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ABSTRACT

The notion of developing a knot invariant by colouring or labelling the arcs of a diagram is an old one. The very first usable
knot invariant was “3-colouring” which is a representation of the fundamental group. The fundamental group itself can be
thought of, via the Wirtinger presentation, as a knot invariant obtained by labelling the arcs of a diagram by group generators.
The universal application of this principal leads to the notion of a rack, which is the algebraic distillation of two of the
Reidemeister moves. It is a set with a binary operation such that right multiplication is an automorphism. If in addition the
first Reidemeister move is shadowed then the result is a quandle. Since a quandle is a rack but not necessarily conversely we
shall refer to racks rather than quandles except when this notion is explicitly needed.
Any codimension two link has a fundamental rack which contains more information than the fundamental group. Racks provide
an elegant and complete algebraic framework in which to study links and knots in 3–manifolds, and also for the 3–manifolds
themselves. Racks have been studied by several previous authors and have been called a variety of names. In the first two
chapters of these notes we consolidate the algebra of racks and show that the fundamental rack is a complete invariant for
irreducible framed links in a 3–manifold. We give some examples of computable link invariants derived from the fundamental
rack and explain the connection of the theory of racks with that of braids.
In later chapters we extend the notion of a rack to a birack (and biquandle). This leads to important invariants of virtual links,
that is, links in a surface cross an interval modulo surgery.

1. Previous work

The earliest work on racks (known to us) is the definition of a kei by Takasaki in 1943, see [Tak]. Other early birds are

Conway and Wraith [CW], and we are indebted to these authors for a copy of their (unpublished) correspondence.

They used the name wrack for the concept and we have adopted this name, not merely because it is the oldest

name, but also because it is a simple English word which (to our knowledge) has no other mathematical meaning.

We have however chosen the more common spelling. Rack is used in the same sense as in the phrase “rack and ruin”.

The context of Conway and Wraith’s work is the conjugacy operation in a group and they regarded a rack as the

wreckage of a group left behind after the group operation is discarded and only the notion of conjugacy remains.

They studied the basic algebra of racks in a special case (the quandle case) but also were aware of the general case

and the main topological application (the fundamental rack of a knot in a 3–manifold).

A comprehensive published study of racks in a toplogical context is due to Joyce [J]. He invented the name quandle.

Joyce establishes the basic algebra of quandles, giving several examples, and defines augmented quandles and the

associated group (which he calls Adconj). He defines the fundamental quandle of a knot in S3 giving both the

topological definition in terms of “nooses” and the definition in terms of the presentation which can be read from

a diagram of the knot. He proves the equivalence of the two definitions. His main result is that the fundamental

quandle classifies the knot. Joyce’s work was largely duplicated independently by Matveev [Mat] who used the name

distributive groupoid. But note that a rack is not a groupoid in the usually accepted sense.

Kauffman [K] defines racks in full generality using the name crystal for the concept. Kauffman defines the funda-

mental rack of a knot in S3 and applies Joyce’s theorem to prove that it is a classifying invariant. He also extends

Joyce’s work on the Alexander quandle to racks and defines an associated R–matrix.

The most extensive algebraic survey of racks is given by Brieskorn [Br], who is particularly interested in the context

of braids and singularities. In his introduction Brieskorn writes:

“Whilst preparing this survey, I found an extremely simple concept unifying many investigations on

this subject as well as classical results of E.Artin, A.Hurwitz and W.Magnus. This is the notion of

an automorphic set.”

The definition of an automorphic set coincides with that of a rack or crystal. Although “automorphic set” is the

mathematically correct terminology for the concept, it has not generally been adopted. Brieskorn’s paper contains a

wealth of algebraic material about racks, most of which is not relevant to the topological context of our work, except

for the connection with braid groups, which we shall examine in section 7.

Winker [Win] extends Joyce’s work and defines an analogue of the Cayley graph for a quandle and Krüger [Kr],

independently and simultaneously with [FR], defines free products of racks and investigates the automorphism group

of the free rack, cf. section 7. There is an interesting connection of racks with computer theory. Roscoe [Ros] studies

an algebraic object which satisfies just one of the two rack laws (the rack identity) in the context of computer

R.Fenn 2



Invariants of Links Introduction

information updates. Finally there is also a connection with some problems in logic, see Dehorney, Jech and Laver

[D, Je, La]

Content of the notes

These notes review and consolidate much of the previous work on the subject and also contains many new results

and new formulations of old results. An outline detailing these new results and the previous work now follows for

this chapter.

Section 1 contains the basic definition and some of the examples of racks that we shall need. Most of these examples

come from Joyce and Brieskorn. We use the exponential notation for the rack operation, and later a sub-exponential

notation for the extra birack operation.

Section 2 contains a review of some of the basic algebra of racks. Most of this section is a reworking for racks of

algebra in Joyce’s paper. However the section also includes the concept of the free product of two racks and the

connection with crossed modules (the associated crossed module). Further basic algebra can be found in Brieskorn

paper and in Ryder’s Ph.D. thesis [Ryd].

In section 3 we consider the fundamental rack of a codimension 2 embedding and its properties. This material

contains a reworking in the rack context of material of Matveev and Joyce. It also contains the identification of the

associated crossed module as the relative second homotopy group and a calculation of the operator group for the

fundamental rack of a classical link.

Section 4 is about presentations. A “Tietze” theorem for rack presentations is given and, in a reworking of material

of Joyce and Kauffman, we show how the fundamental rack of a classical link (in S3 ) has a finite presentation which

can be read in a natural way from the diagram. This section also contains material on presentations of augmented

racks.

Section 5 contains the classification theorem which is a generalisation to arbitrary 3–manifolds of the results of Joyce

and Kauffman.

In section 6 we make a start on the invariants that can be read from the fundamental rack; see also the theses of

Devine [Dev], Azcan [Asc], Kelly [Kel], Lambropoulou [Lam] and Ryder [Ryd]. New material in this section

includes the invariants derived from the (t, s)–rack and matrix racks (examples 6 and 7 of 6.1 and example 3 of 6.3).

Finally in section 7 we explain the connection of the theory of racks with that of braids and in an appendix we give

the analogue of Nielsen theory for automorphisms of the free rack. These results allow us to give a criterion for a

rack to be a classical rack (i.e. isomorphic to the fundamental rack of a framed link in S3 ).
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1.1. Definitions and Examples
We consider sets X with a binary operation which we shall write exponentially

(a, b) �→ ab.

There are several reasons for writing the operation exponentially.
(1) The operation is unbalanced and should be thought of as an action, i.e. think of ab as meaning the result of b

acting or operating on a.
(2) In group contexts exponentiation signifies conjugation. A group with conjugation is one of the principal

examples of a rack — indeed this was the source for one strand of the earlier work on racks [CW]. A rack is

an algebraic object which has just some of the properties of a group with conjugacy as the operation.
(3) Finally, and most conveniently, exponential notation allows brackets to be dispensed with, because there are

standard conventions for association with exponents. In particular

abc means (ab)c and abc

means a(bc).

1.1.1 Definition Racks, Quandles and Keis
Consider the following axioms, which are related to the Reidemeister moves.
Axiom 1 Given a ∈ X then aa = a .
Axiom 2 Given a, b ∈ X there is a unique c ∈ X such that a = cb.
Axiom 3 Given a, b, c ∈ X the formula

abc = acbc

holds. We call this formula the rack identity (first form).
A rack is a non-empty set X with a binary operation satisfying axioms 2 and 3. A quandle is a rack satisfying

axiom 1.
Several consequences flow from these axioms.
The second axiom implies that, for each b ∈ X the function f b(x) := xb is a bijection of X to itself, and this fits

with the idea that the operation is a (right) action of X on itself.

We shall write ab = (f b)
−1
(a) for the element c given by axiom 2, but notice that ab is a single symbol for an

element of X . It is not suggested that b is itself an element of X ; however the notation is suggestive (and intended

to be) because now abb = abb = a for all a, b ∈ X . Thus if we identify b with b−1 then we can give a meaning to

any expression of the form xw where w = w(a, b, . . .) is a word in F (X) the free group on X , namely the result of

repeatedly acting on x by fa , (fa)−1, f b , (f b)
−1

etc. The word w is again not to be regarded as an element of X ,

but as an operator on X . Shortly, we shall formalise this by introducing the operator group.
A Kei is a quandle which satisfies
Axiom K Given a, b ∈ X then ab2 = a . In other words ab = ab .
The rack identity is a right self-distributive law as can be seen if we temporarily use the notation a · b for ab :

(a · b) · c = (a · c) · (b · c).
Axioms 2 and 3 are equivalent to the statement that right multiplication is an automorphism.

Substituting d = ac in the rack identity and then changing d back to a gives the alternative form:
Axiom 3 ′ Given a, b, c ∈ X the formula

abc

= acbc

holds. This is the rack identity (second form).
In other words bc operates like cbc , which makes clear the connection between the rack operation and conjugacy in

a group.
At this point we can note that given a rack X there is a mirror rack X with binary operation ab .

The Operator Group
In expressions such as abc we refer to a as being at primary level and b, c as at operator level. The second form

of the rack identity makes clear that we do not need any “higher” level operators. Expressions involving repeated
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operations can always be resolved into one of the form aw where a ∈ X is at the primary level and w , lying in the

free group F (X) on X , is at the operator level.

In this way we have an action by the group F (X) on X. In general if G acts on X , written (a, g) �→ a · g and if

∂ : X → G is a map satisfying ∂(a · g) = g−1
∂(a)g then X has the structure of a rack given by ab := a · ∂(b). In

many situations this is the most convenient method of describing the rack operation. The similarity with crossed

modules should be clear.

We shall pursue the notion of a rack with a group G operating in section 2, when we introduce the formal notion of

an augmented rack. We shall then be able to formalise the connection with crossed modules.

To make operators precise we define operator equivalence by:

w ≡ z ⇐⇒ aw = az for all a ∈ X
where w, z ∈ F (X).
The equivalence classes form the Operator Group Op(X) which could also be defined as F (X)/N where N is the

normal subgroup

N = {w ∈ F (X) | w ≡ 1}.
1.1.2 Examples of operator equivalence

Since ba
a

= baaa (by the rack identity) = ba for all a, b ∈ X . We have

aa ≡ a for all a ∈ X.
More generally if abn

means abb...b (n repeats) then a ≡ aan

.

In terms of operator equivalence, the rack identity can again be restated:

Axiom 3 ′′ Given a, b ∈ X we have

ab ≡ bab.

This is the rack identity (third form).

Orbits and stabilizers

We can now see that a rack is a set X with an action of F (X) (or its quotient Op(X)) on X satisfying the rack

identity. In section 2 we shall see that there is another group naturally associated to a rack, lying between F (X)

and Op(X), called the associated group, which therefore also acts on X . The associated group is particularly

important because it has a universal property not shared by either F (X) or Op(X).

Since X is a set with a group action we can use all the language of group actions in the context of racks. In particular

X splits into disjoint orbits and each element has a stabilizer (in F (X) or Op(X)) associated with it.

1.1.3 Examples of Racks

Example 1 The Conjugation Rack

Let G be a group, then conjugation in G i.e. gh := h−1gh defines a rack operation on G . This makes G into the

conjugation rack written conj(G) or alternatively Gconj .

The operator group in this rack is the group of inner automorphisms of G and the orbits are the conjugacy classes.

Given g, h ∈ G then g ≡ h if and only if gh−1 is in the centre of G .

Example 2 The Dihedral Rack

Any union of conjugacy classes in a group forms a rack with conjugation as operation. In particular let Rn be the

set of reflections in the dihedral group D2n of order 2n (which we regard as the symmetry group of the regular

n–gon). Then Rn forms a rack of order n , with operator group D2n , called the dihedral rack of order n .

Example 3 The Core Rack

The rule gh := hg−1h also defines a rack operation in a group G called the core rack, core(G), cf. Joyce [J].

Great care is needed working with this rack because composition in the operator group does not correspond to

composition in G (ghj has two meanings according as the product hj is taken in G or the operator group).

This is an example of a kei: where a2 ≡ 1 for all a ∈ X , since:
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gh2

= h(hg−1h)−1h = g, for all g ∈ G,
here h2 means composition in the operator group and the other products are taken in G .

Example 4 The Reflection Rack

Let P,Q be points of the plane and define PQ to be P reflected in Q (i.e. 2Q− P in vector notation).

It is elementary to show that this is a rack operation. This example can be generalised by replacing the plane by

any geometry with point symmetries satisfying certain general conditions (see Joyce for details). Examples include

the natural geometries of Sn and RPn . Interesting subracks of these latter racks are given by the action of Coxeter

groups on root systems, cf. example 10 below.

Example 5 The Alexander Rack

Let Λ be the ring of Laurent polynomials Z[t, t−1] in the variable t . Any Λ−module M has the structure of a rack

with the rule ab := ta+ (1− t)b.
For example, letting M be the plane and the action of t multiplication by −1, yields the reflection rack of example
4.

The Quandle Condition

All the above examples have satisfied the identity aa = a for all a ∈ X , and are therefore quandles.

Example 5 can be generalised to yield a non-quandle rack:

Example 6 The (t, s)−Rack

Let Λs be the ring Z[t, t−1, s] modulo the ideal generated by s(t+ s− 1). Any Λs−module M has the structure of

a rack by the rule

ab := ta+ sb.

This operation satisfies the Abelian entropy condition:

uvwx

= uwvx

.

For explicit representations in terms of matrices see section 6 (6.1 example 6). When s acts like 1 − t this rack

reverts to the Alexander rack, discussed above.

Example 7 The Cyclic Rack

Here is a finite rack which is also not a quandle:

The cyclic rack of order n , is given by Cn = {0, 1, 2, . . .n− 1} , the residues modulo n , with operation ij := i+1

mod n for all i, j ∈ Cn.

This example can be generalised: Let X be any G–set and choose a fixed element g ∈ G , then ab := a · g for all

a, b ∈ X defines a rack structure on X .

Example 8 There are six different isomorphism classes of racks of order 3:

1. The trivial rack {a, b, c | xy = x for all x, y} .
2. The cyclic rack C3 .

3. The dihedral rack R3 .

4. {a, b, c | fa = f b = f c = (b, c)} where (b, c) means the symmetry which interchanges b and c and leaves a

fixed.

5. {a, b, c | f b = f c = (b, c), fa = id.}
6. {a, b, c | fa = (b, c), f b = f c = id.}

Classes 1,3,6 are quandles, whilst 2,4,5 are not.

The last example gives some idea of the rich and varied structure of racks as compared with groups, cf. Ryder [Ryd].

Example 9 The Free Rack

The free rack FR(S) on a given set S is defined, as a set, to be S × F (S). We write the pair (a,w) as aw , i.e.

FR(S) = {aw | a ∈ S,w ∈ F (S)}.
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The rack operation is defined by

(aw)(b
z) = awzbz.

Axiom 2 of definition 1.1 is easy to check whilst for the rack identity notice

(aw)b
z

= awzbz ≡ wzbz a wzbz = zbz waw zbz ≡ bzawbz

which is the third form of the identity (axiom 3 ′′ ).
The operator group is F (S) whilst the set of orbits is in bijective correspondence with the elements of S and all

stabilizers are trivial.
The free rack has the universal property that any function S → X , where X is a given rack, extends uniquely to a

rack homomorphism FR(S)→ X .
There is also the free quandle FQ(S) in which the additional conditions

aaw = aa−1w = aw

hold.
Example 10. Coxeter racks.
Let ( , ) be a symmetric bilinear form on Rn . Then, if S is the subset of Rn consisting of vectors v satisfying

v.v �= 0, there is a rack structure defined on S by the formula

uv := u− 2(u,v)

(v,v)
v.

Geometrically, this is the result of reflecting u in the hyperplane {w|(w,v) = 0} .
If we multiply the right-hand side of the above formula by −1, then the result geometrically is reflection in the line
containing v. In this case the formula

uv :=
2(u,v)

(v,v)
v − u

defines a quandle structure on S .
A root system is precisely a finite subrack of S which is closed under multiplication by −1 (i.e. closed under

both rack operations), and then the operator group is the corresponding Coxeter group. For details see Humphreys

[Hum], and for more information on the rack structures see Azcan [Azc], Brieskorn [Br].
We can generalise this example in the following way.
Example 11 Racks defined by Hermitian Forms.
Let R be a commutative ring with identity and an involutive automorphism r �→ r called conjugation. Let A be

an R−module with a Hermitian form

( , ) : A×A→ R.

In other words ( , ) is linear in the first variable and (b, a) = (a, b).
Let A∗ denote those elements of A for which (a, a) is a unit of the ring R.
Let λ, μ be elements of R , such that μ is a unit and λ satisfies λλ = 1. Define the rack operation on A∗ by the

formula

ab := μ(a+ (λ − 1)
(a, b)

(b, b)
b).

Specialisation yields the following examples:
(a) Let R = R be the reals, let A = V be a vector space over R and let conjugation be the identity. Let ( , )

be a symmetric bilinear real form defined on V and let λ = −1 and μ = 1. Then this is the rack structure

considered in the last example.
(b) The obvious specialisation of the above to the complex field yields a rack in which the action is complex

reflection, see Coxeter [Cox].
(c) Take R = Z[t, t−1] to be the ring of Laurent polynomials with integer coefficients and conjugation defined by

t �→ t−1. Then λ is of the form λ = tn for some integer n.
We are indebted to Tony Carbery for pointing out the following infinite generalisation of the above example.
(d) Let R denote the ring of complex valued continuous functions defined on the unit circle of the complex plane.

The conjugation operation in R is given by

f(z) := f(z)

where z �→ z is just the usual conjugation of complex numbers. The set of functions λ satisfying λλ = 1 can

be identified with the multiplicative subset of functions from the unit circle to itself.
The last two examples are somewhat mysterious and their applications to knot theory are unknown to us.
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1.2. Some Basic Algebra of Racks
In this section we will present some of the algebraic properties of racks needed in the rest of the paper. Further basic

algebra will be given in section 4, when we consider presentations of racks and the analogue of the Tietze theorem.

See also Brieskorn and Ryder.
Homomorphisms and congruences
There are obvious notions of rack homomorphism, isomorphism and subrack.
An equivalence relation ∼ on X is called a congruence if it respects the rack operation, i.e.

a ∼ b, c ∼ d =⇒ ac ∼ bd

a ∼ b, c ∼ d =⇒ ac ∼ bd.

The equivalence classes form a rack X/∼ with operations defined by [a][b] := [ab] and [a][b] := [ab] , where [a]

denotes the equivalence class of a .
A homomorphism f : X → Y of racks defines a congruence by a ∼ b ⇐⇒ f(a) = f(b). Then the quotient X/∼ is

isomorphic to f(X). This is an analogue of the first isomorphism theorem for groups.
The associated group
We have already met the operator group in the previous section. This is an invariant of racks but is not functorial.

If we interpret the operation of a rack as conjugation (i.e. read aw as w−1aw ) then we obtain a group As(X) called

the associated group. More precisely let As(X) = F (X)/K where K is the normal subgroup of F (X) generated

by the words abb−1a−1b where a, b ∈ X. So As(X) is the biggest quotient of F (X) with the property that, when
considered as a rack via conjugation, the natural map from F (X) to As(X) is a rack homomorphism.
Given a rack homomorphism f : X → Y , then there is an induced group homomorphism f� : As(X)→ As(Y ); thus

we have an associated group functor As from the category of racks to the category of groups.
1.2.1 Proposition Universal Property of the Associated Group
Let X be a rack and let G be a group. Given any rack homomorphism f : X → Gconj there exists a unique group

homomorphism f� : As(X)→ G which makes the following diagram commute:

................................................................................................................................. ................

..................................................................................................

.......
..
.......
.......
..

................................................................................................................................. ................

..................................................................................................

.......
..
.......
.......
..

Gconj

X As(X)

G

η

id

f f�

where η is the natural map.
Moreover any group with the same universal property is isomorphic to As(X).
Proof Let φ : F (X) → G be the homomorphism defined on the free group on X by f . Then by hypothesis

φ(abb−1a−1b) = 1 for all a, b ∈ X . It follows that φ factors through a unique homomorphism f� : As(X) → G of

groups and the commutativity of the diagram is clear. Uniqueness of As(X) follows by the usual universal property

argument. �

The following corollary is an easy consequence:
1.2.2 Corollary The functor As is a left adjoint to the conjugation functor. This means there is a natural

identification

Hom(As(X), G) ∼= Hom(X, conj(G))

of group homomorphisms with rack homomorphisms. �

Example The cyclic rack Cn has operator group Z/n and associated group Z .
This example makes it clear that the operator group is in general a non-trivial quotient of the associated group. We

will now use this fact to make the following definition.
Definition The Excess of a Rack.
Let X be a rack and let N be the subgroup of F (X) which acts trivially on X . Let K be the normal subgroup of

F (X) generated by the elements abb−1a−1b for all a, b ∈ X . Define the excess of the rack X to be

Ex(X) = N/K = ker{As(X)→ Op(X)}.
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In the example above the excess is a copy of the integers.

