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Outline

Random polygons and polymers

Measuring size and shape

Open problems
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Random polygons and polymers

Polymers are long chains of molecules made of repeated units
(e.g. DNA, proteins, plastics)

Polymers derive their properties from their structure

Researchers study systems of polymers and single polymers

We concentrate of studying the structure of single polymer
chains, in particular, closed polymers which can form knots

Basic idea - single polymer chains can be modeled by random
chains
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Polymer Model

Polymers are modeled as random
open and closed chains

Walk means open
Polygon means closed

Art - generating realistic chains

Model depends on the level of
detail you want and situation

A number of monomers are
modeled as one longer segment
with more flexibility

[1, 2] Arsuaga++, Proc. Natl. Acad. Sci. USA (2002, 2005)

[3] Micheletti++, J. Chem. Phys. (2006)
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Solvents and Polymer Behavior

Good solvent - chains repel each other
Chains are given some thickness (swollen, excluded volume)
Modeled on the unit lattice (nice because one can prove
theorems)

Bad solvent - chains attract each other
Several models

Θ solvent - no attraction or repelling
Modeled with freely jointed chains (equilateral)
Gaussian polygons (edge vectors are Gaussian, not chain
lengths)
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Solvent Quality and Scaling

Radius of gyration

Rg =

√

√

√

√

1

N

N
∑

k=1

|rk − rmean|2

Scaling of radius of gyration

Good solvent - Rg ∼ N0.588

Bad solvent - Rg ∼ N1/3

Θ solvent - Rg ∼ N1/2
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DNA Model

Wormlike chains

Monte Carlo (roughly energy minimization with some wiggle)

Energy based on some combination of:
Trying to keep edge length the same
Bending energy

∑

(bending angles)2

Twisting energy (writhe − writhegoal)2

Electrostatic repelling
Excluded volume (small thickness to avoid knot type changes)

[4] Liu and Chan, J. Chem. Phys. (2008)
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Topological Effects

Topology and size

Knot takes up some of the length

You would expect the structure of knotted polymers to be
different for different knot types

Question - Does this happen asymptotically?
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Excluded Volume and Topological Effects

How does topology affect the size for freely jointed chains?

No topological constraints Rg ∼ N1/2

For a fixed knot type Rg ∼ N0.588 (numerically)

Recall, excluded volume Rg ∼ N0.588 (numerically)

Topological restriction acts like excluded volume (edges
having some thickness)

Topological effects are interesting because nothing can be
derived exactly

[5] des Cloizeaux and Mehta, J. Phys.I France (1979)
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How to Generate Random Polygons: Freely Jointed Chains

Freely jointed chains model

No repelling, no attraction between edges

Open chains (random walks) - Easy, just generate random
directions

Closed chains (random polygons) - More challenging
Crankshaft rotations - Monte Carlo approach [6]
Hedgehog method [7] (we’ve used this)
Generalized hedgehog [8]
Hybrid versions (now we’re using this)

[6] Millett, Random knotting and linking (1994)

[7] Klenin++, J. Biomol. Struct. Dyn. (1988)

[8] Varela++, J. Phys. A (2009)
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How to Determine the Knot Type

Rely on knot polynomials

Alexander polynomial (crude but fast)

Jones polynomial

Kauffman polynomial

HOMFLYPT polynomial (slower)
Ewing and Millett program (we use)
Knotscape
KnotPlot (Jenkins algorithm)
Gouesbet et al.

Get distribution of HOMFLYPT
polynomials, contamination is low

Piotr Pieranski

[9] Ewing and Millett, Progress in knot theory and related topics (1997)

[10] Hoste and Thistlethwaite, Knotscape, http://www.math.utk.edu/∼morwen/knotscape.html

[11] Scharein, KnotPlot, http://www.knotplot.com

[12] Jenkins, Masters thesis (1992)

[13] Gouesbet++, Appl. Math. Comput. (1999)
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Summary

So far

Single polymers can be modeled as different types of random
walks/polygons

Use computational tools to determine “knot type” for random
polygons

Topology affects the size of the polygons

Now

We will go through some recent work we have done
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Work on Size and Shape of Knotted Polymers

Joint work with Akos Dobay, John Kern, Ken Millett,

Michael Piatek∗, Patrick Plunkett∗, and Andrzej Stasiak

This study

Goals
Measure the size and shape of polymer loops
Determine the effect of knotting

Polymer model
Freely jointed model (larger length scales)
Equilateral closed polygons
No repulsion or attraction between edges

#∼
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Goals

Interested in universal descriptors (long and skinny vs
sphere-like)

Size (Rg )
Shape

Want to know what sort of shape polygons are converging to,
on average

Quantify measurements of shape

See how knotting affects the overall shape, short term and
asymptotically

#∼
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Describing Polymer Size and Shape

Ellipsoids

Kuhn - basic shape is prolate ellipsoid

Question - what is the ellipsoid?

