^{1/2}$

DNA Model

Wormlike chains

- Monte Carlo (roughly energy minimization with some wiggle)
- Energy based on some combination of:
 - Trying to keep edge length the same
 - Bending energy $\sum (bending angles)^2$
 - Twisting energy (writhe writhe_{goal})²
 - Electrostatic repelling
 - Excluded volume (small thickness to avoid knot type changes)

[4] Liu and Chan, J. Chem. Phys. (2008)

Topological Effects

Topology and size

- Knot takes up some of the length
- You would expect the structure of knotted polymers to be different for different knot types
- Question Does this happen asymptotically?

Excluded Volume and Topological Effects

How does topology affect the size for freely jointed chains?

- No topological constraints $R_g \sim N^{1/2}$
- For a fixed knot type $R_g \sim N^{0.588}$ (numerically)
- Recall, excluded volume $R_g \sim N^{0.588}$ (numerically)
- Topological restriction acts like excluded volume (edges having some thickness)
- Topological effects are interesting because nothing can be derived exactly

[5] des Cloizeaux and Mehta, J. Phys. I France (1979)

Freely jointed chains model

- No repelling, no attraction between edges
- Open chains (random walks) Easy, just generate random directions
- Closed chains (random polygons) More challenging
 - Crankshaft rotations Monte Carlo approach [6]
 - Hedgehog method [7] (we've used this)
 - Generalized hedgehog [8]
 - Hybrid versions (now we're using this)

[6] Millett, Random knotting and linking (1994)

[7] Klenin++, J. Biomol. Struct. Dyn. (1988)

[8] Varela++, J. Phys. A (2009)

How to Determine the Knot Type

Rely on knot polynomials

- Alexander polynomial (crude but fast)
- Jones polynomial
- Kauffman polynomial
- HOMFLYPT polynomial (slower)
 - Ewing and Millett program (we use)
 - Knotscape
 - KnotPlot (Jenkins algorithm)
 - Gouesbet et al.
- Get distribution of HOMFLYPT polynomials, contamination is low

[9] Ewing and Millett, Progress in knot theory and related topics (1997)

- $[10] \ Hoste \ and \ Thistlethwaite, \ {\tt Knotscape, \ http://www.math.utk.edu/\sim morwen/knotscape.html}$
- [11] Scharein, KnotPlot, http://www.knotplot.com
- [12] Jenkins, Masters thesis (1992)
- [13] Gouesbet++, Appl. Math. Comput. (1999)

Piotr Pieranski

Summary

So far

- Single polymers can be modeled as different types of random walks/polygons
- Use computational tools to determine "knot type" for random polygons
- Topology affects the size of the polygons

Now

We will go through some recent work we have done

Work on Size and Shape of Knotted Polymers

Joint work with Akos Dobay, John Kern, Ken Millett, Michael Piatek^{*}, Patrick Plunkett^{*}, and Andrzej Stasiak

Т	his	stu	dv
		<u> </u>	Υy

- Goals
 - Measure the size and shape of polymer loops
 - Determine the effect of knotting
- Polymer model
 - Freely jointed model (larger length scales)
 - Equilateral closed polygons
 - No repulsion or attraction between edges

Goals

- Interested in universal descriptors (long and skinny vs sphere-like)
 - Size (*R_g*)
 - Shape
- Want to know what sort of shape polygons are converging to, on average
- Quantify measurements of shape
- See how knotting affects the overall shape, short term and asymptotically

Describing Polymer Size and Shape

Ellipsoids

- Kuhn basic shape is prolate ellipsoid
- Question what is the ellipsoid?
- Question how should we quantitatively characterize the shape of ellipsoid?

Types of ellipsoids

- Inertial ellipsoid (moment of inertia tensor)
- Enveloping ellipsoid (smallest volume enclosing ellipsoid)

Characteristic Inertial Ellipsoid

Definition

- Axes are principal axes
- Semi-axis lengths are $\sqrt{3 \cdot \text{eigenvalues}}$

Are You Suddenly Hungry For Fish?

What fish is this?