The associated quandle There is a natural inclusion of the category of quandles in the category of racks and

there is a functor from racks to quandles X �→ Xq . Here Xq is called the associated quandle defined as follows:

Let ∼ be the smallest congruence on X satisfying aa ∼ a for all a ∈ X . Then Xq := X/∼.
This functor is a retraction because it is clearly the identity for a rack which is already a quandle. For explicit

examples, consider the Coxeter rack X (section 1 example 10):

uv := u− 2(u,v)

(v,v)
v,

defined on the unit sphere S = (u,u) = 1. Then the associated quandle is the projectivisation of X , defined by

quotienting S by ±1.
For the (t, s)–rack (section 1 example 6) the associated quandle is the Alexander rack (example 5).

Racks with an explicit group (augmented racks)

The concept of rack can be generalised to make the group action explicit.

An augmented rack comprises a set X with an action by a group G , which we write

(x, g) �→ x · g where x, x · g ∈ X and g ∈ G,
and a function ∂ : X → G satisfying the augmentation identity:

∂(a · g) = g−1(∂a)g for all a ∈ X, g ∈ G,
which is precisely the same as saying that ∂ is a G–map when the action of G on itself is taken to be conjugation.

We can now define an operation of X on itself by defining ab to be a · ∂b . Then the augmentation identity implies
∂(ab) = (∂b)−1

∂a∂b

i.e.

ab ≡ bab

which is the third form of the usual rack identity (axiom 3 ′′ ).

So an augmented rack is an ordinary rack with the extra structure of an explicit operator group.

Note that Joyce used ε for the augmentation map ∂ . We have chosen to use ∂ instead of ε because of the analogy

with crossed modules; see the definition of associated crossed module below.

The fundamental rack (to be defined in the next section) has a natural structure as an augmented rack with the

fundamental group of the link acting as a group of operators. Here are some further examples.

1.2.3 Examples

(1) The Lie rack

We are indebted to Hyman Bass for pointing out the following important class of augmented racks. Let G be a

Lie group and G the associated Lie algebra. Let ∂ : G → G be the exponential map and let G act on G via the

adjoint action. Then the augmentation identity follows readily from definitions. Therefore the Lie algebra G is an

augmented rack, with group the corresponding Lie group.
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(2) Gauge transformations

Let E be a principal G–bundle and f a gauge transformation of E , that is an automorphism of E as a G–bundle.

Then associated to f is an augmented rack structure on E with group G .

Let p ∈ E then we can write f(p) = p · ∂(p) where ∂(p) ∈ G . This defines the function ∂ : E → G . To check the

augmentation identity note that

p · (g∂(p · g)) = (p · g) · ∂(p · g)
= f(p · g)
= f(p) · g since f is equivariant

= (p · ∂(p)) · g
= p · (∂(p)g)

which implies g∂(p · g) = ∂(p)g since G acts freely, i.e.

∂(p · g) = g−1
∂(p)g.

An augmented rack is a plain rack if we ignore or forget about the explicit group action. Conversely, there is a

natural way to regard a plain rack as an augmented rack by taking as group G = As(X) (the associated group) with

∂ the natural map. Thus we can regard the category of racks as a subcategory of the category of augmented racks

and then the forgetful functor is a retraction of the larger category onto the smaller.

Crossed modules

A crossed module is an augmented rack in which

(1) X is a group

(2) ∂ is a homomorphism

(3) and we have the crossed module identity:

a · ∂b = b−1ab for all a, b ∈ X,
where the left-hand side is the G action and the right-hand side is multiplication in X .

Note that condition (3) implies that the rack operation in X is conjugation. Thus crossed modules correspond

precisely to conjugation racks.

Crossed modules occur naturally in topology: the second homotopy group π2(X,A) of a pair of topological spaces is

a crossed module with group G = π1(A) (see Whitehead [Wh]). We shall use the notation π̂2(X,A) for this crossed

module.

The associated crossed module

The associated group for a plain rack becomes the associated crossed module for an augmented rack. More precisely

notice that if X is an augmented rack then its group G acts on F (X) in the obvious way. Moreover

(ab) · g = a · (∂bg) = a · g(g−1
∂bg)

= a · g ∂(b · g) by the augmentation identity

= (a · g)b·g

Therefore in F (X)

(abb−1a−1b) · g = (a · g)(b·g)(b · g)−1(a · g)−1(b · g)
and therefore the action of G on F (X) induces an action on As(X).

Thus As(X) is a G–set and we also have the induced homomorphism ∂� : As(X) → G . It can be readily checked

that this gives As(X) the structure of a crossed module, the associated crossed module to the augmented rack

X .
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Products of Racks

There are many kinds of products which can be defined in the category of racks. We shall only need to consider in

detail the following:

The free product Let X,Y be two racks. Define their free product X ∗ Y to be the free rack on the disjoint

union X � Y quotiented out by the original actions of X and Y .

More precisely X ∗ Y consists of elements of the form xw or yw where x ∈ X , y ∈ Y and w ∈ As(X) ∗ As(Y )
under the equivalence generated by the following:

xwt ∼ ut where x ∈ X, w ∈ As(X), t ∈ As(X) ∗As(Y ) and xw = u in X

and a similar equivalence for Y .

The rack operation on X ∗ Y is defined by the same formula as for the free rack (section 1 example 9). That the

operation is well defined follows from the definition of the associated group. For example suppose that xw = t in X

then

(zu)x
w

:= zuwxw = zut since wxw = t in As(X).

Notice that there are natural inclusions of X and Y in X ∗ Y and that the associated group is the free product:

As(X ∗ Y ) = As(X) ∗As(Y ).
The following lemma implies that the free product is the categorical ‘sum’ in the category of racks:

1.2.4 Lemma Let f : X → Z, g : Y → Z be rack homomorphisms. Then there is a unique extension

f ∗ g : X ∗ Y → Z .

Proof The free product X ∗Y is generated as a rack by the images of X and Y under the natural inclusions, and

the lemma follows. �

Free product of augmented racks

The free product X ∗ Y of augmented racks X ,Y with groups G ,H is defined in a similar way:

We consider pairs (x, g) where x ∈ X or Y and g ∈ G ∗H with equivalence generated by

(x, gt) ∼ (u, t) where x ∈ X, g ∈ G, t ∈ G ∗H and x · g = u in X

and a similar equivalence for Y .

The group for X ∗Y is G∗H , ∂X∗Y := ∂X ∗∂Y and the action of G∗H on X ∗Y is defined by right multiplication

in the second coordinate.

There is again a universal property which we leave the reader to formulate.

Other products

The categorical ‘product’ for racks is the cartesian product with operation

(a, x)(b,y) := (ab, xy).

There are several other products, for example the disjoint union X�Y where the rack operation is defined by letting

Y act trivially on X and vice-versa (Breiskorn [Br]). This last product can be generalised by allowing Y to act via

any function Y → centre(Op(X)) and vice versa. Further products are defined by Ryder [Ryd].

1.3. The Fundamental Rack of a Link.

This is the most important rack of all and is the raison d’être of the whole theory. A (codimension two) link is defined

to be a codimension two embedding L : M ⊂ Q of one manifold in another. We shall assume that the embedding

is proper at the boundary if necessary, that M is non-empty, that Q is connected and that M is transversely

oriented in Q . In other words we assume that each normal disc to M in Q has an orientation which is locally and

globally coherent.
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The link is said to be framed if there is given a cross section (called a framing) λ : M → ∂N(M) of the normal

disk bundle. Denote by M+ the image of M under λ . We call M+ the parallel manifold to M .

We consider homotopy classes Γ of paths in Q0 = closure(Q−N(M)) from a point in M+ to a base point. During

the homotopy the final point of the path at the base point is kept fixed and the initial point is allowed to wander at

will on M+.†
The set Γ has an action of the fundamental group of Q0 defined as follows: let γ be a loop in Q0 representing

an element g of the fundamental group. If a ∈ Γ is represented by the path α define a · g to be the class of the

composite path α ◦ γ.
We can use this action to define a rack structure on Γ. Let p ∈ M+ be a point on the framing image. Then p lies

on a unique meridian circle of the normal circle bundle. Let mp be the loop based at p which follows round the

meridian in a positive direction. Let a, b ∈ Γ be represented by the paths α, β respectively. Let ∂(b) be the element

of the fundamental group determined by the loop β ◦mβ ◦ β. (Here β represents the reverse path to β and mβ is

an abbreviation for mβ(0) the meridian at the initial point of β .) The fundamental rack of the framed link L is

defined to be the set Γ = Γ(L) of homotopy classes of paths as above with operation

ab := a · ∂(b) = [α ◦ β ◦mβ ◦ β].
If L is an unframed link then we can define its fundamental quandle. The definition is very similar. Let Γq = Γq(L)

be the set of homotopy classes of paths from the boundary of the regular neighbourhood to the base point where the

initial point is allowed to wander during the course of the homotopy over the whole boundary. The rack structure

on Γq is similar to that defined on Γ.

There is a convenient halfway-house between framed and unframed links: a link L is semi-framed if some of the

components of M are framed. A semi-framed link has a fundamental rack defined by allowing the initial point to

wander on the whole boundary of the neighbourhoods of unframed components and on M+ otherwise. This gives

a common generalisation for the rack of a framed link and the quandle of an unframed link, and allows us to make

economical statements of results which apply to all cases.

1.3.1 Proposition The fundamental rack of a semi-framed link satisfies the axioms of a rack.

The fundamental quandle of an unframed link satisfies the axioms of a rack together with the quandle condition.

In the semi-framed case the fundamental quandle of the corresponding unframed link (i.e. ignore framings), is the

associated quandle of the fundamental rack.

Proof The axioms are easy to verify. The inverse action is determined by the class of

α ◦mα ◦ α.
To check the rack identity we again use the action of the fundamental group. Using the notation above, ∂(ab) is

represented by the loop

β ◦mβ ◦ β ◦ α ◦mα ◦ α ◦ β ◦mβ ◦ β
which is the class of

∂(b)−1
∂(a)∂(b).

In the unframed case note that the element aa is represented by the path

α ◦ α ◦mα ◦ α � mα ◦ α.
However in a homotopy in the definition of Γq the initial point is allowed to move along the loop mα and so the

path is homotopic to α which represents a.

The last part of the proposition is obvious. �

Note that if G denotes the fundamental group π1(Q0) then the set Γ is in fact an augmented rack with group G .

We shall use the notation Γ̂ for this augmented rack in order to distinguish it from the plain fundamental rack Γ.

Note that Γ is the underlying plain rack to Γ̂.

† This reverses the more usual dog wagging tail convention where the initial point of a path stays fixed. However the tail

wagging dog convention fits in more comfortably with operations on the right.
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We will now identify the associated group of the fundamental rack of an arbitary codimension two link and the

operator group of the fundamental rack of a link of circles in an oriented 3–manifold.

Consider the following fragment of the exact homotopy sequence of the pair (Q,Q0):

π2(Q)→ π2(Q,Q0)→ π1(Q0)→ π1(Q).

We shall call π1(Q0) the fundamental group of the link and ker{π1(Q0) → π1(Q)} = im{π2(Q,Q0) → π1(Q0)}
the kernel of the link. Further we shall call the relative group π2(Q,Q0) the associated group of the link. Note

that if π2(Q) = 0 then the associated group and the kernel of the link coincide, and if in addition π1(Q) = 0 as in

the classical case of links in S3 then all three groups coincide.

1.3.2 Proposition The associated group of the fundamental rack Γ(L) of a semi-framed link L can be naturally

identified with the associated group of L .

Moreover the associated crossed module of the fundamental augmented rack Γ̂(L) can be identified with the crossed

module π̂2(Q,Q0) corresponding to the second relative homotopy group π2(Q,Q0) .

Proof Let a ∈ Γ, then ∂a is represented by the path α ◦ mα ◦ α which bounds an obvious 2–disc, namely the

meridinal disc at the initial point of α . Thus there is a map Γ → π2(Q,Q0). Under this map the rack operation

corresponds to conjugacy. Therefore it induces a homomorphism As(Γ)→ π2(Q,Q0). We shall show that this is an

isomorphism by constructing an inverse map.

Suppose g ∈ π2(Q,Q0) is represented by the disc D . After a homotopy we may assume that D meets the neigh-

bourhood N of the link transversely in a finite number of little discs D1, . . . , Dn . Assign to Di the sign εi where

εi = +1 if the orientation of D agrees with the orientation of Di and −1 if not.
Pick a base point in each ∂Di . In the case of a framed link let the base point be the intersection of ∂Di with M+ .

Join each of these n base points to the base point ∗ of Q by n paths α1, α2, . . . , αn in D − ∪i{Di} which only

meet at ∗ and arrive at ∗ in the order 1, 2, . . . , n .
Note that this implies that the paths are uniquely determined up to isotopy and possible initial twists about the

little disks. Each path αi determines an element ai of Γ and this defines a word aε1
1 a

ε2
2 · · · aεn

n in F (Γ) and so an

element of its quotient As(Γ).

In order to check that this element is well defined it is only necessary to see what happens if we change the number

of initial twists or the order of the subdiscs or if we change the choice of the disc D by a homotopy.

Now an initial twist changes ai to aai

i (see the end of the proof of proposition 1.3.1) and an interchange of two

elements ai and aj replaces aiaj by aja
aj

i , or a similar replacement with different signs. None of these affects the

value of the product in As(Γ).

Now suppose D′ is a homotopic choice of disc. By making the homotopy transverse to the link we see that the word

in F (Γ) changes in two ways: either an interchange of order as above or an introduction or deletion of cancelling

pairs aa−1 or a−1a . Both leave the value in the associated group unchanged. The resulting map is the required

inverse.

The last part of the proposition is readily checked. �

Remark The proposition shows that the fundamental augmented rack of a link is a sharpened form of the crossed

module, π̂2(Q,Q0).

To see that the rack really does contain more information than the crossed module consider the example of a knot

k in S2 which is the sum of two knots. The elements of π2(Q,Q0) represented by meridinal discs across the two

connecting arcs coincide, however in general the corresponding elements of the rack are different. Indeed it can be

shown that the two elements of the rack are never the same if the two knots are both non-trivial.

1.3.3 Corollary The associated group of the fundamental rack of a link in a 2–connected space can be identified

with the fundamental group of the link. In particular the associated group and the fundamental group coincide for

classical links in the 3–sphere and for links in a homotopy 3–sphere. �

Remark The corollary implies that for links in a homotopy 3–sphere the plain fundamental rack Γ and the

fundamental augmented rack Γ̂ essentially coincide (i.e. coincide under the embedding of racks in augmented racks

described in the last section).
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Orbits and stabilizers

The orbits in the fundamental augmented rack of a link are in bijective correspondence with the components of the

link and the next lemma identifies the corresponding stabilizers.

An element of the fundamental group represented by a loop of the form α ◦ γ ◦ α where γ lies in ∂N(M) and α

represents the element a ∈ Γ is called a–peripheral. The set of a–peripheral elements forms the a–peripheral

subgroup. If γ lies in the subset M+ then the class of α ◦ γ ◦ α is called a–longitudinal and the set of a–

longitudinal elements forms the a–longitudinal subgroup. If γ lies in the boundary of a normal disc to M then

α ◦ γ ◦ α is called a–meridinal. The set of a–meridinal elements forms the a–meridinal subgroup. (The kernel

of the link is generated by meridinal elements.)

1.3.4 Lemma If the element a of the fundamental rack is represented by a path α from ∂N to the base point and

if h is an element of the fundamental group which fixes a then h is a–peripheral. If α starts on the neighbourhood

of a framed component of M , then h is a–longitudinal.

Proof Let h be represented by a loop γ. During the course of the homotopy of α◦γ to α the initial point describes

a loop δ in ∂N. This implies that γ is homotopic to the loop α ◦ δ ◦ α and the result follows. �

1.3.5 Corollary With the notation above, the stabilizer of a in the fundamental group is the a–longitudinal

subgroup or the a–peripheral subgroup, according as the component where α starts is framed or unframed. �

Seifert links and the operator group

We shall finish this section by identifying the operator group for knots and links in 3–manifolds.

Let G be the group of Γ̂ (the fundamental group of the link) and let K (the kernel of the link) be the image of

As(Γ) in G . Define the action kernel J ⊂ G to comprise all elements of G which act trivially on Γ. Recall that

the operator group Op(Γ) is the quotient of As(Γ) by the subgroup of elements which act trivially on Γ. Since the

action of As(Γ) factors via the action of G , Op(Γ) is the quotient of K by the subgroup of K of elements which

act trivially on Γ. In other words

Op(Γ) =
K

J ∩K . (3.6)

We shall now compute J .

We will need the following definition:

Definition Seifert Links

Consider a link in a 3–manifold whose complement has a Seifert circle fibration. An example is a torus link in S3 .

We say that a component C of such a link is framable if the fibration extends to C and its neighbourhood so

that C is a regular fibre. A component is said to be naturally framed if it is framable and has the framing given

by neighbouring fibres. A Seifert link is a link in a 3–manifold whose complement has a Seifert circle fibration

such that all framed components are naturally framed. Note that a Seifert link might be unframed and that some

framable components might be unframed.

1.3.7 Proposition Consider a semi-framed link in a 3–manifold whose complement is P 2 irreducible. The action

kernel J of the link is non-trivial if and only if the link is a Seifert link. Moreover J can be described explicitly.

There are four cases:

(1) The link is a Seifert link with at least one framed component, in which case J is the infinite cyclic subgroup

of the fundamental group defined by the regular fibres.

(2) The link is unframed and Q0 is T × I where T is a torus, in which case J ∼= Z2 is the fundamental group.

(3) The link is unframed and Q0 is K×̃I (the twisted I bundle over a Klein bottle), in which case J ∼= Z2 is a

subgroup of index 2 in the fundamental group.

(4) The link is an unframed Seifert link and Q0 is neither T × I nor K×̃I , in which case J is the same as in case

(1).

Proof: It is convenient to make the following observation about groups and normal subgroups. Let G be a group

which has a subgroup H containing a non trivial element h such that any conjugate g−1hg is in H , where g lies in

G . Then the group generated by g−1hg for all g ∈ G is a non trivial normal subgroup of H and G .
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Assume that J �= {1} and choose h ∈ J , h �= 1. By lemma 1.3.4 h is a–peripheral and, for framed components,

a–longitudinal for all a ∈ Γ.
For convenience take the base point ∗ in ∂N(C) where C is a component of the link, and assume that C is framed.

Consider elements a ∈ Γ defined by loops α based at ∗ . Such an element can be regarded (non-uniquely) as an

element g ∈ G , the fundamental group. Now h is a–longitudinal for all such a hence h = g−1lg in G where l is

some power of the longitude at ∗ . It follows that our observation applies where H is the infinite cyclic subgroup

of powers of the longitude. The complementary manifold M therefore has fundamental group containing a normal

infinite cyclic subgroup. A result of Waldhausen [Wal] shows that M is a Seifert manifold and that l the longitude

is a fibre.

A similar argument works if C is unframed. In this case the group H is Z2 . If the resulting normal subgroup is

infinite cyclic we can apply the previous argument and deduce that the complementary space is Seifert fibred. If the

normal subgroup is Z2 then we know that it is peripheral and the complementary space is therefore either T × I

where T is a torus or the twisted I bundle over a Klein bottle. The relevant details may be found in Hempel’s book

[Hem] as was kindly pointed out to us by A. Swarup. In either case both are Seifert fibred spaces.

Conversely if the link is Seifert then it is easy to see that the infinite cyclic subgroup defined by the regular fibres acts

trivially. If a larger subgroup acts trivially then, by the argument in the previous paragraph, we are in the unframed

case and Q0 is T × I or K×̃I . In the first case all elements act trivially while, in the second case, a subgroup of
index 2 acts trivially. �

1.3.8 Corollary The operator group of the (plain) fundamental rack of a semi-framed link in a connected

orientable 3–manifold is one of: (a) the kernel of the link, (b) the kernel modulo the integers, (c) Z/2 , or (d) the

trivial group.