Question - how should we quantitatively
characterize the shape of ellipsoid?

Types of ellipsoids

Inertial ellipsoid (moment of inertia tensor)

Enveloping ellipsoid (smallest volume enclosing ellipsoid)

[14] Kuhn, Colloid & Polymer Science (1934)Eric Rawdon Random Knots and Polymers



Characteristic Inertial Ellipsoid

Definition

Axes are principal axes

Semi-axis lengths are
√

3 · eigenvalues
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Are You Suddenly Hungry For Fish?

What fish is this?

Doug Arnold (IMA and UMN)

The Northern Pike
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Enveloping Ellipsoid

Definition

Minimal volume enclosing ellipsoid

Algorithm due to Sven Schönherr

[15] Sven Schönherr, Diplomarbeit, Freie Universität Berlin (1994)
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Characteristic Inertial and Enveloping Ellipsoids

Eric Rawdon Random Knots and Polymers



Review

Notes

For a simulated polymer, we have two ellipsoids
Characteristic inertial ellipsoid
Enveloping ellipsoid

Axes appear to be in similar directions

Centers are not likely the same

Enveloping is bigger than inertial
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Measuring the Size and Shape

Goal

Analyze the size and shape of the polymers, with an eye
towards the effect of knotting

Size
Squared radius of gyration

Shape
Asphericity
Prolateness (nature of asphericity)
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Size

Squared radius of gyration, denoted R

Suppose λ1, λ2, λ3 eigenvalues of moment of inertia tensor

R = λ1 + λ2 + λ3

R = R2
g (from previous slides)

Semi-axis of characteristic inertial ellipsoid
a =

√
3λ1

b =
√

3λ2

c =
√

3λ3

R = a2+b2+c2

3
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Shape

Asphericity

0 ≤ A ≤ 1

A = 0 means perfectly spherical

A = 1 means rod-like, i.e. collinear points

Symmetric in arguments

Scale invariant

Definition

Traditionally, A = (λ1−λ2)2+(λ1−λ3)2+(λ2−λ3)2

2(λ1+λ2+λ3)2

Better, A = (a−b)2+(a−c)2+(b−c)2

2(a+b+c)2

[16] Aronovitz and Nelson, J. Physique I (1986)

[17] Rudnick and Gaspari, J. Phys. A: Math. Gen. (1986)
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Why Better?

“. . . the contribution to a measure from each configuration is
biased by its overall size . . . ”

Bias

B(x , y , z) = x + y + z (eigenvalues)

R(x , y , z) = x2+y2+z2

3 (semi-axis lengths)

A(x , y , z) = (x−y)2+(x−z)2+(y−z)2

2(x+y+z)2 (both)

∇B ·∇A #= 0

∇R ·∇A = 0

[18] Cannon, Aronovitz, and Goldbart, J. Physique I (1991)
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Shape II

Prolateness (nature of asphericity)

−1 ≤ P ≤ 1

P = −1 means perfectly oblate

P = 1 means perfectly prolate

For a sphere P is undefined

Symmetric in arguments

Scale invariant

Definition

P(x , y , z) = (2x−y−z)(2y−x−z)(2z−x−y)
2(x2+y2+z2

−xy−xz−yz)3/2

∇P ·∇R = 0

∇P ·∇A = 0

∇P ·∇B = 0

[16] Aronovitz and Nelson, J. Physique I (1986)

Eric Rawdon Random Knots and Polymers



Unbiased (Orthogonal) System
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Examples

Left - Prolate (rugby ball)

(1, 0.5, 0.5) semi-axis lengths

A = 0.0625

P = 1

Right - Oblate (M&M candy)

(1, 1, 0.4) semi-axis lengths

A = 0.0625

P = −1
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Review

Ellipsoids

Characteristic inertial ellipsoid

Enveloping ellipsoid

Unbiased system of descriptors

Squared radius of gyration R (size)

Asphericity A (primary shape descriptor, 0 ≤ A ≤ 1)

Prolateness P (secondary shape descriptor, −1 ≤ P ≤ 1)

Goal

Length effects

Topological effects
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Data Generation

How

Hedgehog method

From 50 edges to 500 edges by 10, 6 to 48 by 2

400,000 knots for each number of edges

Knot types “determined” using Ewing/Millett HOMFLYPT
code

Computations took several weeks on 40 node cluster
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Who

Thanks to Rob Scharein and KnotPlot

www.knotplot.com

01 31 41 51

52 61 62 63
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Probability Data: Unknot, Trefoil, and Figure-8
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Probability Data: 5-Crossing Knots
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Probability Data: 6-Crossing Knots
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Characteristic Inertial Ellipsoid - RI

Note

RI is the squared radius of gyration of the vertex set

Each point is an average RI

Phantom polygons = All of the possible states

n2ν
(

A + B/
√

n + C/n
)