Doug Arnold (IMA and UMN)

The Northern Pike

Enveloping Ellipsoid

Definition

- Minimal volume enclosing ellipsoid
- Algorithm due to Sven Schönherr

[15] Sven Schönherr, Diplomarbeit, Freie Universität Berlin (1994)

Characteristic Inertial and Enveloping Ellipsoids

Review

Notes

- For a simulated polymer, we have two ellipsoids
 - Characteristic inertial ellipsoid
 - Enveloping ellipsoid
- Axes appear to be in similar directions
- Centers are not likely the same
- Enveloping is bigger than inertial

Measuring the Size and Shape

Goal

- Analyze the size and shape of the polymers, with an eye towards the effect of knotting
- Size
 - Squared radius of gyration
- Shape
 - Asphericity
 - Prolateness (nature of asphericity)

Squared radius of gyration, denoted R

• Suppose λ_1 , λ_2 , λ_3 eigenvalues of moment of inertia tensor

•
$$R = \lambda_1 + \lambda_2 + \lambda_3$$

- $R = R_g^2$ (from previous slides)
- Semi-axis of characteristic inertial ellipsoid
 a = √3λ₁
 b = √3λ₂
 c = √3λ₃

•
$$R = \frac{a^2 + b^2 + c^2}{3}$$

Shape

Asphericity

- $0 \le A \le 1$
- A = 0 means perfectly spherical
- A = 1 means rod-like, i.e. collinear points
- Symmetric in arguments
- Scale invariant

Definition

• Traditionally,
$$A = \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_1 - \lambda_3)^2 + (\lambda_2 - \lambda_3)^2}{2(\lambda_1 + \lambda_2 + \lambda_3)^2}$$

• Better,
$$A = \frac{(a-b)^2 + (a-c)^2 + (b-c)^2}{2(a+b+c)^2}$$

[16] Aronovitz and Nelson, J. Physique I (1986)

[17] Rudnick and Gaspari, J. Phys. A: Math. Gen. (1986)

"... the contribution to a measure from each configuration is biased by its overall size"

[18] Cannon, Aronovitz, and Goldbart, J. Physique I (1991)

Shape II

Prolateness (*nature of asphericity*)

- $-1 \leq P \leq 1$
- P = -1 means perfectly oblate
- P = 1 means perfectly prolate
- For a sphere *P* is undefined
- Symmetric in arguments
- Scale invariant

Definition

•
$$P(x, y, z) = \frac{(2x-y-z)(2y-x-z)(2z-x-y)}{2(x^2+y^2+z^2-xy-xz-yz)^{3/2}}$$

- $\nabla P \cdot \nabla R = 0$
- $\nabla P \cdot \nabla A = 0$
- $\nabla P \cdot \nabla B = 0$

[16] Aronovitz and Nelson, J. Physique I (1986)

Unbiased (Orthogonal) System

Examples

Left - Prolate (rugby ball)

• (1, 0.5, 0.5) semi-axis lengths

•
$$P=1$$

Right - Oblate (M&M candy)

- (1,1,0.4) semi-axis lengths
- *A* = 0.0625

•
$$P = -1$$

Ellipsoids

- Characteristic inertial ellipsoid
- Enveloping ellipsoid

Unbiased system of descriptors

- Squared radius of gyration R (size)
- Asphericity A (primary shape descriptor, $0 \le A \le 1$)
- Prolateness P (secondary shape descriptor, $-1 \leq P \leq 1$)

Goal

- Length effects
- Topological effects

Data Generation

How

- Hedgehog method
- From 50 edges to 500 edges by 10, 6 to 48 by 2
- 400,000 knots for each number of edges
- Knot types "determined" using Ewing/Millett HOMFLYPT code
- Computations took several weeks on 40 node cluster

Who

Thanks to Rob Scharein and KnotPlot www.knotplot.com

Probability Data: Unknot, Trefoil, and Figure-8

Probability Data: 5-Crossing Knots

Probability Data: 6-Crossing Knots

Characteristic Inertial Ellipsoid - R_I

Note

- R_I is the squared radius of gyration of the vertex set
- Each point is an average R_I
- Phantom polygons = All of the possible states
- $n^{2\nu} (A + B/\sqrt{n} + C/n)$, $\nu = 0.5$ (phantom), 0.588(knot type)

Enveloping Ellipsoid - R_E

Note

- $R_E = \frac{a^2 + b^2 + c^2}{3}$ is a bit artificial here
- R_E is the SRGN of a vertex set whose inertial ellipsoid is this enveloping ellipsoid
- Measurable sense of scale for comparison sake

Comparison

- Same scaling function holds for R_E
- $R_E \approx 2R_I$

Characteristic Inertial Ellipsoid - A₁

Enveloping Ellipsoid - A_E

Analysis of A

Comparison

- Knot types appear to approach a similar limiting value
- Phantom polygons appear to approach different limiting value
- More complex knots are more spherical
- Approach limiting value from below versus above
- Enveloping ellipsoids are more spherical than inertial ellipsoids