In the last three cases, the link is a Seifert link with possibly some homotopy discs or spheres added by connected

sum.

Proof Decompose the complement into irreducible pieces. If two or more pieces are non-simply connected then

the fundamental group has no normal subgroup isomorphic to Z or Z
2 , and hence the action kernel is trivial by the

proof of the proposition.

Thus if the action kernel is non-trivial then the complement is irreducible, with possibly some homotopy discs or

spheres added by connected sum. Remove these connected summands, then by the proposition the complement is a

Siefert link and the action kernel is Z or Z2 . Hence by equation 1.3.6 the operator group is the link kernel modulo

Z or Z2 . In the Z2 case we must be in case (2) or (3) of the proposition and the quotient is either Z/2 or trivial.�

1.4. Presentations

The main purpose of this section is to explain the natural presentation that can be given to the fundamental rack of

a link in a 3–manifold. This will involve explaining several layers of rack presentations. We start with the simplest.

Throughout the section, we shall concentrate on framed links (rather than semi-framed links). There are analogues

for semi-framed links of most of the results in the section, which are proved in analogous ways. By and large we

leave the reader to formulate these parallel results, contenting ourselves with brief comments.

Primary Rack Presentations

A primary presentation for a rack consists of two sets S (the generating set) and R (the set of relators). A

typical element of R is an ordered pair (x, y), where x, y ∈ FR(S), which we shall usually write as an equation:

x = y or (x = y).

The presentation defines a rack [S : R ] as follows: Define the congruence ∼ on FR(S) to be the smallest congruence

containing R (i.e. such that x ∼ y whenever (x = y) ∈ R). Then

[S : R ] =
FR(S)

∼ .

We can describe ∼ more constructively as follows.

Consider the following process for generating relators. Start with the given set R of relators and enlarge R by

repeating any or all of the following moves:
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(a) Add a trivial relator x = x for some x ∈ FR(S).
(b) If (x = y) ∈ R then add y = x .

(c) If (x = y), (y = z) ∈ R then add x = z .

(d) If (x = y) ∈ R then add xw = yw for some w ∈ FR(S).
(e) If (x = y) ∈ R then add tx = ty for some t ∈ FR(S).
Define a consequence of R to be any statement which can be generated by a finite number of these moves, and

define 〈R〉 to be the set of consequences of R .
Now a congruence is a relation which is: (1) an equivalence relation and (2) respects the rack operation. If we use

= instead of ∼ for the congruence, then (1) says that the congruence is closed under moves (a), (b) and (c) whilst

(2) says it is closed under moves (d) and (e). It follows that the smallest congruence containing R is precisely the

set of consequences, 〈R〉 .
Remark The asociated quandle [S : R ]q has a presentation, obtained by adding to R the relators aa = a for all

a ∈ S . If [S : R ] is a finite presentation then so is [S : R ]q .

Proof Clearly the new relators hold in the associated quandle, but the new rack is a quandle because

(aw)a
w

= awwaw = aaw = aw since aa = a.

The “Tietze” Theorem

We shall now prove an analogue for racks of the Tietze move theorem for group presentations.

The two basic moves on presentations are the following:

Tietze move 1 Add to R a consequence (or delete from R a consequence) of the other relators.

Tietze move 2 Introduce a new generator x and a new relator x = aw (where x does not occur in w ), or delete

such a pair if x occurs nowhere else in the presentation.

There is an equivalent set of moves which are rather more constructive:

1.4.1 Lemma Tietze moves 1 and 2 are equivalent to the following moves:

(1) Repeat a relator (or delete a repeated relator).

(2) Conjugate a relator, i.e. replace for example at = bw by atz = bwz .

(3) Substitute at primary level, i.e. if a = bw ∈ R then we can replace cz = at by cz = bwt and we can replace

az = ct by bwz = ct .

(4) Substitute at operator level, i.e. if a = bw ∈ R then we can replace ctaq = dz by ctwbwq = dz or cz = dtaq by

cz = dtwbwq.

(5) Introduce a new generator x and a new relator x = aw (where x does not occur in w ), or delete such a pair

if x occurs nowhere else in the presentation.

Proof

Moves (1) to (5) are all equivalent to, or special cases of, the two Tietze moves, so it suffices to show that the two

Tietze moves can be achieved by moves (1) to (5). Since Tietze move 2 is move (5) we have to show that any

consequence can be introduced (Tietze move 1). But by definition any consequence can be constructed by the relator

moves (a) to (e) (in the definition of rack presentation). So we shall start by proving that any of these can be achieved

by moves (1) to (5).

To achieve move (a) (to introduce a trivial relator) use the following trick:

Introduce a new generator t and relation t = a . Repeat the relation t = a and substitute to obtain a = a . Now

delete t and the redundant copy of t = a .

To achieve move (b) (to add y = x where (x = y) ∈ R) use another trick:
Repeat x = y and substitute to get y = y and then again to get y = x .

Finally moves (c), (d) and (e) are precisely moves (2), (3) and (4) in a different form.

It follows that we can use moves (1) to (5) to replace [S : R ] by [S : R ∪ T ] where T contains the required

consequence x = y . Repeat x = y and then reverse the moves used to generate T to delete it. �

1.4.2 Theorem : Tietze move analogue Suppose that we have two finite presentations [S : R ] and [S ′ : R′ ]

of isomorphic racks then the two presentations are related by a finite sequence of Tietze moves.
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Proof
Identify [S : R ] with [S′ : R′ ] by the isomorphism. We shall start with the presentation [S : R ] and move it into

the other presentation.
To avoid confusion we shall use the letters a1, a2, . . . for elements of S and b1, b2, . . . for elements of S

′ . We shall

also use w1, w2, . . . for words in the ai and z1, z2, . . . for words in the bi .
Step 1 Since the elements of S ′ are in the rack, each can be expressed in terms of the generators S , i.e.

b1 = a
w(1)

(1) , b2 = a
w(2)

(2) , . . . (∗)
where a(i) = aj some j . Let Q be the set of statements (∗). Use Tietze move 2 to introduce the “new” generators
b1, b2, . . . together with the set Q of new relators.
Step 2 Since each statement in R′ is true in the rack it is a consequence of R and hence can be introduced by

Tietze move 1. Thus we can enlarge the set of relators to R ∪Q ∪R′.
Step 3 Since S′ generates the rack, we can express each element of S in terms of S ′ :

a1 = b
z(1)

(1) , a2 = b
z(2)

(2) , . . .

(forming a set of statements Q′ dual to Q). Since each of the statements in Q′ is true in the rack, it can be

introduced as a new relator using move 1 again.
At this point we have reached a symmetrical situation. We have S ∪ S ′ as generating set and R ∪ R′ ∪ Q ∪Q′ as
relators. We now reverse steps 1 to 3 to delete first Q then R and finally S together with Q′ . �

Presentations and the Associated Group
Using the proof of the Tietze theorem we can prove that the associated group of a finitely presented rack [S : R ]

has a finite presentation as a group — in fact it has the obvious presentation:
Given a rack presentation [S : R ] then we obtain a group presentation by interpreting the elements of R as group

equations (i.e. read aw as w−1aw ) yielding the group <S : R> . It follows from the Tietze theorem that <S : R>

is independent of the presentation of the rack, since each of moves (1) to (5) leaves the group <S : R> unchanged.

This also follows from the following result:
1.4.3 Lemma <S : R> is the associated group As[S : R ] .
Proof We shall prove that <S : R> has the universal property of the associated group. First of all there is a rack

homomorphism

φ : [S : R ]→ <S : R>conj

because the congruence which defines [S : R ] comprises all (rack) consequences of R . But examining moves (1) to

(5) we see that each rack consequence is a group consequence of R (as group relators) and therefore the identity on

S extends to a rack homomorphism φ .
Now suppose we are given a rack homomorphism ψ : [S : R ] → Gconj where G is any group. Consider a typical

relator aw = bz in in R then ψ(aw) = ψ(bz) in Gconj , but since ψ is a rack homomorphism this implies

ψ(w)ψ(a)ψ(w)ψ(z)ψ(b)ψ(z) = 1 in G.

But this says that ψ(R) as a group relation is true in G , and therefore ψ factors via φ . Uniqueness of this factoring

is clear since both [S : R ] and <S : R> have the same generating set. �

1.4.4 Remark Racks and group presentations
The Tietze theorem gives a way of regarding racks as group theoretic objects, namely equivalence classes of group

presentations of conjugacy type (presentations with relators all of the form xw = yz ) under our moves (1) to

(5) of lemma 4.1, moves which all preserve this class.

Links in S3

We consider links L :M ⊂ S3 . Since M is a codimension two submanifold of S3 , it is the image of a finite disjoint

collection of smooth embeddings of S1 in S3 . In this case, a framing on a component of M can be ‘measured’
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because the isotopy class of the framing can be regarded, either as (the isotopy class of) a parallel curve (as in §1)
or as an integer (the linking number of the component with its parallel curve), cf. [FR2].

If we project the link in general position onto a plane R3 = S3− pt we obtain a diagram: a finite collection of arcs

and circles, the arcs terminating at crossings, as exemplified in the following figure.

.........................................................................................................

.....................................................................................................................................................

...................................
............................................................. ...........................................................................
.............................................................

..

................................................................................................

.............
..............
.................
.......................................................................................................... ................
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.....

.....................................................
..............
.............
...............
................................................

.....................................................
..............
.............
...............
...... ................................

..................
..
..................

.............................................................

..................................................

Figure 1.4.1

The chosen orientation on each component of the link is indicated by the arrows in the diagram.

Now a link diagram has a natural framing: each component in the diagram has a canonical parallel curve obtained

by drawing a curve in the diagram adjacent to the component (indicated as the broken curves in the following figure).
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.....................................................................................................................................................
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..............
.................
.......................................................................................................... ................
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.............
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.....................................................
..............
.............
...............
................................................
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...............
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..................
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.............................................................

..................................................

Figure 1.4.2

The following lemma implies that we may suppose that the natural framing and the given framing of L coincide.

1.4.5 Lemma Given a framed link L in S3 there is a diagram for L whose natural framing coincides with the

given one.

R.Fenn 18



Invariants of Links Presentations

Proof The Reidemeister Ω1 moves

⇔ ⇔

..............................................................................................................
...................
............................

................................................ ............
..............
.............
.............
................
.........................................................................................
..............
.............
.............
........

Figure 1.4.3

change the natural framing by ±1. Hence the diagram can be altered by Ω1 moves to make the two coincide. �

The rack presentation given by a diagram

A link diagram determines a primary rack presentation by:

(1) Label all arcs (or circles) in the diagram by generators a, b, c, . . . forming the generating set S .

(2) At each crossing write down a relator by the following rule.

a b

c

..................
..................
..................
........

..............................................................

............................................................................................................................................................................ ..............
....

Figure 1.4.4: Write c = ab or a = cb .

Note that b crosses a from the right as a passes under to become ab . Note also that the orientation of the

under-arc is not used in the rule.

The set of relators gives the relator set R .

Extended remark We shall prove shortly that [S : R ] is Γ(L) (the fundamental rack of L in S3 ) which implies

that [S : R ] is independent of the choice of diagram used to represent L . However, it is worth remarking that this

can easily be proved directly, and indeed the definition of a rack is tailor made to prove this.

The two rack laws (1.1 axioms 1 and 2) correspond to invariance of [S : R ] under the Reidemeister Ω2 and Ω3

moves respectively, see the following figures.

a

b
ab

a

b
ab

⇔

a

b.............
..............
................
......................

..................................................................................................................

.............

..............
................
......................

..................................................................................................................

Figure 1.4.5

..........................................................................................................................................................................................................................

..............................................................
..............................................................................................................................

.......................................
..............................................

.......................................

..........................................................................................................................................................................................................................

..................
..................
..................
........

.................
.............................................................................................................

.......................................
..............................................
.......................................

⇔

abc

bc c

c b
a

ab

acbc

bc c

c b
a

ac

Figure 1.4.6

Now for unframed links, the fundamental quandle is invariant under the final Reidemeister move (the Ω1 move) by

the quandle condition; see the figure.
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⇔
aa

a

⇔
a

a

aa

a

..............................................................................................................
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.............................

................................................ ............
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.............
.............
................
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.............
.............
.............
.........

Figure 1.4.7

For framed links, we need a modified version of the Reidemeister move theorem: isotopy classes of framed links

correspond to equivalence classes of diagrams under the Ω2 and Ω3 moves and the following “double” Ω1 move:

⇔ ⇔............................................................................................
.......................................................................

.............

..............
...............
........................................................................................
.............
.............
....... ...........................................................................................

........................................................................

.............
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...............
........................................................................................
..............
.............
......

Figure 1.4.8

This follows from the Reidemeister theorem: replace all Ω1 insertions by double insertions and leave all Ω1 deletions

to the end. Collect all the extra twists on one arc of each component (using Ω2 and Ω3 moves). Then the fact that

the framings are the same, means that there are (algebraically) the same number of extra twists. But excess pairs

of opposite twists can be cancelled using the double Ω1 move or the following sequence of Ω2 and Ω3 moves:

⇒ ⇒ ⇒

.................................................................................................................................................

............
..............
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.................................................................
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..............
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..................................................................................................................................................
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.................................................................................................................................................................................................................

...................................... .........................................................................................................................

...................................
.............................

Figure 1.4.9

The figure below shows how the rack laws imply that [S : R ] is independent of the double Ω1 move. The critical

observation on the right is that c = aac implies c ≡ a and also aac = a :

a a

b = ab

c = bb = abb = a

⇔ ⇔

a

b = aa

c = aac = a

...........................................................................................
........................................................................

.............

..............
...............
........................................................................................
.............
.............
....... ...........................................................................................

........................................................................

.............

..............
...............
........................................................................................
..............
.............
......

Figure 1.4.10

This completes the extended remark.

1.4.6 Examples

Example 1 The unknotted circle with framing n . Shown here with n = 4 .

aa4

= a

aa

aa2

aa3

..............................
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.............
..............
...................
.....................................................................

....................................................................................
...............
.............
..............
....................
.......................................................................................................................................................

...............
........

.............
................
..........................................................................................................................................................................................................................................................

....................................................................................................................... .......................................................................................................................
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.............

.............

.............

.............

.............

.............

.............

.............

.. .............................

.............................

.............................

.............

.............

...

Figure 1.4.11

In the diagram, we have simplified the labels, by making obvious substitutions. The presentation gives the rack

[ a : aan

= a ]
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i.e. the cyclic rack Cn . Notice that the circle with framing −n has isomorphic fundamental rack. Thus extra

structure will be needed to cope with orientations (see end of section 5).

Example 2 The Hopf link.

With both framings 0

a b

..................................................................................................................................
................
.............
.............
..............
..................
.......................................................

...............
.............
.............
...............
....................
.......................................................................................................................................................................................

............................

............................

Figure 1.4.12The Hopf link

the rack is

[ a, b : ab = a, ba = b ].

With framings n and m the rack becomes

[ a, b : a = aanb, b = babm

].

Imposing the two quandle relations: aa = a, bb = b , makes these two racks identical (the fundamental quandle of the

unframed Hopf link).

Example 3 The left hand trefoil knot (framing -3).

..........................................................................

.........................................................................................................

................................................................... .........................................................................................................

...................................................................

.............
................
........................................................................................................

............................

............................

a

b c

Figure 1.4.13The trefoil knot

The fundamental rack is

[ a, b, c : ab = c, ca = b, bc = a ]

or

[ a, b : aba = b, bbab = a ].

Remark Note that the presentation of the fundamental rack has deficiency zero in contrast to the deficiency of

the fundamental group which is one.

Example 4 The Borromean rings.

a b

c
bc

ca

ab
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...................
................
..............
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..

Figure 1.4.14The Borromean rings

The fundamental rack is

[ a, b, c : cabab = c, abcbc = a, bcaca = b ].

1.4.7 Theorem Let D be a diagram for a framed link L in S3 and X = [S : R ] the rack presented by D , then

X = Γ(L) , in particular Γ(L) has a finite presentation.

Proof We shall define rack homomorphisms

λ : Γ(L)→ X μ : X → Γ(L)

such that λ ◦ μ = μ ◦ λ = id.
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Definition of λ An element of Γ(L) is represented by a path γ from a point p ∈M+ to ∗ . Project γ in general

position onto the plane of the diagram D and then read from γ an element of FR(S) as follows. Suppose that the

initial point of γ lies on the arc labelled by the generator a and suppose that γ subsequently passes under arcs

labelled b, c, d . . . then associate to γ the element abεcεdε

. . . where ε = +1 if the arc labelled b crosses γ in the

right-hand sense and ε = −1 otherwise. For an illustration see the following figure.

�
γ

d b

p

a

.

.................
......
.......
......

.......

................

.............

Figure 1.4.15Read λ(γ) = abd .

To prove that λ is well defined we have to check that if we change γ by a homotopy then we get the same element

of X .

There are three types of critical stages during the homotopy where the expression for λ(γ) changes. These are

illustrated in the following three typical pictures:

�
γ

w
p

c

a

b ⇒ �
γ

w

p′

c

a

b.................... .............. .................... ..............

.......
.......
..

........
........
........
........
........
........
.....

Figure 1.4.16Critical stage type 1

In this picture c = ab in X . Moving p to p′ the value of λ changes to cbw = abbw = aw i.e. we get the same element

of X.

�
γ

w2 w1
p

a

e

⇒ �
γ

w2 w1
p

a

.................
..........................

......................................

.................
..........................

......................................

.......
........
.............................................

Figure 1.4.17Critical stage type 2

In the left-hand picture we read aw1eew2 whilst in the right-hand picture we read aw1w2 , which is the same element

of X .

�
γ

z w
p

a

e

cd

⇒ �
γ

z w
p

a

e

cd

.............................................................................................................................................................................................................

...................................................................
.............................................................................................................................................................

.............................................................................................................................................................................................................

...................................................................
.............................................................................................................................................................

.......

.......
........
.........
.

.......

.......
........
.........

.
....................

Figure 1.4.18Critical stage type 3

In the left-hand picture we read awecz whilst in the right- hand picture we read awcdz . But e = dc which implies

e ≡ cdc i.e. cd ≡ ec . These are the same element of X.

Thus λ : Γ→ X is well defined.

Definition of μ. We start by defining μ on the free rack FR(S). In what follows we shall misuse notation and

write μ(a) for both the class and the path which represents it. First define μ(a) where a ∈ S to be any path from

the parallel curve to the arc labelled a to the base-point over all other arcs of the diagram. Next suppose that μ(x)

is defined; we will define μ(xc) and μ(xc) where c ∈ S . This is done by post-composing the path for x with a loop
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that starts at the base-point, goes over the other arcs to near the arc labelled c , once around this arc in the positive

sense for xc and negative for xc and back to the base-point over the other arcs:

�
μ

c

. . .

........................ ..............
..........
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.......
........
.......................................
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..................
..................
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..................
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......

Figure 1.4.19Defining μ

This defines μ on FR(S). To prove that μ is well-defined we have to check that if aw ∼ bz in the congruence

generated by R then μ(aw) is homotopic to μ(bz).

But examining moves (1) to (5) of lemma 4.1 we see that the only non-trivial part to be checked is that if aw is

altered by either a primary or a secondary substitution using relators of X then μ(aw) is altered by a homotopy.

Primary substitution. Replace cw by abw where c = ab is a relator.
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Figure 1.4.20

The picture shows a typical situation, and the required homotopy can be seen.

Secondary substitution. Replace twcz by twbabz where c = ab .
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Figure 1.4.21

The picture again shows a typical situation, and the required homotopy can be seen.

We have defined

λ : Γ(L)→ X μ : X → Γ(L).

It is clear from the definitions that λ ◦ μ = idX whilst to see that μ ◦ λ = idΓ we take an arbitrary path γ and

deform it into μ ◦ λ(γ) by pulling “feelers” back to the base-point, as illustrated in the following figure.
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Figure 1.4.22

�
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Remarks

(1) If we regard the relators R in the diagram presentation as group relators, then we obtain the Wirtinger

presentation of the fundamental group. This verifies the fact we already know: the associated group is the

fundamental group of the link, (Corollary 1.3.3).