, ν = 0.5(phantom), 0.588(knot type)
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Enveloping Ellipsoid - RE

Note

RE = a2+b2+c2

3 is a bit artificial here

RE is the SRGN of a vertex set whose inertial ellipsoid is this
enveloping ellipsoid

Measurable sense of scale for comparison sake
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Analysis of R

Comparison

Same scaling function holds for RE

RE ≈ 2RI

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  50  100  150  200  250  300  350  400  450  500

R

Edges

Characteristic Inertial Ellipsoid

01314151
phantom

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300  350  400  450  500
R

Edges

Enveloping Ellipsoid

01314151
phantom

Eric Rawdon Random Knots and Polymers



Characteristic Inertial Ellipsoid - AI
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Enveloping Ellipsoid - AE
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Analysis of A

Comparison

Knot types appear to approach a similar limiting value

Phantom polygons appear to approach different limiting value

More complex knots are more spherical

Approach limiting value from below versus above

Enveloping ellipsoids are more spherical than inertial ellipsoids
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Explanations

Limiting values

Knot localization explains the seemingly same limiting value
for knot types

Phantom polygons contain many complex knots (which have
yet to “localize”)
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Estimating Limiting Values

Monte Carlo estimates of limiting values

A + B/
√

n + C/n

Knot Limiting AI Limiting AE

phantom 0.07436 ± 0.00042 0.04092 ± 0.00028
01 0.07875 ± 0.00074 0.04353 ± 0.00048
31 0.0793 ± 0.0010 0.04424 ± 0.00063
41 0.0797 ± 0.0021 0.0445 ± 0.0014
51 0.0814 ± 0.0037 0.0461 ± 0.0024
52 0.0819 ± 0.0029 0.0455 ± 0.0018
61 0.0853 ± 0.0055 0.0467 ± 0.0035
62 0.0807 ± 0.0051 0.0446 ± 0.0033
63 0.0782 ± 0.0063 0.0430 ± 0.0042
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Total Curvature of 31
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Total Curvature of 63
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Characteristic Inertial Ellipsoid - PI
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Enveloping Ellipsoid - PE
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Analysis of P

Comparison

Phantom polygons are at a limiting value

Inertial more prolate than enveloping

Knot types are still decreasing (what happens beyond?)

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0  50  100  150  200  250  300  350  400  450  500

P

Edges

Characteristic Inertial Ellipsoid

01314151
phantom

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0  50  100  150  200  250  300  350  400  450  500
P

Edges

Enveloping Ellipsoid

01314151
phantom

Eric Rawdon Random Knots and Polymers



Prolateness versus Asphericity
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Prolateness versus Asphericity
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Analysis of P versus A

Comparison

Inertial: clustering is clear where phantom #= knot type

Enveloping: clustering less clear but still there

Knot types are still decreasing (what happens beyond?)
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Typical Ellipsoids - 500 Edges

Key

01 – blue

31 – green

41 – red

phantom – yellow
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Shape and Size of Knotted Polymers

Conclusions

Inertial and enveloping ellipsoids tell different stories

A and P should use axis lengths for unbiased system

Limiting values for phantom polygons differ from knot types

[19] Millett++, J. Chem. Physics (2009)

[20] Plunkett++, Macromolecules (2007)

[21] Rawdon++, Macromolecules (2008)

[22] Rawdon++, Macromolecules (2008)
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Things To Do

Software

New HOMFLYPT software
Simplification schemes

Other fast algorithms to determine “knot type”

Freeware for generating random polygons

Freeware for generating wormlike chains

Crossing converter in n ln(n) time (or faster)
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Open Problem

Open Knots

Researchers have found knotted (and slip-knotted) proteins

What does it mean for an open string to be knotted?

This a nice little problem intersecting with science

Problem - How long is the knotted (open) portion in a knot?
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Length of Knots

Definition of knotting in arcs

Generate closure points on a large sphere enclosing arc

Determine knot type for each closure

Accept if 50% are of a common knot type

[23] Millett and Sheldon, Physical and numerical models in knot theory (2005)

[24] Millett++, Macromolecules (2005)
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Example of 7 Edge Local Knot

(a) 100 edge trefoil (b) Knotting highlighted

(c) First piercing triangle (d) Second piercing triangle
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Example of 19 Edge Local Knot

(a) 100 edge trefoil (b) Knotting highlighted

(c) First piercing triangle (d) Second piercing triangle
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Measuring the Size of Knots

Straight on View
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Measuring the Size of Knots

Tilted View
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Measuring the Size of Knots

Characteristic Ellipsoid of Inertia
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Measuring the Size of Knots

Smallest Box
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Measuring the Size of Knots

Skinny Box
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Measuring the Size of Knots

Convex Hull
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Measuring the Size of Knots

Smallest Sphere
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Measuring the Size of Knots

Smallest Volume Enveloping Ellipsoid
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