Limiting values

- Knot localization explains the seemingly same limiting value for knot types
- Phantom polygons contain many complex knots (which have yet to "localize")

Monte Carlo estimates of limiting values

$A + B/\sqrt{n} + C/n$

Knot	Limiting A _I	Limiting A _E
phantom	0.07436 ± 0.00042	0.04092 ± 0.00028
01	0.07875 ± 0.00074	0.04353 ± 0.00048
31	0.0793 ± 0.0010	0.04424 ± 0.00063
41	0.0797 ± 0.0021	0.0445 ± 0.0014
5 ₁	0.0814 ± 0.0037	0.0461 ± 0.0024
5 ₂	0.0819 ± 0.0029	0.0455 ± 0.0018
61	0.0853 ± 0.0055	0.0467 ± 0.0035
62	0.0807 ± 0.0051	0.0446 ± 0.0033
63	0.0782 ± 0.0063	0.0430 ± 0.0042

Total Curvature of **6**₃

Characteristic Inertial Ellipsoid - P_I

Eric Rawdon Random Knots and Polymers

Enveloping Ellipsoid - P_E

Eric Rawdon Random Knots and Polymers

Analysis of P

Comparison

- Phantom polygons are at a limiting value
- Inertial more prolate than enveloping
- Knot types are still decreasing (what happens beyond?)

Prolateness versus Asphericity

Prolateness versus Asphericity

Eric Rawdon Random Knots and Polymers

Analysis of *P* versus *A*

Comparison

- Inertial: clustering is clear where phantom \neq knot type
- Enveloping: clustering less clear but still there
- Knot types are still decreasing (what happens beyond?)

Typical Ellipsoids - 500 Edges

Key

- $0_1 blue$
- 3_1green
- $4_1 red$
- phantom yellow

Shape and Size of Knotted Polymers

Conclusions

- Inertial and enveloping ellipsoids tell different stories
- A and P should use axis lengths for unbiased system
- Limiting values for phantom polygons differ from knot types

[19] Millett++, J. Chem. Physics (2009)

- [20] Plunkett++, *Macromolecules* (2007)
- [21] Rawdon++, Macromolecules (2008)
- [22] Rawdon++, *Macromolecules* (2008)

Things To Do

Software

- New HOMFLYPT software
 - Simplification schemes
- Other fast algorithms to determine "knot type"
- Freeware for generating random polygons
- Freeware for generating wormlike chains
- Crossing converter in $n \ln(n)$ time (or faster)

Open Problem

Open Knots

- Researchers have found knotted (and slip-knotted) proteins
- What does it mean for an open string to be knotted?
- This a nice little problem intersecting with science
- Problem How long is the knotted (open) portion in a knot?

Length of Knots

Definition of knotting in arcs

- Generate closure points on a large sphere enclosing arc
- Determine knot type for each closure
- Accept if 50% are of a common knot type

[23] Millett and Sheldon, Physical and numerical models in knot theory (2005)

[24] Millett++, Macromolecules (2005)

Example of 7 Edge Local Knot

Eric Rawdon Random Knots and Polymers

Example of 19 Edge Local Knot

Straight on View

Tilted View

Characteristic Ellipsoid of Inertia

Smallest Box

Skinny Box

Convex Hull

Smallest Sphere

Smallest Volume Enveloping Ellipsoid

Bibliography

- Javier Arsuaga, Mariel Vázquez, Sonia Trigueros, De Witt Sumners, and Joaquim Roca.
 Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids.
 Proc. Natl. Acad. Sci. USA, 99:5373–5377, 2002.
- [2] Javier Arsuaga, Mariel Vazquez, Paul McGuirk, Sonia Trigueros, De Witt Sumners, and Joaquim Roca. DNA knots reveal a chiral organization of DNA in phage capsids.

Proc. Natl. Acad. Sci. USA, 102:9165–9169, 2005.

 [3] Cristian Micheletti, Davide Marenduzzo, Enzo Orlandini, and De Witt Summers.
 Knotting of random ring polymers in confined spaces.
 J. Chem. Phys., 124:064903, 2006.

[4] Zhirong Liu and Hue Sun Chan.

Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: Excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.

J. Chem. Phys., 128(14):145104, 2008.

- [5] J. des Cloizeaux and M.L. Mehta. Topological constraints on polymer rings and critical indices. *Journal de Physique*, 40(7):665–670, 1979.
- [6] Kenneth C. Millett.

Knotting of regular polygons in 3-space. In *Random knotting and linking (Vancouver, BC, 1993)*, pages 31–46. World Sci. Publishing, Singapore, 1994.