(2) A similar analysis can be carried out for an embedding of Mn in Sn+2 : we obtain a “diagram” by projecting

onto Rn+1 in general position and regarding top dimensional strata (n–dimensional sheets) as “arcs” to be

labelled by generators and (n− 1)–dimensional strata (simple double manifolds) as “crossings” to be labelled

by relators. In general position a homotopy between paths only crosses the (n − 1) strata and a proof along

the lines of the theorem can be given that this determines a finite presentation of the fundamental rack.

(3) There is a general process for obtaining a (not necessarily finite) presentation for any codimension 2 embedding

by using an analogue of the edge-path presentation for the fundamental group. We leave the details to the

interested reader.

We now turn to presentations of the fundamental augmented rack for links in general 3–manifolds. We shall need to

enlarge the concept of presentation and this is the content of the remainder of the section.

We shall consider two stages of generalisation. The first (allowing operator relations) does not essentially change the

class of racks being considered.

Operator relations

The concept of rack presentation can be generalised by allowing relations which apply only at operator level. For

example here is an alternative presentation for the cyclic rack Cn using an operator relation:

[a : an ≡ 1].

A presentation for a rack with operator relations comprises three sets: a set S of generators, a set RP of primary

relators (as in the first definition of presentation, above) and a set RO of operator relators which are words

w ∈ F (S), to be understood as relations at the operator level w ≡ 1.

This concept appears to be more general than the earlier one but in fact it is not:

1.4.8 Lemma Let S be a set of generators. An operator relator is equivalent to n primary relators where n = |S| .
Proof We shall show that the operator relator w ≡ 1 is equivalent to the n primary relators

aw
1 = a1, a

w
2 = a2, . . . , a

w
n = an where S = {a1, a2, . . . , an}. (∗)

Since w ≡ 1 implies each of the primary relators aw
i = ai it suffices to prove the converse, i.e. that x

w = x is a

consequence of (∗) for each x ∈ FR(S). Write x = at
j , t ∈ F (S) say and use induction on the length of t .

Suppose that t = t1a
ε
k, ε = ±1 and for definiteness suppose that ε = +1. By induction

at1
j = at1w

j

is a consequence of (∗). Then using the relator moves we have the following consequences:

x = at
j = at1ak

j

= at1wak

j (move (d))

= a
t1waw

k

j (move (e) using aw
k = ak)

= at1wwakw
j (definition)

= at1akw
j = atw

j = xw.

The case ε = −1 is similar. �

General presentations

The final generalisation of presentations is to allow operator generators as well:
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Definitions Given sets S, T the extended free rack FR(S, T ) is defined by

FR(S, T ) := S × F (S ∪ T ) = {aw | a ∈ S,w ∈ F (S ∪ T )}
with rack operation given by

(aw)(b
z) = awz−1bz .

The proof that this is a rack is formally identical to the case of the usual free rack (1.3 example 9).

A general presentation of a rack comprises four sets: SP , SO the primary and operator generators and RP , RO

the primary and operator relators, where elements of RP are statements of the form aw = bz where aw, bz ∈
FR(SP , SO), and elements of RO are words w ∈ FR(SP , SO)

Now given a general presentation define the congruence ∼ on FR(S, T ) to be the smallest congruence containing:

(1) x ∼ y if (x = y) ∈ RP

(2) zx ∼ zy if (x = y) ∈ RP

(3) zw ∼ z if w ∈ RO .
Then the rack generated by the presentation is defined to be:

[SP , SO : RP , RO ] :=
FR(S, T )

∼ .

It is worth examining a simple example in some detail because the operator generators in general introduce a non-

finiteness in any possible primary generating set.

Example SP = {a} SO = {u} RP = RO = ∅ .
Here

X = [SP , SO : RP , RO ] = FR({a}, {a, u}) = {aw | w ∈ F (a, u)}
the rack structure is given by

(aw)(a
z) = awzaz.

So as a set X can be identified with the free group F (a, u) but the rack structure is not conjugacy.

Notice that aw is in the same orbit as az if and only if w and z have the same total degree in u and the set of orbits

is in bijective corespondence with the set of cosets of Ker(F (a, u) → F (u)) in F (a, u). Therefore X has infinitely

many orbits and hence cannot have a finite primary presentation.

Presentations of augmented racks
The example makes it clear that a general presentation has operator structure not implied by the rack structure,

thus a general presentation fits naturally with the idea of augmented racks.

Let X = [SP , SO : RP , RO ] be a general presentation and let G be the group presented by <SP ∪ SO, RP ∪RO> .

Then there is a natural map ∂ : X → G and G acts on X by the formula for the rack operation. Therefore X is

an augmented rack, which we denote

X̂ = [SP , SO : RP , RO ]G.

We call X̂ the augmented rack presented by [SP , SO : RP , RO ] .

Note: Do not confuse G with the associated group As(X). In the simpler case without operator generators,

we can see from lemma 4.8 that G and As(X) are in general different (in this simpler case G is a quotient of As(X):

the operator relations do not become trivial in As(X), but central, see the first line of the proof of the lemma).

In the general case, even if the presentation of X is finite, As(X) does not necessarily have a finite presentation: it

is generated by SP and all conjugates w−1aw where a ∈ SP and w ∈ F (SO) with relators RP and commutators

of generators by elements of RO . However there is an important special case in which the rack (and hence the

associated group) does have a finite primary presenation, given in the lemma below.

Note that since ∂ : X → G is a rack homomorphism from X to Gconj , lemma 2.1 gives a homomorphism ∂� :

As(X)→ G .

1.4.9 Lemma Suppose that the presentation of X is finite and that ∂� is onto, then X has a finite primary

presentation.
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Proof We shall show how to replace one operator generator by a finite number of primary generators; the result

then follows from lemma 4.8.

Let t ∈ SO . Since ∂� is onto, we can write t as an element of As(X) as a product of elements of X , i.e.

t = aw1
1 aw2

2 . . . awn

n in As(X).

Since the operator group is a quotient of the associated group, this implies that

t ≡ aw1
1 aw2

2 . . . awn

n .

Introduce n new primary generators, b1, b2, . . . , bn together with n primary relators bi = awi

i for i = 1, 2, . . . , n .

Then we can substitute b1b2 . . . bn for t at operator level and the operator generator t is now redundant and can be

deleted. �

Augmented presentations There is also the useful concept of an augmented presentation of an augmented

rack. This comprises an explicit group G , a set S of generators, a function ∂ : S → G and a set R of relators which

are statements of the form x = y where x, y ∈ F (S), which respect ∂ , i.e. such that ∂x = ∂y in G .

The presentation defines an augmented rack [S : R ]G by defining ∼ on FR(S,G) to be the smallest congruence

containing:

(1) x ∼ y if (x = y) ∈ R
(2) zx ∼ zy if (x = y) ∈ R
(3) zgh ∼ zk if gh = k in G

and setting

[S : R ]G =
FR(S,G)

∼ .

If G is finitely presented, then we can convert this to a general presentation, by adding the presentation of G as

operator generators and relators.

Remark There are Tietze type theorems for all the more general classes of presentations, which we shall leave the

reader to formulate and prove.
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The fundamental augmented rack of a link in a 3–manifold

We finish the section by explaining how to read a presentation of the fundamental augmented rack of a link L in a

closed orientable 3–manifold from a diagram. Recall that such a manifold can be obtained by surgery on a framed

link in S3 . Thus we can represent L by a diagram in which some of the curves (which we think of as ‘red’ curves)

are the surgery curves, and others (‘black’ curves) are the actual link components.

We label the black arcs by primary generators and the red arcs by operator generators, then at each crossing where

the underarc is black we read a primary relator by the usual rule and at each crossing where the underarc is red we

read an operator relator. Finally, for each red curve we read a further operator relator by reading round the curve

and noting undercrossings. The whole process is illustrated by the example in the following diagram, where the ‘red’

surgery curve has been drawn with broken lines.

a

b

c

d

x

.............
.............

.............
.............

.....

.............
.............

.............
.............

............. .............

.............
.......................................

.............
.............
.............

............. .............
...........
..

.............
.............
.............

.............

.......

......
........
.....

.............
..........................

.............
........
......
.......
......

.....................................................
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Figure 1.4.23

The presentation is

[{x}, {a, b, c, d} : {x = xxd}, {b ≡ dcd, c ≡ bdb, a ≡ cbc, a ≡ xdx, cdbx ≡ 1}]
where the first four operator relations come from the crossings with ‘red’ underarcs and the final operator relation is

obtained by reading undercrossings round the red curve.

We leave the details of the proof of the following theorem to the reader.

1.4.10 Theorem The fundamental augmented rack Γ̂(L) is the augmented rack presented by any diagram for

L .

Sketch of proof The group G corresponding to the presentation is the group π1(Q0) of the link. That the rack

is the fundamental rack is then proved in a similar way to theorem 1.4.7. �

1.4.11 Corollary The fundamental rack of a link in a 3–sphere has a finite primary presentation.

Proof This follows from lemma 1.4.9, and the remark below corollary 1.3.3.
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1.5. The Main Classification Theorem.

The main result of this section is the classification theorem (theorem 5.1 below) which states that the fundamental

augmented rack of an irreducible link in a closed connected 3–manifold is a complete invariant for both the link and

the ambient 3–manifold.

Since for simply connected 3–manifolds the augmented rack and the plain rack coincide, we deduce that the plain

fundamental rack is a complete invariant in this case.

There is also a classification theorem for more general links in 3–manifolds, including any link in S3 , which involves

the concept of an oriented rack. This will be considered at the end of the section.

Definition A link L :M ⊂ Q3 is irreducible if Q is a closed connected 3–manifold and Q0 = closure(Q−N(M))

is P 2 irreducible.

Remarks

(1) For a link in S3 irreducibility is the same as being non-split, i.e. L is not the disjoint separated union of two

non-trivial sublinks.

(2) For a general 3–manifold irreducibility is equivalent to Q0 being sufficiently large (because a 3–manifold with

boundary tori is sufficiently large if and only if it is P 2 irreducible). Thus other reasonable names for an

irreducible link would be non-split or sufficiently large.

(3) Note however that Q3 need not be irreducible: it is well known that any closed connected 3–manifold contains

an irreducible link, in fact an irreducible knot. For example, as Dale Rolfson remarked to us, the spine of any

open book decomposition of a 3–manifold is an irreducible link.

(4) Irreducibility can be detected algebraically from the fundamental rack. This follows from the following lemma.

1.5.1 Lemma A semi-framed link L : M ⊂ Q3 in a closed connected 3–manifold which contains no homotopy

3–sphere summands is reducible if and only if the fundamental augmented rack Γ̂(L) is a non-trivial free product.

If Q3 is a homotopy sphere, then the result is also true with Γ̂(L) replaced by the plain rack Γ(L) .

Proof If the link is reducible, then Γ̂(L) is X ∗Y where X and Y are non-trivial and are the augmented racks of

the connected summands; this can easily be checked from definitions.

Conversely, if Γ̂(L) is a non-trivial free product, then G = π1(Q0) is a non-trivial free product. It then follows from

a standard result in 3–manifolds [12; theorem 7.1] that Q0 is a connected sum, i.e. L is reducible.

If Q is a homotopy sphere then π1(Q0) is the associated group of the plain rack Γ(L) (corollary 3.3), and the proof

is similar to the proof for the augmented rack. �

We now give the main result of this section:

1.5.2 Classification theorem

The fundamental augmented rack is a complete invariant for irreducible semi-framed links in closed, connected

3–manifolds.

More precisely suppose that L :M ⊂ Q and L′ :M ′ ⊂ Q′ are two irreducible semi-framed links in closed, connected

3–manifolds and suppose that the fundamental augmented racks are isomorphic:

Γ̂(L) ∼= Γ̂(L′).

Then there is a homeomorphism Q→ Q′ carrying M to M ′ as semi-framed submanifolds.

Proof We shall use Waldhausen’s classification theorem for P 2 irreducible, sufficiently large 3–manifolds, see

Hempel [Hem]; theorem 13.6.

We need a couple of observations.

Observation 1 The orbits of Γ̂(L) are in one–one correspondence with the components of M .

Observation 2 A choice of base path system — that is a base point for Q0 and one on each component of ∂Q0 ,

in the parallel manifold if appropriate, together with base paths from the base points on ∂Q0 to the one for Q0 —

is the same as a choice of representatives α1, α2, . . . , αt of elements of Γ̂(L) one from each orbit.

Thus a choice x1, x2, . . . , xt of elements of Γ̂(L), one from each orbit, is equivalent to a choice of base path system,

up to equivalence generated by homotopy through base path systems.

Now assume that L is framed and choose a base path system for Q0 and let x1, x2, . . . , xt be the corresponding

choice of elements of Γ̂(L). Then we can read off the following items of the corresponding π1 system:

π1(Q0) (the group for Γ̂(L)).

The xi –meridinal subgroup (generated by ∂xi ) for i = 1, 2, . . . , t .
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The xi –longitudinal subgroup, namely its stabiliser in π1(Q0), see 1.3.5.

Now the isomorphism of Γ̂(L) with Γ̂(L′) carries these items to corresponding items in the π1 system for Q′0 given

by the base path system determined by the images of x1, x2, . . . , xt . It follows from Waldhausen’s theorem that there

is a homeomorphism Q0 → Q′0 realising this isomorphism of π1 systems and the correspondence of listed items.

Since meridinal subgroups go to meridinal subgroups, this homeomorphism extends to a homeomorphism Q → Q′

carrying M to M ′ , and since longitudinal subgroups go to longitudinal subgroups, this carries M to M ′ as framed

submanifolds.

The proof in the general (semi-framed) case is the same with the longitudinal subgroups replaced by peripheral

subgroups on the unframed components. �

Remark The proof of theorem 1.5.2 makes it clear that the fundamental augmented rack of a link is an algebraic

gadget which encapsulates all the information in the fundamental group and peripheral group structure of the

complement, without the need for any unnatural choice of base path system. Thus it is the precise algebraic input

for Waldhausen’s theorem when applied to link complements in closed 3–manifolds.

1.5.3 Lemma

Suppose L :M ⊂ Q is a semi-framed link and that p : Q′ → Q is a covering. Let M ′ = p−1(M) and L′ :M ′ ⊂ Q′ .

Then Γ(L) ∼= Γ(L′) .

Proof This follows at once from the path lifting property of covering spaces. �

Orientations for racks

The proof of theorem 1.5.2 fails for reducible links because the fundamental rack does not determine the orientation

of the components of M . Although the longitudinal subgroups are invariant under isomorphism , specific longitudes

are not. For example consider the disjoint union of two trefoil knots K and K ′ in S3 . If K say is reflected (changing

right-hand to left-hand trefoil or vice versa) then the link changes but the fundamental rack remains the free product

of two trefoil racks.

Moreover the conclusion of theorem 1.5.2 only gives a homeomorphism between the links which may not respect

orientations of the components of the link or the ambient space. Consider an oriented link L . Then L has an inverse

L∗ where the orientations of each component are reversed. In section 2 we considered inverted racks where the new

binary operation is ab . The fundamental rack of the inverse link L∗ is the inverted rack Γ(L)∗ of the fundamental

rack Γ(L). If the orientation of space is reversed the mirror link L is obtained. The fundamental rack of the

link L∗ is isomorphic to the fundamental rack of the link L under an isomorphism induced by the space reversing

homeomorphism. It follows that the fundamental rack is not a complete invariant for oriented links L which are not

equivalent to their inverted mirror image.

We can avoid these difficulties and extend the theorem to general framed links in S3 by introducing orientations for

racks:

1.5.4 Definition An orientation for the fundamental rack Γ of a framed link in S3 , is a choice, for each

component (orbit of Γ), of generator of the (cyclic) stabiliser.

An oriented rack carries the extra information which enables the orientation of the components to be recreated from

the algebra. Using oriented racks, the main theorem extends to arbitrary framed links in 3–manifolds.

1.5.5 Theorem The oriented fundamental augmented rack is a complete invariant for oriented and semi-framed

links in closed connected 3–manifolds which contain no homotopy 3–sphere summands.

Proof Decompose the fundamental rack Γ(L) into a free product of indecomposable racks. By lemma 1.5.1 this

corresponds to the decomposition of Q0 into its connected summands. A similar decomposition applies to Γ(L′).

Now apply theorem 1.5.2 to each piece, and then the resulting homeomorphism carries each piece of L to the

corresponding piece of L′ , with determinate orientations. Thus the homeomorphism can be pieced together along

the separating spheres to yield the required homeomorphism. �

Remark The result can be extended to 3–manifolds which are not closed under the extra condition that each

connected summand of Q0 meets ∂N(M).

1.6. Invariants of Links
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We have shown that the fundamental rack is a complete invariant for irreducible links in S3 . It follows that,

theoretically at least, all invariants of such links can be derived from the fundamental rack. In this section we shall

briefly indicate how some old and new invariants are defined in terms of the fundamental rack.

The subject of rack invariants is enormous. Because a rack is such a simple algebraic object (as simple as a group),

there are an enormous number of “naturally occurring” racks, some of which we have mentioned in previous sections.

Each such rack gives rise to link invariants, and it follows that it is absurdly easy to define new (or apparently new)

invariants in this way.

We shall here consider two ways to define invariants:

(1) Representation invariants

(2) Functorial invariants

Representation invariants are defined by considering rack homomorphisms (representations) to ‘known’ racks, and

functorial invariants are defined by transforming the fundamental rack (by a functor) into a one of a class of racks

with more easily computable invariants.

A third method of defining invariants is given by the rack space of the fundamental rack. Any topological invariant

of this space is a fortiori a link invariant. These invariants are strongly connected with the concepts of cobordism

of links and the rack space, see [FRB1, FRB2], investigated in our future paper on the rack space.

Throughout the section, L will denote a semi-framed link and Γ its fundamental rack.

Representation invariants

Let X be any fixed rack. Then the set Ω = Hom(Γ, X) of representations (i.e. rack homomorphisms) of Γ in X is

a link invariant. If X has any extra structure then this set inherits similar extra structure. For example if X is a

topological rack (i.e. X is a topological space, the rack operation is continuous in both variables, and a �→ ab is a

homeomorphism for each b ∈ X ) then Ω is also a topological space the representation space of Γ in X .

Now suppose that L is a classical link (i.e. a link in S3 ) and suppose that D is a diagram for L . Then a representation

ρ ∈ Ω of Γ in X can interpreted in terms of the diagram D as a labelling of D . In other words each arc of D is

labelled by an element of X so that at each crossing the labels satisfy the rule c = ab where a, b, c are indicated

as in figure 1.4.4

Any extra structure on Ω has the obvious interpretation in terms of labels.

If X is a finite rack, then the set Ω of representations can be enumerated in a systematic manner by enumerating

all labellings satisfying the above rule. We conjecture that there exists a countable sequence {Xi} of finite racks

such that the sequence {Hom(Γ, Xi)} distinguishes all irreducible classical links.
Now if X is a quandle then there is always the trivial representation which is obtained by labelling each arc by

the same element. Therefore the crudest invariant with a quandle X is the existence or otherwise of a non-trivial

representation. If X is not a quandle there may be no representation at all and the crudest invariant is the existence

or otherwise of any representation.

1.6.1 Examples

Example 1 Conjugation racks

Let X be a conjugation rack (i.e. a union of conjugacy classes in a group G) then, by corollary 1.2.2, representations

of Γ in X are in bijective correspondence with representations (homomorphisms) of the associated group in G . In

the case when L is a classical link, the associated group is the fundamental group and this case has been extensively

studied in the literature, see for example the book of Burde and Zieschang [BZ]. The next example gives a specific

case.

Example 2 The Dihedral Rack.

Let L be a classical link and let X be the dihedral rack Rn . Representations in Rn may be described as follows:

let the arcs of any diagram of L be coloured with the n colours 0, 1, . . . , n−1 such that at each crossing if xa, xb, xc

are the three colours assigned to the arcs labelled a, b, c in figure 6.1 then the following equation holds;

xc ≡ 2xb − xa mod n
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If n is prime it is well known that these equations have a non-constant solution if and only if n divides Δ(−1), the
determinant of L .

If n = 3 this is the well known property of being 3–colourable. For instance the determinant of the trefoil is 3 and

of course the trefoil is 3–colourable.

In general a representation into any finite rack could be interpreted as a suitable “colouring scheme” for the diagram.

Example 3 The Alexander Rack

Let Λ be the ring of Laurent polynomials Z[t, t−1] in the variable t with integer coefficients. Any Λ−module has
the structure of a quandle with the rule ab := ta+(1− t)b. The equations needed for a representation to this quandle
are

xc = txa + (1 − t)xb

where the unknowns x correspond as before to figure 6.1. Let f(t) be an irreducible polynomial over the integers.

Then the equations above have a non-trivial solution with t a root of f if and only if f divides the Alexander

polynomial Δ(t). We shall consider a more substantial Alexander invariant later in the section.

Example 4 The Dodecahedral Rack

If X is the reflection rack whose elements are the edges of a dodecahedron, then the existence of a representation can

used to distinguish knots which have determinant ±1 and so have no non trivial representation to Rn . An example

is 10124 , see Joyce [J] for details and Azcan [Azc] for generalisations using Coxeter groups.

All the above examples have used quandles. The remaining three examples of representation invariants use non-

quandle racks.

Example 5 The Cyclic Rack

Consider the cyclic rack Cn of order n . Define the total writhe of a component of a link to be the framing number

of the component plus the sum of its linking numbers with the other components. It is easy to see that the link has

a representation to Cn if and only if the total writhe of each component is divisible by n .

Example 6 The (t, s)–Rack

The (t, s)–rack is a generalisation of the Alexander rack defined in 1.3 example 6. The two dimensional real plane

has the structure of a Λs module if t, s act linearly as the matrices(
u 0
0 u

) (−u −u
1 1

)
where u �= 0.

Let X denote this rack. If we seek a non-trivial representation of Γ in X , then we find a number of linear equations

in u have to be satisfied. For instance if we take the standard diagram representing the trefoil and with writhe 3

then the existence of a representation depends on the solution of the equations

ux1 − y1 − uz1 − uz2 = 0
ux2 − y2 + z1 + z2 = 0
uy1 − z1 − ux1 − ux2 = 0
uy2 − z2 + x1 + x2 = 0
uz1 − x1 − uz1 − uz2 = 0
uz2 − x2 + y1 + y2 = 0.

The polynomial which is the determinant of the matrix of these equations is an invariant of the framed knot.

A more general Λs –module structure on a 2–dimensional vector space is given by the matrices(
u 0
0 u

) ( −u− x −y(u+ x)
y−1(1 + x) 1 + x

)
where u and y are non-zero. This leads to a 3–variable polynomial invariant. We have not yet decided whether

these “new” polynomials contain any really new information.

These polynomials are invariants of the framed knot or link. However there are corresponding invariants of the

unframed knot or link, see remark 6.3 below

Example 7 Matrix racks

There is a way of associating a rack to any matrix or affine group and this leads to whole families of new and

computable polynomial invariants for knots and links.
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The general construction is this: Given a set X with an action by the group G , we can define a rack structure on

G×X by the formula

(g, x)(h,y) := (h−1gh, x · h). (∗)
If we apply this in the case when G is a matrix or affine group and X the corresponding vector space, then the

formula gives a rack structure on (some subset of) a linear space.

A simple example is given by the group of dilations acting on the plane:(
x
y

)
�→

(
a 0
0 a

) (
x
y

)
+

(
b
c

)
a, b, c ∈ R a �= 0

then the rack structure is given by

(a, b, c, x, y)(d,e,f,z,t) = (a, db− ae+ e, dc− af + f, dx+ f, dy + e)

where a, b, c represent the element of the group as in the equation above, and x, y are the coordinates of the point

of the plane.

The formula can be used to define several polynomial invariants including the multi-variable Alexander polynomial

(in fact this polynomial comes from an even simpler example: the group of affine transformations of a 1–dimensional

space, see example 3 below 1.7.6 and Devine [Dev] for details).

1.6.2 Remarks

(1) When using a non-quandle rack, the invariants found for a classical link will depend in general on the framing

of the link (i.e. the writhe of the diagram). However there is a way to define an infinite family of corresponding

invariants of the unframed link: we choose arbitrarily integers corresponding to the components of the link and

then we choose to frame the link with the unique framing given by setting the writhes equal to these integers.

For each choice of integers, we have in this way an invariant of the unframed link.

(2) The general construction for a rack given in (∗) above can be further generalised. Let X be a set on which

a rack Y acts (i.e, for each y ∈ Y we have a bijection x �→ x · y of X such that yz acts like zyz , where

x · z means the pre-image of x under the action of z ), then almost the same formula gives a rack structure on

Y ×X
(y, x)(t,u) := (yt, x · t).
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Functorial Invariants

Invariants of links can be obtained by applying a functor to the fundamental rack. One advantage of this method of

defining invariants is that they automatically apply to arbitrary racks and not just to classical racks.

1.6.3 Examples

Example 1 The Associated Group

The associated group functor is an example. However, as we have seen in proposition 1.3.2, this leads to an existing

topological invariant π2(Q,Q0), the associated group of the link.

Example 2 The Alexander module

The following is, we believe, a new invariant which generalises the definition of the Alexander polynomial of a knot

or link.

Let Λ be the ring of Laurent polynomials Z[t, t−1] in the variable t with integer coefficients. As we have seen above

any Λ–module has the structure of a quandle with the rule ab := ta+(1− t)b. This means that MOD , the category

of Λ–modules is a subcategory of RACKS , the category of racks. There is a functor

A : RACKSaMOD

the Alexander functor, which is a left adjoint to the inclusion defined as follows;

If X is a rack let A(X) be the Λ–module with generators {ua|a ∈ X} and relations
uab = tua + (1− t)ub a, b ∈ X.

In the case of classical links the Alexander functor takes the fundamental rack into the usual Alexander module.

However our invariant is defined for an arbitrary codimension 2 link.

For the generalisation to Alexander modules with many variables see Devine.

Example 3 The (t, s)–module

The Alexander module can be generalised to give a non-quandle module by replacing Λ by Λs in the last example

and modifying the relations to

uab = tua + sub a, b ∈ X.

Example 4 Verbal Groups

The associated group functor can be generalised.

Let X be a rack. We consider the group with generators {gx|x ∈ X} and relations
gab = w(ga, gb)

where w(x, y) is a fixed word in two variables. In order for the group to be well defined, w has to satisfy two

conditions which are the analogues of the rack laws. Examples are w = y−1xy which yields the associated group

and w = yx−1y which yields the associated core group. Kelly [Kel] has proved that these are the only such

examples. However, as Kelly shows, there is a further generalisation: replace gx by a fixed set of say n generators

and w by n words in 2n variables; there are then many new examples. For instance in the case n = 2, Kelly found,

in a computer search, more than 500 new examples including several infinite families.

There is much work to be done to categorise and to calculate these new invariants.

1.7. Racks and Braids

In this section we shall explore the relationship between racks and braids. We shall show that there is a faithful

representation of the braid group Bn on n strings in the automorphism group Aut(FRn) of the free rack on n

elements. This representation can be used to define and to calculate link invariants. Moreover a classical result

of Artin can be adapted to characterise the image of the represention, and we shall apply this result to give a

characterisation of the fundamental rack of a link in a 3–manifold.

We call a rack classical if it is the fundamental rack of a link in S3 . We shall give separate characterisations for

classical racks and for the fundamental augmented racks of links in general oriented 3–manifolds. These results

complement the main classification theorem of section 5.

R.Fenn 33



Invariants of Links Racks and Braids

The braid groups

Let Ln : {P1, . . . , Pn} ⊂ D2 be a fixed link comprising n points in the interior of the 2–disc. Let L+
n be the framed

version of Ln , which we can think of as comprising n standard little discs which are reduced copies of D2 .

A braid on n strings is an equivalence class of links β : A ⊂ D2× I , where A comprises n arcs each of which meets

every level D2 × {t} in a single point, and such that β ∩ (D2 × {i}) = Ln for i = 0, 1. The equivalence is isotopy

through similar links. Similarly a framed braid is an equivalence class of framed links of the same type, such that

β ∩ (D2 × {i}) = L+
n for i = 0, 1.

It is well known that braids on n strings form a group the braid group Bn , with composition defined by stacking

two braids one above the other. Similarly, framed braids form the framed braid group FBn . A braid or framed

braid determines a permutation π ∈ Sn of {P1, . . . , Pn} by following the strings from top to bottom, and this defines

surjective homomorphisms Bn → Sn and FBn → Sn .

Now an unframed braid has a standard framing defined by transporting the little discs down the strings, keeping

them parallel throughout. In general a framed braid can be regarded as a braid with an integer attached to each

string, which counts the total rotation of the little disc as the string is traversed from top to bottom. The standard

framing corresponding to zeros. In composition the integers on the two pieces of the string are added.

Thus FBn is the wreath product Z��Bn that is the semi-direct product of Zn with Bn where the action of Bn

on Zn is given by permuting the factors using the homomorphism of Bn to Sn .

The representations of Bn and FBn

Let β be a framed braid. We shall consider the fundamental racks Γ(L+
n ) and Γ(β). Now a braid can be ‘unbraided’

and any framing can be ‘untwisted’ hence, as a link, β ∼= L+
n × I . Therefore the fundamental racks are isomorphic.

Moreover the fundamental rack Γ(L+
n ) can be identified with the free rack FRn = FR{a1, a2, . . . , an} on n generators

as pictured:
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Figure 1.7.24 Generators of Γ(L+
n )

Thus we have isomorphisms

FRn = Γ(L+
n )

i0−→ Γ(β)
i1←− Γ(L+

n ) = FRn

where i0, i1 are induced by inclusions of L+
n in β at D2 × 0, D2 × 1 respectively. The composition i−1

1 i0 is an

isomorphism

β∗ : FRn → FRn

of the free rack.

It is easy to check that β �→ β∗ is a homomorphism

λ : FBn → Aut(FRn).

In theorem 1.7.3 below we shall show that λ is a faithful representation of the braid groups in the automorphism

group of the free rack.

Example
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Let σi be the braid which is the simple right handed interchange of the ith and (i + 1)st strings and which keeps

the other strings fixed. Let σi have the standard framing.
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Figure 1.7.25 The braid σi

Then σi induces the automorphism σi∗ ⎧⎨
⎩

ai �→ aai

i+1

ai+1 �→ ai

aj �→ aj j �= i, i+ 1.

The automorphism β∗ for any braid β with standard framing can now be calculated since β can be written as a

word in the σi with σ−1
i represented by a left handed interchange.

The general form of an automorphism of FRn is ai �→ awi

π(i) where π is a permutation of the set {1, 2, . . . , n} and wi

for i = 1, 2, . . . , n are words in the free group F (a1, . . . , an), which satisfy certain conditions obtained by considering

the analogue of Nielsen theory for racks. This theory is given in an appendix. We shall not need to consider these

conditions in detail in this section. In general the above formula defines a monomorphism of FRn to itself, (indeed

the same formula defines a monomorphism of the free group) and this is also proved in the appendix, see corollary

1.8.6.

1.7.1 Example Let β = σ−1
1 σ2σ

−1
1 be the following illustrated braid, again with standard framing:

β

...........................................................................................................................................................

........................................................................................................................................................

...........................................................................................................................................................

Figure 1.7.26 σ−1
1 σ2σ

−1
1

then β∗ is given by

π = (13) w1 = a−1
2 a−1

1 a2 w2 = a−1
2 a1a2a3a

−1
2 a−1

1 a2 w3 = a2.

For a braid with non-standard framing, we decompose the braid into interchanges and twists (the identity braid but

with one string, say the i–th, framed ±1). The automorphism for a twist on the i–th string is{
ai �→ a±ai

i

aj �→ aj j �= i.

Later in the section we shall show how to read the automorphism β∗ from the diagram, without decomposing β into

elementary interchanges and twists.

Similar considerations apply to unframed braids, and we have the representation λ : Bn → Aut(FQn) where FQn is

the free quandle on n generators. An element of Aut(FQn) is again defined by a permutation π and n words wi but

now the words wi are only determined up to premultiplication by powers of aπ(i) (because a
aπ(i)

π(i) = aπ(i) in a quandle).

Note that FQn is the associated quandle to FRn and that the natural homomorphism Aut(FRn) → Aut(FQn) is

given by using the same permuation π and words wi . Further we can regard Aut(FQn) as a subgroup of Aut(FRn)

by choosing to premultiply wi by the unique power of aπ(i) which makes the total power of aπ(i) in wi zero. A

general element of Aut(FRn) is then an element of Aut(FQn) together with an integer for each wi giving the total

degree of aπ(i) . Thus we have another wreath product

Aut(FRn) = Z��Aut(FQn)

and the homomorphism λ : FBn → Aut(FRn) carries one wreath product structure into the other.

Finally we have connections with the free group Fn on n generators. The associated groups of both Γ(Ln) and

Γ(L+
n ) can be identified with the fundamental group π1(D

2
0) of the disc minus the n little discs, which is the free

group Fn = F (∂a1, ∂a2, . . . , ∂an) on the n loops illustrated:
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. . .

We shall usually use the symbols a1, a2, . . . , an for the generators of Fn , rather than the more accurate ∂a1, ∂a2, . . . , ∂an ,

whenever no confusion is likely to arise. Given a possibly framed braid β , then β∗ induces an automorphism β∗�
of the free group Fn which can be described in the same way as β∗ using the fundamental groups of β and Ln in

place of the fundamental racks. Thus we have further representations of Bn and FBn in the automorphism group

Aut(Fn) of the free group.

In summary we have the following commuting diagram.

Bn
λ−→ Aut(FQn) −→ Aut(Fn)⏐⏐� ⏐⏐�

Z��Bn
λ−→ Z��Aut(FQn)

‖ ‖
FBn Aut(FRn)

A classical result of Artin shows that Bn → Aut(Fn) is injective. In fact all the maps in the diagram are injective.

Remark It can be readily seen that the homomorphism Aut(FQn) → Aut(Fn) is injective. This is because the

image of the automorphism ai �→ awi

π(i) in Aut(Fn) is given by ai �→ w−1
i aπ(i)wi and then aπ(i) and wi are determined

by this word in the free group up to premultiplication of wi by a power of aπ(i) .

The Artin condition

Definition The permutation π ∈ Sn and words wi ∈ Fn , i = 1, 2, . . . n are said to satisfy the Artin condition

if the identity
n∏

i=1

ai =

n∏
i=1

w−1
i aπ(i)wi

holds in the free group. In this case, we say that the homomorphism g : FRn → FRn defined by ai �→ awi

π(i) is Artin.

In theorem 1.7.3 below, we shall show that Artin homomorphisms are in fact automorphisms.

For example in 1.7.1 above

n∏
i=1

w
−1
i aπ(i)wi

= (a−1
2 a1a2 a3 a

−1
2 a

−1
1 a2)(a

−1
2 a1a2a

−1
3 a

−1
2 a

−1
1 a2 a2 a

−1
2 a1a2a3a

−1
2 a

−1
1 a2)(a

−1
2 a1 a2)

= a1a2a3.

A similar definition works for FQn since the words w−1
i aπ(i)wi are well defined by the automorphism.

1.7.2 Lemma An automorphism g ∈ Aut(FRn) or Aut(FQn) determined by a braid or framed braid is Artin.

Proof The element ∂a1∂a2 · · · ∂an of the free group regarded as an element of π1(D
2
0) is represented by the

boundary ∂D2 of the disc. But, from the definition of the induced automorphism of the free group, this element

maps to itself, since ∂D2 can be homotoped down ∂D2 × I outside the braid, from top to bottom.
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But the right hand side of the Artin condition is precisely the image of this element under the induced automorphism.

�

1.7.3 Theorem An Artin homomorphism is an automorphism. Moreover the homomorphism λ : FBn →
Aut(FRn) defined above is injective and the image of λ consists precisely of Artin automorphisms.

Remark By the commuting diagram given earlier, the theorem is equivalent to the classical result of Artin, see

Birman [Bir]; theorem 1.9, where a combinatorial proof can be found. However, the rephrasing of the result in terms

of racks has an advantage because it leads to a simple geometric proof along the lines of the main result of section 5.

Proof To prove the theorem we need to show that if g is an Artin homomorphism of FRn to itself then there is a

unique braid β such that β∗ = g . We shall start by proving the there is a homeomorphism h of D2
0 (i.e. D2 with n

little discs around P1, P2, . . . , Pn removed) such that h|∂D2 = id and h∗ = g . Moreover h is unique up to isotopy.

To prove this we shall use the 2–dimensional version of Waldhausen’s theorem [Wal]; theorem 13.1. A homeomor-

phism h of D2
0 is determined up to isotopy by its effect on π1(D

2
0) = Fn and the peripheral structure. But the

elements a1, a2, . . . , an ∈ Γ define a base path system for D2
0 (see the proof of theorem 1.5.2) and their images

g(a1), g(a2), . . . , g(an) another base path system. Moreover by corollary 1.8.6 g induces a monomorphism g� of

π1(D
2
0) to itself and we have the peripheral structure given by the inner loops ∂a1, ∂a2, . . . , ∂an and the outside loop

∂a1∂a2 · · · ∂an which is the image in As(Γ) of a1a2 · · ·an . Thus the n inner loops are mapped by g� to correspond-

ing inner loops in the other system and the Artin condition says precisely that the outer loop maps to itself. Thus

by the ‘Waldhausen’ theorem quoted there is a homeomorphism h , unique up to isotopy, such that h|∂D2 = id and

h∗ = g .

The connection with braids is well known. We extend h to a homeomorphism D2 → D2 by inserting the little discs

(which are permuted by parallel translations). Then there is an isotopy relative to the boundary of the identity to h

and this isotopy restricted to the little discs gives a braid β such that β∗ = g . This sets up an isomorphism between

the braid group and the group of isotopy classes of homeomorphisms of D2 which satisfy the same conditions as h ,

therefore β is unique. �

Reading the automorphism from the braid

We now give the promised recipe for reading the automorphism β∗ from the braid β . Assume that we have a diagram

for the braid and assume first that the framing is standard. Orient the strings of the braid downward and label the

fixed points at the top of the braid P+
1 , P

+
2 , . . . , P

+
n . In a similar fashion label the fixed points at the bottom of the

braid P−1 , P
−
2 , . . . , P

−
n .

Starting at the bottom of the braid label the arc starting at P−j by aj , j = 1, 2, . . . , n . Now continue up the braid

and label arcs which start at a crossing points using the rules for labelling arcs given in section 4. The labels are all

elements of the free rack FR(a1, a2, . . . , an).

Suppose now that the top arc of the string which started at P−j finishes at P+
i with label aw

j . Then put wi = w

and π(i) = j . In other words the label on P+
i is awi

π(i) , and the automorphism can be read from the top labels, as

we see from the following example.
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Example We shall check the rule for the braid of example 1.7.1:

β

β∗

{ a1 a2 a3
↓ ↓ ↓
a b c

a = a
a

a2
1

3 = a
a2a1a2
3

b = aa
2 = a

a2a1a2a3a2a1a2
2

c = a
a2
1

............................................................................... ............................................................................

........................................................................................................................................................

...........................................................................................................................................................

a1 a2 a3

β∗

{
↓ ↓ ↓
b c aa2

1

b = a
a

a2
1

3 = aa2a1a2
3

β
c = ab

2 = aa2a1a2a3a2a1a2
2

a1 a2 a3

For general framings, we correct the framing of the diagram by inserting little twists (see lemma 4.5), and use the

same method. By the results of section 4 (see in particular figures 3 to 6) it makes no difference where the little

twists are inserted, or how the braid is respresented as a diagram.

To prove that the method gives the correct result, we make the following observations:

(1) It gives the correct result for a braid which is a simple interchange (σi ) or a single twist. This is readily checked

by hand.

(2) The method gives a homomorphism μ : Bn → Aut(FRn).

To see this consider the effect of stacking the braid β′ on top of the braid β . If the i–th point at the bottom of

β is labelled ai and at the top is labelled awi

π(i) , then the labels at the top of the combined braid are obtained

from those for β′ by substituting awi

π(i) for ai . But this is precisely how the composition β′∗ ◦ β∗ of the two

automorphism of FRn is formed.

Since any framed braid can be decomposed into simple interchanges and twists, it now follows that λ = μ , i.e. the

method gives the correct result.

We can now give our characterisation of classical racks.

1.7.4 Theorem: Characterisation of classical racks

A rack is the fundamental rack of a framed link in S3 if and only if it has a primary presentation of the form

[ a1, a2, . . . , an : a1 = aw1

π(1), a2 = aw2

π(2), . . . , an = awn

π(n) ]

where π,w1, w2, . . . , wn satisfy the Artin condition.

Proof Let β be a framed braid. The closure C(β) of β is the link in S3 obtained by joining the top of the braid

to the bottom by n arcs ‘round the back’ with standard framing.