Bibliography

- [7] K. V. Klenin, A. V. Vologodskii, V. V. Anshelevich, A. M. Dykhne, and M. D. Frank-Kamenetskii. Effect of excluded volume on topological properties of circular DNA.
 - J. Biomol. Struct. Dyn., 5:1173–1185, 1988.
- [8] R. Varela, K. Hinson, J. Arsuaga, and Y. Diao.
 A fast ergodic algorithm for generating ensembles of equilateral random polygons.
 J. Phys. A, 42(9):1–13, 2009.
- [9] Bruce Ewing and Kenneth C. Millett. Computational algorithms and the complexity of link polynomials.

In *Progress in knot theory and related topics*, pages 51–68. Hermann, Paris, 1997.

[10] Jim Hoste and Morwen Thistlethwaite.

Knotscape.

http://www.math.utk.edu/ morwen/knotscape.html. Program for computing topological information about knots.

[11] Robert G. Scharein.

KnotPlot.

http://www.knotplot.com.

Program for drawing, visualizing, manipulating, and energy minimizing knots.

[12] Robert J. Jenkins Jr.

A dynamic programming approach to calculating the HOMFLY polynomial for directed knots and links. Master's thesis, Carnegie Mellon University, 1992. [13] G. Gouesbet, S. Meunier-Guttin-Cluzel, and C. Letellier.
 Computer evaluation of HOMFLY polynomials by using Gauss codes, with a skein-template algorithm.
 Applied Mathematics and Computation, 105(2-3):271 – 289,

1999.

[14] Werner Kuhn. Über die Gestalt fadenförmiger Moleküle in Lösungen. Colloid & Polymer Science, 68(1):2–15, 1934.

[15] Sven Schönherr.

Berechnung kleinster Ellipsoide um Punktemengen. PhD thesis, Freie Universität Berlin, 1994. [16] J. A. Aronovitz and D. R. Nelson.
 Universal features of polymer shapes.
 J. Phys. I France, 47(9):1445–1456, 1986.

[17] Joseph Rudnick and George Gaspari.The asphericity of random walks.J. Phys. A: Math. Gen., 19:L191–L193, 1986.

[18] Joel W. Cannon, Joseph A. Aronovitz, and Paul Goldbart. Equilibrium distribution of shapes for linear and star macromolecules.

J. Phys. I France, 1:629-645, 1991.

 [19] Kenneth C. Millett, Patrick Plunkett, Michael Piatek, Eric J. Rawdon, and Andrzej Stasiak.
 Effect of knotting on polymer shapes and their enveloping ellipsoids.
 The Journal of Chemical Physics, 130(16):165104, 2009.

- [20] Patrick Plunkett, Michael Piatek, Akos Dobay, John C. Kern, Kenneth C. Millett, Andrzej Stasiak, and Eric J. Rawdon. Total curvature and total torsion of knotted polymers. *Macromolecules*, 40(10):3860–3867, 2007.
- [21] Eric Rawdon, Akos Dobay, John C. Kern, Kenneth C. Millett, Michael Piatek, Patrick Plunkett, and Andrzej Stasiak.
 Scaling behavior and equilibrium lengths of knotted polymers. *Macromolecules*, 41(12):4444–4451, 2008.
[22] Eric J. Rawdon, John C. Kern, Michael Piatek, Patrick Plunkett, Andrzej Stasiak, and Kenneth C. Millett.
Effect of knotting on the shape of polymers.
Macromolecules, 41(21):8281–8287, 2008.

[23] Kenneth C. Millett and Benjamin M. Sheldon. Tying down open knots: A statistical method of identifying open knots with applications to proteins. In *Physical and numerical models in knot theory*, volume 36 of *Ser. Knots Everything*, pages 203–217. World Sci. Publishing, Singapore, 2005.

[24] Kenneth Millett, Akos Dobay, and Andrzej Stasiak.Linear random knots and their scaling behavior.*Macromolecules*, 38(2):601–606, 2005.

Thanks

• Organizers:

Slavik Jablan Lou Kauffman Sofia Lambropoulou Jósef Przytycki ICTP

• Collaborators:

Akos Dobay (Ludwig-Maximillians-Universität, Munich) John Kern (Duquesne University, Pittsburgh) Ken Millett (University of California, Santa Barbara) Andrzej Stasiak (University of Lausanne, Switzerland)

• Students:

Pat Plunkett (University of California, Santa Barbara) Michael Piatek (University of Washington)

• Funding:

National Science Foundation Institute for Mathematics and its Applications