By a theorem of Alexander (see e.g. [2]) any framed link L : M ⊂ S3 can be represented as the closure C(β) of a

braid (in fact this can be done so that the framing of L is given by the standard framing of β though we shall not

need to use this fact).

Now we can read a presentation for the fundamental rack Γ(L) from the diagram for C(β) by the methods of

section 4. Moreover, by using the same lebels as in the above discussion, we see that Γ(L) has the presentation

[. . . , ai, . . . | . . . , ai = awi

π(i), . . .] where ai �→ awi

π(i) is the atomorphism of FRn induced by β . Thus Γ(L) has a

presentation of the required form by theorem 7.3.

Conversely suppose we are given a rack Γ with a presentation of this form then, again by theorem 7.3, there is a

braid β which induces the automorphism ai �→ awi

π(i) . Then the closure of β has fundamental rack isomorphic to Γ.

�

Remarks

(1) The theorem has content. For example any rack whose associated group has torsion is not classical.
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(2) There is a similar characterisation of the fundamental racks of semi-framed or unframed links in S3 . Here the

presentation has the same form but with extra relations a
aj

j = aj corresponding to the unframed components.

The proof is essentially the same.

(3) Markov’s theorem (see e.g. [2]) can be combined with the theorem to give an algebraic classification of classical

links. By Markov’s theorem, any two braids which have isotopic closures are related by a series of moves.

The resulting presentations of the fundamental rack are therefore also related by a series of moves through

presentations of the same form. We leave the details to an interested reader.

Links in general 3–manifiolds

We now adapt the last result to give an algebraic characterisation for the fundamental augmented rack of a link in

any closed orientable 3–manifold. As at the end of section 4, we shall regard the 3–manifold as given by surgery on

a link in S3 and by Alexander’s theorem we can represent a diagram for the surgery curves together with the actual

link as the closure of a braid β , with t ‘red’ strings and n ‘black’ strings, where the closures of the ‘red’ strings

represent the surgery curves and the ‘black’ the link curves. By a suitable conjugacy of the braid, we may suppose

that the t ‘red’ strings start (and finish) at the t right-most positions.

Let π ∈ Sn be the permutation given by the black strings and σ ∈ St the permutation given by the red strings.

Denote by π|σ the permutation in Sn+t of all n+ t strings.

We need to decompose σ into its cycle decomposition. By a further conjugacy of the braid we can suppose that this

decomposition is in fact of the form

σ = (1, 2, . . . , l1)(l1 + 1, l1 + 2, . . . , l2) · · · (lp−1 + 1, . . . , lp).

Suppose that β induces the automorphism

ai �→ awi

π(i) i = 1, 2, . . . , n

bi �→ bzi

σ(i) i = 1, 2, . . . , t

of the free rack FRn+t , where we have used b1, b2, . . . , bn for the last t generators in order to distinguish the surgery

strings from the genuine link strings. Note that wi and zi are words in Fn+t = F (a1, . . . , an, b1, . . . , bt).

We can now read off an augmented presentation of the fundamental augmented rack of L using the recipe given at

the end of section 4.

SP The primary generators {a1, a2, . . . , an} .
SO The operator generators {b1, b2, . . . , bt} .
RP The primary relators {ai = aπ(i), i = 1, 2, . . . , n} .
RO The operator relators {bi ≡ bσ(i), i = 1, 2, . . . , t} , together with the p further operator relators

{zl1zl1−1 · · · z1, zl2zl2+1 · · · zl1+1, . . . , zlpzlp+1 · · · zlp−1+1}.
The last set of operator relators are the ones which come from reading around the surgery curves noting undercross-

ings.

The following theorem is proved in a similar way to the last theorem:

1.7.5 Theorem: Characterisation of fundamental augmented racks in 3–manifolds

An augmented rack is the fundamental rack of a framed link in a closed oriented 3–manifold if and only is it has

a presentation of the form listed above such that the permutation π|σ and the words w1, w2, . . . , wn, z1, z2, . . . , zt

satisfy the Artin condition.
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Remarks

(1) Again there is a semi-framed version of the theorem, which we leave the reader to formulate.

(2) Again the theorem can be combined with a ‘Markov’ theorem to give an algebraic classification of links in terms

of moves through presentations of the same type. The appropriate theorem here is the extension of Markov’s

theorem to general 3–manifolds contained in Lambropoulou’s thesis [21].

Invariants

The connections between braids and racks can be used to define and calculate invariants of classical links. As with

all discussions of invariants in this paper, we shall content ourselves here with a brief outline of the methods and

return to discuss the subject in greater depth in future papers.

The key idea is an extension of an idea of Brieskorn [3; proposition 3.1]. Given any rack X , there is an action of the

automorphism group Aut(FRn) on X
n as follows. Let f ∈ Aut(FRn) and let x = (x1, x2, . . . , xn) ∈ Xn . Define jx

to be the unique rack homomorphism FRn → X such that ai �→ xi for each i . Then the action f∗ of f on Xn is

given by

f∗(x) := (jx(f(a1)), jx(f(a2)), . . . , jx(f(an))).

For an automorphism f ∈ Aut(FRn) which comes from a braid, f∗ has a simple interpretation: label the strings at

the bottom by the elements x1, x2, . . . , xn ∈ X , use the usual rules to carry the labels up the braid. Then the labels

at the top are jx(f(a1)), jx(f(a2)), . . . , jx(f(an)). That the two descriptions of the action coincide follows from the

method of reading the automorphism from the braid given earlier in the section.

Now let β be a fixed framed braid and let β∗ be the corresponding automorphism of FRn . Consider the closure

C(β) and let Γ be the fundamental rack of C(β). Then a representation of Γ in X is a labelling of C(β) by

elements of X i.e. an n–tuple (x1, x2, . . . , xn) ∈ Xn such that xi = jx(f(ai)) for each i , in other words a fixed point

of f∗ . The following result now follows quickly.

1.7.6 Proposition The set of representations Ω = Hom(Γ, X) is in natural bijection with the fixed point set of

f∗ .

Remark This result can be extended to a larger class of racks. Let f ∈ Aut(FRn) and let ∼ be the smallest

congruence on FRn such that x ∼ f(x) for all x ∈ FRn . Define the almost classical rack FRn/f to be FRn

quotiented out by the congruence ∼ .
The proposition applies to almost classical racks, because a representation ρ of FRn/f in X determines the n–tuple

x = (ρa1, ρa2, . . . , ρan) such that f∗(x) = x , and conversely.

The usefulness of the result is best demonstrated by examples:

Example 1 The extended Burau representation

Let Λ be the ring of Laurent polynomials Z[t, t−1] in the variable t with integer coefficients and with rack operation

ab = ta+(1− t)b . Then the action of Aut(FRn) on X
n = Λn is an extension of the Burau representation and gives

a representation B : Aut(FRn)→ GLn(Λ).

Now let f = λ(β) as before, then the fixed point set of f∗ is defined by the equation B(f)x = x (where B(f) is an

n× n matrix with entries in Λ). It follows that the eigenspace of B(f) with eigenvalue 1 is an invariant of the link.

From this we can obtain the usual Alexander polynomial of the link from the codimension one minors.

In fact substantially more invariants of B(f) than just this eigenspace are invariants of the link, since the matrix

determines the Alexander module, see example 4 below.

Example 2 The (t, s)–rack

We shall describe the extension of the above Burau representation to the ring Λs explicitly. The automorphism

group of the free rack Aut(FRn) is generated by permutation of the generators and elementary isomorphisms:{
ai �→ a

aj

i

ak �→ ak k �= i.

The corresponding matrices are permutation matrices and “elementary” matrices obtained from the unit matrix by

replacing the i–th diagonal entry by t and the (i, j)–th entry by s . If i = j then replace the i–th diagonal entry
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by s + t . In explicit examples, for instance the (2× 2) matrix examples of 6.2 example 6, the entries are regarded

as blocks and the blocks s and t replaced by the appropriate smaller matrices.

Again the eigenspace contains polynomial information and again we can deduce further invariants, see example 5

below.

Example 3 A sample matrix rack

Let X be the matrix rack (6.2 example 7) obtained by considering the action of the 1–dimensional affine group

x �→ ax+ b on R
1 . Then the rack structure on X is given by

(a, b, x)(c,d,y) = (a, cb− ad+ d, cx+ d).

The corresponding representation Aut(FRn) → Xn = R3n can be quickly written down explicitly as in the last

example, and is multilinear.

Several multivariable polynomials can be read from this representation including the multivariable Alexander poly-

nomial (Devine [8]).

Remark In all these examples there is link information contained in the eigenspaces other than that with eigenvalue

1, because they correspond to representations in the appropriate projectivised linear rack.

Functorial invariants

So far we have used the connection with braids to indicate how to read off representation invariants of almost classical

racks. But functorial invariants can also be read. The observation that we need is the following: Suppose we are

given a functor

F : RACKSaRACKS

and an automorphism f ∈ Aut(FRn). Let F(n) denote F(FRn), then by functoriality we have the induced

automorphism f
 : F(n)→ F(n) . Therefore if Γ = FRn/f then F(Γ) = F(n)/f
 .

Example 4 The Alexander module

The relevant functor here was defined in 6.3 example 2. Here F(n) is the free n–dimensional Λ module and f
 is

the Burau matrix B(f). It follows that all the invariants of B(f) which are invariants of the module F(n)/B(f)
are invariants of the link. For example we could take all the polynomials in the Smith normal form.

Example 5 The (t, s)–module

Once again we can generalise to the (t, s)–rack. Here B(f) is replaced by the (t, s) matrix described explicitly

in example 2 above (or in particular matrix representations, by the block matrix obtained by substitution) and

again many polynomials invariants of the link can be read. For example we can take one of the variables to be

the “variable” and the rest to be “fixed” and then consider the Smith normal form, which gives us in general n

multivariable polynomials.

1.7.7 Remark Racks and R–matrices

The representation of Aut(FRn) as permutations of X
n defined earlier restricts to a representation of Bn . In detail

this is defined as follows. There is a bijection T : X2 → X2 defined by T (a, b) := (b, ab) and further bijections

Ti : X
n → Xn for all n ≥ 2 and 1 ≤ i < n defined by Ti := Ii−1 × T × In−i−1 where Ii is the identity map on X i .

The representation Bn → Perm(Xn) of the braid group is then given by σi → Ti .

Now suppose that X is in fact a based module over a ring Λ then this representation is given by an “R–matrix”

with entries in Λ (cf. Kauffman [17] for details in the case of the Alexander rack).

The other examples of racks which are also modules given earlier in the paper also define R–matrices in this way.

This suggests the possibility of using the theory of racks to define 3–manifold invariants in the spirit of Reshetikhin

and Turaev [RT].
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2. Welds and welded links

2.8. Introduction

In this chapter we look at welded braids forming a group called the braid permutation group. This is an extension

of the braid group and by analogy we have welded links which extend the class of classical links.

We consider the subgroup of the automorphism group of the free group generated by the braid group and the

permutation group. This is proved to be the same as the subgroup of automorphisms of permutation–conjugacy

type and is represented by generalised braids (braids in which some crossings are allowed to be “welded”). As a

consequence of this representation there is a finite presentation which shows the close connection with both the

classical braid and permutation groups. The group is isomorphic to the automorphism group of the free quandle and

closely related to the automorphism group of the free rack. These automorphism groups are strongly connected with

invariants of classical knots and links in the 3–sphere.

Let Fn denote the free group of rank n with generators {x1, . . . , xn} and let AutFn denote its automorphism group.

Let σi ∈ AutFn, i = 1, 2, . . . , n− 1 be given by⎧⎨
⎩

xi �→ xi+1

xi+1 �→ x−1
i+1xixi+1

xj �→ xj j �= i, i+ 1.

and let τi ∈ AutFn, i = 1, 2, . . . , n− 1 be given by⎧⎨
⎩

xi �→ xi+1

xi+1 �→ xi

xj �→ xj j �= i, i+ 1.

As we saw in the first chapter the elements σi, i = 1, 2, . . . , n−1 generate the braid subgroup Bn of AutFn which

is well known to be isomorphic to the classical braid group of on n strings, and the elements τi, i = 1, 2, . . . , n− 1

generate the permutation subgroup Pn of AutFn which is a copy of the symmetric group Sn of degree n .

We shall call the subgroup BPn of AutFn generated by both sets of elements σi and τi, i = 1, 2, . . . , n − 1 the

braid–permutation group and this is the subject of this chapter.

This group is interesting for a variety of reasons.

Firstly, the elements of BPn can be pictured in a way that extends the well-known pictures for elements of the braid

group. These are braids in which some of the crossings are “welded” and the welded and unwelded crossings interact

in an intuitively simple way.

Secondly, there is a simple characterisation of the automorphisms in BPn . Let π ∈ Sn be a permutation and wi ,

i = 1, 2, . . . , n be words in Fn . Then the assignation

xi �→ w−1
i xπ(i)wi

determines a homomorphism of Fn to itself which is in fact injective (see 2.7). If it is also surjective (and hence

an automorphism) then we call it an automorphism of permutation–conjugacy type. The automorphisms of

permutation–conjugacy type define a subgroup PCn of AutFn which is in fact precisely BPn .

Thirdly, the pictorial definition of BPn as equivalence classes of welded braids leads to the following finite presentation

which includes the standard presentations for both Bn and Sn .

The generators are σi, τi , i = 1, . . . , n− 1, as above, and the relations are:{
σiσj = σjσi |i− j| > 1

σiσi+1σi = σi+1σiσi+1

The braid relations⎧⎨
⎩

τ2
i = 1

τiτj = τjτi |i− j| > 1
τiτi+1τi = τi+1τiτi+1

The permutation group relations
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⎧⎨
⎩

σiτj = τjσi |i− j| > 1
τiτi+1σi = σi+1τiτi+1

σiσi+1τi = τi+1σiσi+1

The mixed relations

Fourthly, BPn is isomorphic to the automorphism group AutFQn of the free quandle of rank n , and is closely

related to the automorphism group AutFRn of the free rack of rank n (the latter group is the wreath product of

BPn with the integers) and these groups are strongly connected with invariants of classical knots and links in the

3–sphere.

Finally the interpretation of elements of BPn as welded braids suggests a natural relationship with the singular

braid group SBn , of Birman et al., which has applications to the theory of Vassiliev invariants, [Bir2], [Kh].

Indeed these groups have a common subgroup (the braid group) and a common quotient.

The rest of this chapter is organised as follows. In section 2 we prove that the subgroups BPn and PCn are identical.

This is done by using a variant of the Nielsen theory for free groups. In section 3 we describe welded braid diagrams

and the group of welded braids (equivalence classes of diagrams under allowable moves). This is isomorphic to the

group presented above and in section 4 we prove that it is isomorphic to BPn . The proof is diagramatic: using the

results of section 2 and 3 we have to show that a welded braid which induces the identity automorphism of Fn can

be changed to the trivial braid by allowable moves. Finally in section 5 we interpret the results of previous sections

in terms of racks and quandles.

The presentation for BPn and the proof of this presentation given in this paper are closely related to results for

AutFRn given by Krüger [Kr]. However his context is rather different from ours and in particular there is no

interpretation in terms of diagrams. The results in section 2 of this paper are similar to results in [Ko] : our

automorphisms of permutation–conjugacy type are called pseudo-conjugations in [Ko].

2.9. Automorphisms of permuation–conjugacy type

The groups BPn and PCn were defined in section 1. The main result of this section is the equality of these two

groups:
2.9.1 Theorem BPn = PCn

Since the generators σi, τi of BPn are automorphisms of permuation–conjugacy type, BPn is a subgroup of PCn ;

thus we have to show that any automorphism of permuation–conjugacy type is a product of the “elementary”

automorphisms σi, τi . It is convenient to use rather different elementary automorphisms and it is also convenient to

use exponential notation for conjugacy.

Notation From now until the end of section 4, the notation xy will mean the product y−1xy .

Elementary automorphisms of permuation–conjugacy type
We shall call the automorphisms pi,k, sπ ∈ PCn given as follows, elementary automorphisms.

pi,k :

{
xi �→ xxk

i

xj �→ xj j �= i

sπ : xi �→ xπ(i) π ∈ Sn.

It is easy to see that pi,k, sπ are alternative generators for BPn indeed

σi = pi+1,iτi and τi = sti

where ti is the transposition (i, i+ 1) and

pi,k = τiτi+1 . . . τk−1σk−1τk−2 . . . τi if i < k

pi,k = τi−1τi−2 . . . τk+1σkτk . . . τi−1 if i > k.

(Note that products in these formulae are read from left to right.)
Thus to prove the theorem we have to prove that any automorphism in PCn is a product of the above elementary

automorphisms.

We shall use an adaptation of Nielsen theory following the treatment given in Lyndon and Schupp [LS] pages 4 to 17.

See also Humphries [Hum2] where a similar theory is developed and applied to the problem of complex monodromy.

R.Fenn 43



Invariants of Links Automorphisms of permuation–conjugacy type

Denote the reduced length of the word w ∈ Fn by l(w). We shall consider sets u = {u1, . . . , uk} of distinct elements
of Fn . We use the notation u−1 = {u−1

1 , . . . , u−1
k } for the (disjoint) set of inverses and u±1 = u ∪ u−1 .

A set u is called Nielsen reduced if the following conditions hold.

N0 If u ∈ u then u �= 1.

N1 If u,v ∈ u±1 and uv �= 1 then l(uv) ≥ max{l(u),l(v)} .
N2 If u,v,w ∈ u±1 and uv �= 1 and vw �= 1, then l(uvw) > l(u)− l(v) + l(w).

2.9.2 Lemma Let u = {u1, . . . , uk} be Nielsen reduced. If w = v1 · · · vr where vi ∈ u±1 and all vivi+1 �= 1 ,

then l(w) ≥ r .

Proof For each v ∈ u±1 let v0 be the longest initial segment of v that cancels in any product uv where u ∈ u±1

and let v1 be the longest final segment of v that cancels in any product vw where w ∈ u±1 . Note that v1 = (v−1)−1
0 .

Then we can write v = v0mv1 where by N2 l(m) ≥ 1.

So in the product w = v1 · · · vr there is always at least an irreducible subword m1 · · ·mr and the result follows. �

2.9.3 Corollary Let u = {u1, . . . , uk} be Nielsen reduced and suppose in addition that u generates Fn . Then

u±1 = x±1 where x is the basis {x1, . . . , xn} of Fn . (Note in particular that k = n .)

Proof Let the basis element xi be written as a product xi = v1 · · · vr where vi ∈ u±1 and all vivi+1 �= 1. Then

1 = l(xi) ≥ r . So r is forced to be unity and xi = vj for some j . �

2.9.4 Definition Sets of PC-type

Consider a permutation π ∈ Sn of {1, 2, . . . , n} and n words wi for i = 1, 2, . . . , n in the free group Fn . Corre-

sponding to this data is the set of n words xwi

π(i) in Fn , where i = 1, 2, . . . , n , obtained by permuting and conjugating

the generators. We shall call such a set of words a set of permutation–conjugacy type, or PC–type for short.

We shall also use this name for the set obtained by inverting some of the elements of this set.

Let u = {u1, u2, . . . , un} be a set of words of PC–type; we shall consider the following two double Nielsen

transfomations which preserve PC–type:

T1 replace ui by u
−1
j uiuj where j �= i ;

T2 replace ui by ujuiu
−1
j where j �= i .

2.9.5 Lemma Let u = {u1, u2, . . . , un} be a set of words of PC–type. Suppose that l(uiuj) < l(ui) then either

l(u−1
j uiuj) < l(ui) or l(uiuju

−1
i ) < l(uj) .

Proof We first observe that we cannot have l(ui) = l(uj) because then l(uiuj) < l(ui) implies that at least half

of ui, uj cancel in the product and the middle letter of ui cancels with that of uj . But this is impossible since the

words are of PC–type and their middle letters are different generators.

Now assume that l(uj) < l(ui). We shall show l(u−1
j uiuj) < l(ui).

Write ui = w−1xw where x is one of the generators x1, x2, . . . xn , or an inverse. Then since w has length greater

than half of uj , more than half of uj cancels with w , i.e.

w = ya uj = a−1z where l(z) < l(a)

Therefore

l(u−1
j uiuj) = l(z−1aa−1y−1xyaa−1z) = l(z−1y−1xyz) < l(a−1y−1xya) = l(ui).

In the case when l(uj) > l(ui) then l(uiuj) < l(uj) and we can show in a similar way that l(uiuju
−1
i ) < l(uj). �

2.9.6 Lemma Let u = {u1, u2, . . . , un} be a set of words of PC–type. Then u can be carried by a sequence of

moves T1 and T2 above to a set v of words of PC–type which is Nielsen reduced.

Proof The condition N0 is automatically satisfied so assume that u does not satisfy N1. Then there is a pair

u,v ∈ u±1 such that l(uv) < l(u) and uv �= 1. Then by the last lemma there is a transformation T1 or T2 which

reduces
∑
l(ui). Therefore if we apply T1 and T2 until

∑
l(ui) is minimum the condition N1 will hold.

Now consider a triple u,v,w ∈ u±1 such that uv �= 1,vw �= 1. Then by N1 we have l(uv) ≥ l(v) and l(vw) ≥
l(v). It follows that that part of v which cancels in the product uv is no more than half of v . Likewise

that part of v which cancels in the product vw is also no more than half of v . So we can write in reduced

form u = ap−1,v = pbq,w = q−1 . Notice that b �= 1 because v is one of a set of PC–words and hence has

odd reduced length. So uvw = abc is reduced and l(uvw) = l(u) − l(v) + l(w) + l(b) > l(u) − l(v) + l(w).

�
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2.9.7 Corollary A set of words u = {u1, u2, . . . , un} of PC–type forms the basis of a free subgroup of Fn of rank

n and hence the endomorphism of Fn defined by xi �→ ui is injective.

Proof By the last lemma we can assume without loss that our set of words is Nielsen reduced and the result now

follows from lemma 2.2. �

Proof of theorem 2.1

As remarked near the beginning of the section we have to prove that if f is an automorphism of Fn of permutation–

conjugacy type then f is a product of elementary automorphisms.

Let f(xi) = ui then {ui} is a set of words of PC–type. Now composition of f with the elementary automorphism

pi,k for i �= k realises a double Nielsen transformation on {ui} . (If i = k the automorphism has no effect.)

Therefore by lemma 2.6 we may assume that {ui} is Nielsen reduced. But by corollary 2.3 this implies that these
words are a permutation of the words xi , i = 1, . . . , n and therefore f is the elementary automorphism sπ for

suitable π . �

2.10. Welded braids

A welded braid diagram on n strings is a set of n monotone arcs from n points on a horizontal line at the top

of the diagram down to a similar set of n points at the bottom of the diagram. The arcs are allowed to cross each

other either in a “crossing” thus:
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An example (on three strings) is illustrated in figure 2.10.27 below:

β

•

.......................................................................................................................
..................................................................................................................

...................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................

Figure 2.10.27 A welded braid diagram

It is assumed that the crossings and welds all occur on different horizontal levels; thus a welded braid diagram

determines a word in the atomic diagrams illustrated and labelled in figure 2.10.28
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Figure 2.10.28 The three atomic braids
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Convention Braids are read from top to bottom and words are read from left to right.

Thus figure 2.10.27 determines the word τ1σ2σ1 which is read: first τ1 then σ2 then σ1 .

We identify braid diagrams which determine the same word in the atomic diagrams (in other words diagrams which

differ by a planar isotopy through diagrams).

The set of welded braid diagrams (on n strings) forms a semi-group WDn with composition given by “stacking”: if

β1 and β2 are diagrams then β1β2 is the diagram obtained by placing β1 above β2 so that the bottoms of the arcs

of β1 coincide with the tops of the arcs of β2 . There is an identity in WDn , namely the diagram with no crossings.

The notation for atomic diagrams is intended to be confused with the notation for the generators of BPn because

we now consider the homomorphism Φ : WDn → AutFn , with image BPn , defined by mapping σi and τi to the

automorpisms with the same names and σi to σ
−1
i .

Thus a welded braid diagram β determines an automorphism Φ(β) of Fn (of permutation–conjugacy type). There

is a convenient way to read Φ(β) from the diagram β which we now describe.

Reading the automorphism from the diagram

Label the strings at the bottom of the diagram by the generators x1, x2, . . . , xn in order and continue to label the

subarcs between crossings moving up the diagram and using the following rules (figure 2.10.29):
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a a ab b b

aa bb ab ba

Figure 2.10.29 Rules for labelling subarcs

In figure 2.10.29 we have used the convention that x means x−1 . This is useful to avoid double exponents. The

top of the strings are thus labelled by words w1, w2, . . . , wn and the automorphism determined by the diagram is

given by xi �→ wi for i = 1, . . . , n . An example of this process in given in figure 2.10.30, where the automorphism

corresponding to the diagram in figure 2.10.29 is calculated.

•
β

................................................................................................... ...............................................................................................

.............................................................................................................................................................................................

..................................................................................................................................................................................................

Φ(β)
{ x1 x2 x3

↓ ↓ ↓

w1 x2 x
x2
1

w1 = x
x

x2
1

3 = x
x2x1x2
3

x1 x2 x3

Figure 2.10.30

To see that this process gives the correct result it is merely necessary to observe that it is correct for elementary braids

(which follows at once from the rules in figure 2.10.29) and that the process gives a homomorphism WDn → AutFn .

To see this consider the effect of stacking the braid β′ on top of the braid β . If the i–th point at the bottom of β is

labelled xi and at the top is labelled wi , then the labels at the top of the combined braid are obtained from those

for β′ by substituting wi for xi . But this is precisely how the composition Φ(β′)Φ(β) of the two automorphism of

Fn is formed.

Allowable moves on diagrams

We now consider the local changes that can be made to a welded braid diagram β which leave the automorphism

Φ(β) unchanged. Four such moves are given in figure 2.10.31
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Figure 2.10.31

These are moves involving two or three strings which do not mix welded and unwelded crossings. It is easy to check

that these leave the induced automorphism unchanged. The first two moves in figure 2.10.31 are Reidemeister moves

from knot theory. If we identify welded braid diagrams that differ by these Reidemeister moves then we can embed

the group of braids into the semigroup of welded braid diagrams. If we also identify those braids that differ by the

second two moves then we can give welded braid diagrams the structure of a group.
However there are more local changes that do not change the assigned automorphism. In figure 2.10.32 we present

two of them.
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Figure 2.10.32

In addition there are moves of a general class involving four strings which allow non-interferring crossings to be

reordered. One such move is illustrated in figure 2.10.33.
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Figure 2.10.33

We call the moves illustrated in figure 2.10.31-33 (and moves similar to figure 2.10.33) allowable moves and we

define a welded braid to be an equivalence class of welded braid diagrams under allowable moves. Welded braids on

n strings form a group which we shall denote WBn with composition given (as in WDn ) by stacking. The inverse

of a welded braid β is obtained by reflecting β in a horizontal line. That this is an inverse follows from the first and

third moves in figure 2.10.31.
There are other local moves of the same type as those given above which also do not change the induced automorphism.

For instance the moves obtained from the moves in figure 2.10.32 by reflection in horizontal or vertical lines. However,

as the reader can readily check, these other moves can all be obtained as suitable sequences of the allowable moves

given in figures 2.10.31-33 . In figure 2.10.34 below, we show as an example how this can be done for a move of the

same type as the first in figure 2.10.32
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All the allowable moves and consequent moves are similar to Reidemeister moves, and therefore one could be forgiven

for thinking the following. Welded braids can be defined as the 2–dimensional projection of 3–dimensional welded

braids and two welded braid diagrams give the same automorphism of Fn if they are projections of equivalent welded

braids — where the equivalence among 3–dimensional welded braids is a natural equivalence, for example isotopy in

3–space.

That this is not so can be seen by observing that the local change pictured in figure 2.10.35 changes the assigned

automorphism.
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Figure 2.10.35 Two welded braids which do not induce the same element of AutFn .

There is however a way to regard welded braids as 3–dimensional objects if desired. Think of the braids as comprising

strings embedded in half of 3–space, namely the half above the plane of the diagram, and think of the strings as free

to move above the plane except at the welds, which are to be regarded as small spots of glue holding the strings

down onto the plane. Thus strings are not allowed to move behind welds, as happens in figure 2.10.35

We can now state the main result of the paper:

2.10.2 Main Theorem Two welded braid diagrams determine the same automorphism of Fn if and only if they

can be obtained from each other by a finite sequence of allowable moves.

The proof of the theorem comprises the next section. We finish this section by remarking that the theorem implies

the presentation for BPn given in section 1. It is not hard to see that the group WBn of welded braids has this

presentation. The elementary braids σi and τi generate WBn and the allowable moves each correspond to one of

the relations listed in section 1. For example the moves in figure 2.10.32 correspond to the second and third “mixed

relations” respectively.

Indeed welded braids can be regarded as a convenient way of illustrating this presentation.

Now we have the homomorphism Φ : WDn → AutFn with image BPn . Since allowable moves leave the induced

automorphism unaltered, this factors, via a homomorphism WBn → AutFn , with the same image. The theorem

implies that this homomorphism is injective and hence WBn and BPn are isomorphic. Moreover the generators of

WBn and BPn (with the same names) correspond, hence BPn has the presentation given.

æ

2.11. Proof of the main theorem

In order to prove the main theorem (Theorem 2.10.2) it is sufficient to show that any welded braid which induces the

identity automorphism of the free group Fn can be reduced to the identity braid by a finite sequence of allowable

moves.

Let C = {xw
i |w ∈ Fn} denote the set of conjugates of generators of Fn . If a = xw

i is in C let L(a) = l(w) where

w is chosen to have minimal length l(w). Note that for example xxiw
i = xw

i .

If a, b belong to C then we write a ≺ b if L(ba) < L(b) and we write a ≺ b if L(ba) < L(b). The following technical

lemmas will be useful.

Let a, b, c be arbitary elements of C .

2.11.1 Lemma If a ≺ b (a ≺ b) and a = xw
i for some w then b = xuxiw

j (b = xuxiw
j ) for some u where uxiw

(uxiw ) is reduced.

Proof If b = xv
j then ba = xvwxiw

j . If l(vwxiw) < l(v) it follows that v ends in xiw . The case when a ≺ b is

similarly proved. �

2.11.2 Lemma If a ≺ b and b ≺ c then a ≺ c and a ≺ cb .
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Proof If a = xw
i then by the above b = xuxiw

j and c = x
vxjuxiw
k . So ca = x

vxjuw
k , cba = xvuw

k and cb = xvuxiw
k .

Using the fact that l(xiw) > l(w) the result follows.
2.11.3 Lemma If a ≺ b and b ≺ c then a ≺ c and a ≺ cb .
Proof The proof is similar to 4.2. �

2.11.4 Lemma If a ≺ b , c ≺ b and a �= c then L(a) �= L(c) . If L(a) < L(c) then a ≺ c and L(bca) < L(b) .
Proof Let a = xw

i , c = xu
j in reduced form. From the hypotheses it follows that the exponent of b ends in xiw

and also xju . Because a �= c L(a) �= L(c). If L(a) < L(c) it follows that u = sxiw and b = x
vxjsxiw
k , c = xsxiw

j .

Then ca = xsw
j so L(ca) < L(c). We have bca = xvsw

k which gives the second conclusion. �

2.11.5 Lemma If a ≺ b , c ≺ b and L(a) < L(c) then a ≺ c and L(bca) < L(b) .
Proof The proof is similar to 4.4. �

2.11.6 Lemma The following three pairs of conditions are contradictory.
(1) a ≺ b and b ≺ a .
(2) a ≺ b and b ≺ a .
(3) a ≺ b and a ≺ b .
Proof For the pairs (1) and (2) lemmas 4.2 and 4.3 respecively imply that a ≺ a which is impossible. For (3)

lemma 4.1 implies that b = xu1xiw
j = xu2xiw

j . A simple argument using the minimal length representation of the

exponent shows that b = xw
i = a which is again a contradiction. �

We can assign a non negative integer L(κ), the length to any endomorphism κ of Fn of PC–type by the formula:

L(κ) =
∑
L(κ(xi)). Clearly L(κ) = 0 if and only if κ is a permutation of the generators.

Now let β be a welded braid diagram which represents the identity automorphism. We assume that all (welded

and unwelded) crossings have distinct y–coordinates. Let us suppose that the unwelded crossings occur with y–

coordinates: y1, . . . , yk−1 . We choose the notation so that

0 = y0 < y1 < y2 < . . . < yk−1 < yk = 1

where y0 is the top level of the braid and yk is the bottom level of the braid. Remember the y–coordinate increases

as we go down the page. Any horizontal line whose height is none of these critical values and also does not meet a

weld will divide the welded braid β into an upper welded braid β′ and a lower welded braid β′′ so that β = β′β′′ .

If t is the height of the horizontal line define L(t) = L(Φ(β′′)). Notice that the function L(t) changes only at the

critical values. The values of L for 0 < t < y1 and for yk−1 < t < 1 will be 0. If k > 1 let us take one of the

maximal L–valued intervals, say [ys, ys+1] . The value of s cannot be 0 or k − 1. We will show that we can change

the welded braid by allowable moves so that the value of L is reduced within this interval and is unaltered elsewhere.
Let ςi and ςj be the unwelded crossings at level ys and ys+1 respectively. Then the braid between levels ys and

ys+1 has only welded crossings in other words it is a permutation τ say. We will endevour to reduce the number of

welds in τ to a minimum.
Let x be the number of strings which are involved with ςi and ςj . The integer x can take the values 2, 3 or 4. By

allowable moves that do not essentially alter the function L we can assume that the remaining n− x strings do not

have any welded crossings in the interval [ys, ys+1] . For example figures 6 and 8 show how to move a welded string

past an unwelded crossing.
Now we consider the three cases x = 2, 3, 4. We will assume that we have used allowable the moves to minimize the

number of welds in the interval [ys, ys+1] .
• Case x = 2
The maximum number of welds occuring now is 1. The possible cases up to a simple symmetry are displayed in

figure 2.11.36. The remaining n− 2 strings are not shown.
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Figure 2.11.36

The first case can easily be simplified. It is not difficult to show with the help of the lemmas above that the other

three cases can not occur if the interval defines a maximum of the function L . For example the second picture above

gives the conditions a ≺ b and b ≺ a which contradicts lemma 2.11.6 (1) (see the notation of the picture).

• Case x = 3

The number of possibilities to be considered can be reduced up to a simple symmetry to the following 9 illustrated

in figure 2.11.37 below.
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Figure 2.11.37

These can be grouped into three sets of 3 by the following description. The first 3 occur where the overcrossing

string at the bottom is an overcrossing string at the top. For the next 3 the overcrossing string at the bottom is an

undercrossing string at the top and for the last 3 the undercrossing string at the bottom is the undercrossing string

at the top.

The fourth possibility is that the undercrossing string at the bottom is an overcrossing string at the top. However

this becomes the middle case by reflection in a horizontal line.

We now change the first six cases by allowable moves so that they look like the following illustrated in figure 2.11.38

R.Fenn 50



Invariants of Links Proof of the main theorem
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Figure 2.11.38

The relevant change to the last three depends on the length of a and c . If the lengths L(a) and L(c) are equal then

Lemma 4.4 gives a contradiction. We give the appropriate changes if L(a) < L(c) in figure 2.11.39 The reader can

easily construct the changes in the opposite case.

After these changes have been completed it only remains to check that the value of L has been decreased in the

interval. This can be done using the above lemmas and may safely be left to the reader. For convenience we give

the notation in the pictures so that they fit the notations of the lemmas.
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Figure 2.11.39

• Case x = 4

By minimality there is only one possibility which is illustrated in figure 2.11.40 below.
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Figure 2.11.40

We change the situation by interchanging the heights of ςi and ςj . This has the curious effect of decreasing the value

of L in the interval as the reader may verify.

We now repeat this argument until the value of L is constant (which must be zero). This implies that all crossings

are welded and therefore the induced automorphism is a permutation. Since this is the identity permutation we can

reduce the welded braid to the identity by a sequence of the two right hand moves in figure 2.10.31

This completes the proof of the main theorem. �

2.12. Racks and Quandles

In this section we turn to the theory which originally prompted our interest in the subgroups of AutFn studied in the

previous sections and show how it is related to the theory of racks. We have throughout written ab for the conjugate

b−1ab in a group. This leads naturally to the binary operation of a rack which can be thought of as generalised

conjugation.

Note that from now on exponential notation is no longer used as a shorthand for conjugation in groups.

If S is the finite set {x1, . . . , xn} then we will use the notation
FQn = FQ({x1, . . . , xn})

for the free quandle on {x1, . . . , xn} and
FRn = FR({x1, . . . , xn})

for the free rack on {x1, . . . , xn} .
Let ∂ : FQn → Fn from the free quandle to the free group be defined by ∂(aw) = w−1aw . Then ∂ : FQn → Fn is

injective and any automorphism φ : FQn → FQn induces an automorphism φ� : Fn → Fn such that the diagram

below commutes.

FQn FQn

Fn Fn

φ

φ�

∂∂

............................ .............

............................ .............

......................

......

.......

......
......................
......
.......
......

The correspondence φ→ φ� embeds AutFQn as a subgroup of AutFn .

AutFQn is isomorphic to BPn . We can see this using the previous methods as follows. Let φ : FQn → FQn be an

automorphism. Suppose φ(xi) = xwi

π(i) . Then the set {xwi

π(i)} is of PC–type and generates Fn .

However such sets {xwi

π(i)} determine PCn and conversely. So AutFQn is isomorphic to PCn but we already know

that PCn is BPn .

Now consider the group AutFRn . We will see shortly that this is a wreath product of AutFQn with the integers.

Let σi and τi where i = 1, 2, . . . , n− 1 be the elements of AutFQn and AutFRn which are defined in an exactly

similar way to their namesakes in AutFn . The elementary automorphisms pi,k and sπ of FQn and FRn are

also defined in exactly the same way as for Fn , see section 2. The methods of section 2 show that these elementary

automorphism generate the two automorphism groups.

Now let ρi , where i = 1, 2, . . . , n , be the elements of AutFRn defined by{
xi �→ xxi

i

xj �→ xj j �= i.

In other words ρi is pi,i . It is easily seen that

ρiσi = σiρi+1, ρiτi = τiρi+1 and ρiρj = ρjρi.

Let η: AutFRn → AutFQn be the natural map. Then the kernel of η is R the subgroup of AutFRn generated by

the ρi . Clearly R is isomorphic to the lattice group Zn . Thus AutFRn is a semi-direct product of AutFQn with

R; moreover the action on R permutes the factors, in other words AutFRn is the permutation wreath product of

AutFQn with Z .
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In terms of presentations we have the following.

2.12.1 Theorem The group AutFQn has a finite presentation of the following form. The generators are σi and

τi where i = 1, 2, . . . , n− 1 .

The relations are {
σiσj = σjσi |i− j| > 1

σiσi+1σi = σi+1σiσi+1

The braid relations⎧⎨
⎩

τ2
i = 1

τiτj = τjτi |i− j| > 1
τiτi+1τi = τi+1τiτi+1

The permutation group relations⎧⎨
⎩

σiτj = τjσi |i− j| > 1
τiτi+1σi = σi+1τiτi+1

σiσi+1τi = τi+1σiσi+1

The mixed relations for AutFQn

The group AutFRn has the same generators and relations but in addition the generators ρi , where i = 1, 2, . . . , n

and relations

ρiρj = ρjρi.

The ρi commute{
ρiσi = σiρi+1

ρiτi = τiρi+1

The mixed relations for AutFRn

�

Final remarks The theory of welded braids developed in this paper has a corresponding theory of welded knots

and links. For example gluing the top of a welded braid to the bottom yields a welded link in half 3–space. This can

be generalised to yield a theory of welded links in any 3–manifold with boundary. This theory is important because

any such link has a fundamental rack: for a glued braid this can be calculated by quotienting the free rack by the

automorphism which the welded braid determines. (This automorphism can be computed from the welded braid by

the same method as we gave in section 3 for computing the induced automorphism of the free group.) The theory of

racks can then be applied to yield invariants for these generalised links.
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3. Biquandles and Virtual Links

In this chapter we define a birack and a biquandle, generalizing the notion of a rack and a quandle. This gives rise

to natural invariants of virtual knots and braids. Some of the properties of biracks and biquandles are explained in

this paper. Applications to particular virtual braids and links are given.

3.13. Introduction

The biquandle and birack [FRS, CS] are algebras associated with a link diagram that are invariant (up to isomor-

phism) under the generalized Reidemeister moves for virtual knots and links. The basic idea for the birack was first

given in [FRS]. For historical documents see, http://www.maths.sussex.ac.uk////Staff/RAF/Maths/. Drinfeld in

[Dr] asked for set theoretic solutions to the Yang Baxter equations and this is what a birack provides. Work related

to this can be found in [ESS, EGS, LYZ, LYZ2, S]. The definition given here describes this notion geometrically.

The operations in a biquandle are motivated by the formation of labels for the semi-arcs of the diagram and the

implied invariance under the moves. A semi-arc of a diagram corresponds to an arc running from a classical crossing

to the next classical crossing ignoring virtual crossings. We will give the abstract definition of the biquandle before

a discussion of these knot theoretic issues hoping that the reader is sufficiently motivated to wade through the

consequent algebra.

The operations in a biquandle follow from the labelling of a diagram. In contradistinction to the classical case the

overcrossing arc has two labels, one on each side of the crossing. In a presentation of a biquandle there is a generator

labeling each semi-arc of the diagram. The relations amongst the generators now follow from the two conditions

imposed by each crossing.

A diagram of a classical knot or link can be described by the Gauss code, see [K]. However not all Gauss codes can

be realised as real knots or links by such a diagram. Their realization is dependent on the introduction of virtual

crossings. These are crossings which are neither above or below in space but just indicate that the journey of the

arc intersects the journey of another arc. The labelling on the arc is not altered by this encounter. It turns out that

the birack and biquandle is the correct algebraic generalization of the rack and quandle [FR, J, M] in dealing with

this generalization of classical links. In section 5 we give detailed definitions of, and motivations for virtual links.

3.14. Switches: Definition and Examples

Let X be a set. Denote by Pn(X) the group of permutations of the n-fold cartesian product, Xn . We will shorten

P1(X) to P (X) . A switch on X is defined to be an element S ∈ P2(X) satisfying the following braid relation in

P3(X) ,

(S × id)(id× S)(S × id) = (id× S)(S × id)(id× S).
Note that this is a more general notion than that considered in [BF] where only 2×2 matrices are considered.

Let S1 = S × id and S2 = id× S . Then the relation can now be written

S1S2S1 = S2S1S2.

It follows that a switch on X defines a representation of the braid group Bn into the group Pn(X) by sending

the standard generator σi to Si = (id)i−1 × S × (id)n−i−1 . If in addition the relation S2 = id holds then we get

a representation of the symmetry group on n objects into the group Pn(X). Odesskii in [O] calls these twisted

transpositions. These are the correct switches to use for what Kauffman calls flat virtuals and Turaev calls virtual

strings. That is, virtual knots in which the positive and negative real crossings are indistiguishable.

3.15. Examples of switches
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0. Let S = id× id be the identity.

1. Let T : X2 → X2 be defined by T (a, b) = (b, a). This switch is called the twist.

There is a representation of the virtual braid group using the twist T in an analogous fashion to that of any other

switch S . As before, the generator σi corresponding to a real crossing is sent to Si = (id)i−1 × S × (id)n−i−1 and

the generator τi corresponding to a virtual crossing is sent to Ti = (id)i−1 × T × (id)n−i−1 .

If we now put S12 = S1T1 , S13 = T1S2T2T1 and S23 = S2T2 then the fundamental relation becomes

S12S13S23 = S23S13S12.

This may be more familiar to some readers as the Yang-Baxter equation from quantum group theory, albeit using

tensor products.

Here we are using the algebraic (left to right) notation for the composition of operators. So (AB)(x) = B(A(x)).

This is in order to marry with the rule for labelling arcs in section 6.

The reader may easily check the above equation using the fact that both S and T are switches and in addition

T 2
i = 1 and T1T2S1 = S2T1T2

2. Let (a, b)→ ab be a rack action on a set X . Then S(a, b) = (b, ab) is a switch. This is called the rack switch.

3. Let X = G be a group. Then S(g, h) = (g−1h−1g, h2g) defines the Wada switch on G . This example is due to

Wada. The inverse is given by S−1(g, h) = (hg−2, hg−1h−1) as may be easily verified.

4. Let G be a group with a Z × Z action written (n,m) · g = gλnμm

. Then S(a, b) = (bμ, (bλμ)−1aλb) defines the

Silver–William’s switch, [SW].

5. Let X be a module over a commutative ring. The linear isomorphism S : X2 → X2 given by

S(a, b) = (μb, λa+ (1− μλ)b)
with λ, μ invertible elements of the ring, defines a switch on X . This switch is the abelianisation of the Silver–

William’s switch above and is, with the identity, essentially the only interesting linear ones. Full results in this case

can be found in [S]. We call the above the Alexander switch since putting μ = 1 defines the Alexander rack.

6. We can generalise the above to the non-commutative case. Suppose we have a ring R and an R -module M on

which we would like to define a switch. Suppose the switch is defined by the 2× 2 matrix with entries in R ,(
A B
C D

)
So S(a, b) = (Aa+Bb,Ca+Db). Then the Yang-Baxter equations imply the seven equations

A = A2 +BAC [B,A] = BAD
[C,D] = CDA D = D2 + CDB
[A,C] = DAC [D,B] = ADB

[C,B] = ADA−DAD
where [X,Y ] denotes the commutator XY − Y X .

It is proved in [BF] that only the first four equations are needed. We also want the matrix to be invertible, and if the

switch is to define a birack (see later) then B,C must both be invertible. In fact it then follows that the conditions

define an algebra with two generators and one relation. This will be the subject of the next chapter.
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The equations have a solution in quaternions, the Budapest birack, of the form A = D = 1 + i, B = −j, C = j .

This defines a representation of the virtual braid group and a fortiori the braid group into the group of invertible

matrices with quaternionic entries. This is just one of a family of solutions discovered by Andrew Bartholomew and

Peter Croyden using a computer search. The properties of these switches may be found in [BF]. In fact, as we will

see in the next chapter, all quaternionic solutions have a simple geometric solution.

7. Let X = Z
2 and let x+ = max(0, x) and x− = min(0, x). The Dynnikov switch is defined by (a1, b1, a2, b2) →

(a′1, b
′
1, a

′
2, b

′
2) where

a′1 = a1 − b+1 − (b+2 + d)+ a′2 = a2 − b−2 − (b−1 − d)−
b′1 = b2 + d− b′2 = b1 − d−

and d = a1 + b−1 − a2 − b+2 .

The idea behind this switch would take too much time to explain here but see [D] for some details.

3.16. The Switch Identities

A switch S on a set X defines 2 binary operations on X by the rule

S(a, b) = (ba, a
b).

The operations ba and ab are called the down, up operations respectively. The notation generalizes the exponential

notation for racks. In that case the up operation is the rack operation and the down operation, where ba = b , is

trivial. This notation avoids the need for brackets. So for example ab
c means (a

b)c . Another notation for the down

and up operations is the one introduced by Kauffman as

ab = a b and ab = a b

Note that the Kauffman notation keeps all the elements at the same level [K2]. For example

(ab)c = abc = a b c

and

a(bc) = abc

= a b c

Given a switch it is not difficult to prove that the Yang–Baxter equations imply the following identities,

i) Up Interchanges abc = acbbc

ii) Down Interchanges abc = acbbc

iii) The Rule of Five ab
cba = ac

bca

These have been called the Wada identities in [D] because of [W], but see also [FRS].

Since the switch S is a bijection there are two more binary operations called the up-bar and down-bar operations.

These are defined by

S−1(a, b) = (ba, ab).

Note that the bar operations need not be the inverses to the unbarred operations.

The four operations (up, down, up-bar and down-bar) satisfy

b = baa
b = baab = b

aab = b
aab
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for all a, b in X . These identities are called the partial inverses.

Remark: The notation Kauffman uses for the up-bar and down-bar operations, is given by

ab = a b and ab = a b

With this notation the partial inverses identities are written

b = b a a b = b a a b = a a b = b a a b

3.17. Biracks and Biquandles

The up, down operations define two endomorphisms of X , indexed by X called the up, down maps according to

the rules fa(x) = xa and fa(x) = xa for each a ∈ X .

Consider a switch S on X . We say that the pair (X,S) define a strong birack if the following two conditions hold.

i) The up map fa : X → X is a permutation in P (X) for every a in X and we use the notation xa−1

= (fa)−1(x)

for the inverse permutation and call it the inverse up operation.

ii) The down map fa : X → X is a permutation in P (X) for every a in X and we use the notation xa−1 = (fa)
−1(x)

for the inverse permutation and call it the inverse down operation.

If fa and fa are only surjective then the pair (X,S) is called a weak birack.

For this paper we will call a strong birack a birack.

Examples of biracks are given by the Twist, Silver-Williams, Alexander, Wada and Budapest switches. The identity

and Dinnikov switches do not define biracks as may be easily verified.

Note that in the paper [K2] and [KR] only the condition that fa and fa are surjective is used.

For a birack we can define the following endomorphisms of X2 :

S+
−(a, b) = (bab−1 , ab−1) S−+(a, b) = (ba

−1

, aba−1 )

called the sideways operations.

The following lemma defines an analogous notation for the barred operations.

3.17.1 lemma For a birack the functions x→ xa and x→ xa are bijective. The inverses are written x→ xa −1

and x→ xa −1 . In terms of the previous notation they are given by the following formulæ

xa −1

= xa
x−1 and xa −1 = xax−1

Proof The formulæ follow from the partial inverses considered above. �

3.17.2 lemma Let x, b, c be elements of a birack X . Then the following equalities hold

i) x(bc)−1 = xc−1b−1cb ii) x(cb)−1 = xbcc−1b−1

iii) x(bc)−1

= xc−1b−1cb iv) x(cb)
−1

= xbcc−1b−1
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Proof. We will only prove i) because the other cases are proved in a similar way. So, for i) take an element a in the

birack, such that x = abc . We can do so because we are working with a birack. In fact a = xc−1b−1 . Now, applying

the down interchange birack identity to a , b and c we have that abc = acbbc
. From this and because it is a birack

we get that abc(bc)−1 = acb . In terms of x this means:

x(bc)−1 = acb = xc−1b−1cb

. �

Again by analogy define

S +
− (a, b) = (b

ab
−1 , a

b
−1

) = (b
a

b
a−1

, ab
a−1 )

and

S −
+ (a, b) = (b a−1 , ab

a−1 ) = (bab−1 , ab
ab−1 )

3.17.3 Theorem Suppose that the switch S on X defines a birack. Then the following conditions hold.

i) TS−+TS
+
− = S+

−TS
−
+T = id2 .

ii) S −
+ S

+
− = S +

− S
−
+ = id2 .

iii) The sideways maps S+
− , S−+ , S −

+ and S +
− are in P2(X) .

Proof. Number i) is a straight forward calculation from which we conclude that S+
− and S−+ are permutations in

P2(X). Number ii) is also a calculation. Perhaps the best way of seeing this is to show that S−+ = TS−+T using the

partial inverse identities. Number iii) follows from i) and ii). �

Definition We say that the birack (X,S) is a biquandle if the following identities hold,

aa−1

= aaa−1 and aa−1 = aa
a−1

for every a in X . The Alexander, Silver-Williams, Wada and Budapest biracks are all biquandles. A rack birack is

a biquandle if and only if the rack involved is a quandle.

3.17.4 Theorem For birack X the following statements are all equivalent,

i) X is a biquandle,

ii) Given an element a in X , then there exists a (unique) x in X such that x = ax and a = xa and there exists a

(unique) y in X such that y = ay and a = ya .

iii) The four sideways operations S±∓ and S
±

∓ all leave the diagonal of X2 invariant.

Proof. Clearly by taking x = aa−1

and by taking y = aa−1 statements i) and ii) are equivalent. Now consider

statement iii). Let Δ denote the diagonal in X2 . Suppose X is a biquandle. Then S−+ (a, a) = (aa−1

, aaa−1 ) =

(aa−1

, aa−1

) and so S−+ (Δ) ⊂ Δ. On the other hand S−+(xx−1 , xx−1) = (x, x) for any x in X and so S−+ (Δ) = Δ.

Conversely if this equation holds then so does the first biquandle identity. The second biquandle identity follows

by consideration of S+
− . But if any one of these operations leave the diagonals invariant then so do the other three

operations by theorem 4.5 i) and ii). �

R.Fenn 58



Invariants of Links Virtual Braids and Knots

Definition We say that the (weak) birack (X,S) is a weak biquandle if given an element a in X , then there

exists x in X such that x = ax and a = xa and there exists y in X such that y = ay and a = ya .

Note that a biquandle becomes weak if x, y above are not unique. This brings us to the following question. Are

weak biquandles the same as biquandles?

The following question can also be asked. Does there exist a birack such that xx−1

= xxx−1 for all x in X but

aa−1 �= aa
a−1 for some a in X or conversely?

These questions were answered in the negative in [Stan]

The definition given in [K2] and [KR] of a biquandle is that of a weak biquandle.

3.18. Virtual Braids and Knots

Recall that classical knot theory can be described in terms of knot and link diagrams. A diagram is a 4-regular

plane graph (with extra structure at its nodes representing the crossings in the link) represented on a plane and

implicitly on a two-dimensional sphere S2 . Recall from chapter 1 that two such diagrams are equivalent if there is

a sequence of moves of the types indicated in part (A) of Figure 1 (The Reidemeister Moves) taking one diagram to

the other. These moves are performed locally on the 4-regular plane graph (with extra structure) that constitutes

the link diagram.

Virtual knot theory is an extension of classical knot theory, see [K]. In this extension one adds a virtual crossing

(See Figure 1) that is neither an over-crossing nor an under-crossing. We shall refer to the usual diagrammatic

crossings, that is those without circles, as real crossings to distinguish them from the virtual crossings. A virtual

crossing is represented by two crossing arcs with a small circle placed around the crossing point. The arcs of the

graph joining classical crossings are called the semi-arcs of the diagram.

In addition to their application as a geometric realization of the combinatorics of a Gauss code, virtual links have

physical, topological and homological applications. In particular, virtual links may be taken to represent a particle

in space and time which dissappears and reappears. A virtual link may be represented, up to stabilisation, by a link

diagram on a surface, [Ku]. Finally an element of the second homology of a rack space can be represented by a

labelled virtual link, see [FRS]. Since the rack spaces form classifying spaces for classical links the study of virtual

links may give information about classical knots and links.

The allowed moves on virtual diagrams are a generalization of the Reidemeister moves for classical knot and link

diagrams. We show the classical Reidemeister moves as part (A) of Figure 1. These classical moves are part of virtual

equivalence where no changes are made to the virtual crossings. Taken by themselves, the virtual crossings behave

as diagrammatic permutations. Specifically, we have the flat Reidemeister moves (B) for virtual crossings as shown

in Figure 1. In Figure 1 we also illustrate a basic move (C) that interrelates real and virtual crossings. In this move

an arc going through a consecutive sequence of two virtual crossings can be moved across a single real crossing. In

fact, it is consequence of moves (B) and (C) for virtual crossings that an arc going through any consecutive sequence

of virtual crossings can be moved anywhere in the diagram keeping the endpoints fixed and writing the places where

the moved arc now crosses the diagram as new virtual crossings. This is shown schematically in Figure 2. We call

the move in Figure 2 the detour, and note that the detour move is equivalent to having all the moves of type (B)

and (C) of Figure 1. This extended move set (Reidemeister moves plus the detour move or the equivalent moves (B)
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and (C)) constitutes the move set for virtual knots and links.

A B

C

fig1: Generalized Reidemeister Moves for Virtual Knots

fig2: Schema for the Detour Move

There is a useful topological interpretation for this virtual theory in terms of embeddings of links in thickened surfaces.

See [KK], [Ku]. Regard each virtual crossing as a shorthand for a detour of one of the arcs in the crossing through a

1-handle that has been attached to the 2-sphere of the original diagram. The two choices for the 1-handle detour are

homeomorphic to each other (as abstract surfaces with boundary a circle) since there is no a priori difference between

the meridian and the longitude of a torus. By interpreting each virtual crossing in this way, we obtain an embedding

of a collection of circles into a thickened surface Sg × R where g is the number of virtual crossings in the original

diagram L , Sg is a compact oriented surface of genus g and R denotes the real line. Thus to each virtual diagram

L we obtain an embedded disjoint union of circles in Sg(L) ×R where g(L) is the number of virtual crossings of L .

We say that two such surface embeddings are stably equivalent if one can be obtained from another by isotopy in

the thickened surfaces, homeomorphisms of the surfaces and the addition or subtraction of empty handles. Then we

have the

3.18.1 Theorem Two virtual link diagrams are equivalent if and only if their correspondent surface embeddings
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are stably equivalent, [KK], [Ku].

The surface embedding interpretation of virtuals is useful since it converts their equivalence to a topological ques-

tion. The diagrammatic version of virtuals embodies the stabilization in the detour moves. We shall rely on the

diagrammatic approach here.

A virtual braid is defined similarly. The group of virtual braids on n strings is denoted by V Bn . Given a birack

structure on X we can use Kamada’s presentation of the virtual braid group, V Bn , to get a representation of V Bn

to Pn(X) as follows.

Let generators of V Bn be σ1, σ2, . . . , σn−1 where σi corresponds to the positive real crossing of the i -th and

(i+1)-th string and τ1, τ2, . . . , τn−1 where τi corresponds to the virtual crossing of the i -th and (i+1)-th string.

The following relations hold:

i) Braid relations
σiσj = σjσi, |i− j| > 1
σiσi+1σi = σi+1σiσi+1

ii) Permutation group relations
τi

2 = 1
τiτj = τjτi, |i− j| > 1
τiτi+1τi = τi+1τiτi+1

iii) Mixed relations
σiτj = τjσi, |i− j| > 1
σiτi+1τi = τi+1τiσi+1

See, [KK]. At this stage the reader may care to compare these relations with the relations for the braid-permutation

group, see [FRR]. The braid-permutation group is a quotient of the virtual braid group.

Let Si denote the element of Pn(X) given by Si = idi−1 × S × idn−i−1 . Then the fundamental relation becomes

S1S2S1 = S2S1S2 . Similarly let Ti = idi−1 × T × idn−i−1 where T is the twist.

3.18.2 Lemma Let the switch S define a birack structure on X . Then there is a representation ϕ : V Bn →
Pn(X) given by ϕ(σi) = Si, ϕ(τi) = Ti . �

Example: Let β be the braid on three strings given by σ2σ1τ2σ
−1
1 σ−1

2 τ1 . Then for any rack S(a, b) = (b, ab) the

induced permutation in P3(X) is the identity. But for the Alexander birack S(a, b) = (μb, λa + (1 − λμ)b) the

induced permutation is (a, b, c)→ (a+ κ, b− κ, c) where κ = (λ−1 − μ)(μ− 1)c .

3.19. Labelling Diagrams

Let the edges of a crossing in a diagram be arranged diagonally and called geographically NW, SW, NE and SE.

Assume that initially the crossing is oriented and the edges oriented towards the crossing from left to right ie west to

east. The input edges, oriented towards the crossing, are in the west and the edges oriented away from the crossing,

the output edges, are in the east. Let S be a switch on X and let a and b be labellings from X of the input edges

with a labelling SW and b labelling NW. For a positive crossing, a will be the label of the undercrossing input and

b the label of the overcrossing input. Then we label the undercrossing output NE by ab just as in the case of the

rack, but the overcrossing output SE is labeled ba .

We usually read ab as – the undercrossing line a is acted upon by the overcrossing line b to produce the output ab.

In the same way, we can read ba as – the overcossing line b is operated on by the undercrossing line a to produce

the output ba .
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The labels for a negative crossing are similar but with an overline placed on the letters. Thus in the case of the

negative crossing, we would write ab and ba , respectively.

For a virtual crossing the labellings carry across the strings.

The following figure shows the labelling for the three kind of crossings.

b

a

ab

ba

a

b

ba

ab

b

a

a

b

If we represent a virtual braid by a horizontal diagram oriented from left to right then we can use these labelling rules

to describe the representation of the virtual braid group into the group of permutations of Xn where n is the number

of strings. Specifically, if (x1, x2, . . . , xn) is in Xn then label the bottom string on the extreme left with x1 , the

next string by x2 and so on. Now move across to the right labelling as you go using the rules above. If the resulting

labelling on the extreme right is (x′1, x
′
2, . . . , x

′
n) then the correspondence (x1, x2, . . . , xn) → (x′1, x

′
2, . . . , x

′
n) is the

induced permutation. Locally we can think of the output labels from a crossing as being the action of S , S or T .

b

a

ab

ba

S
(a, b) S(a, b)

Note that the labelling is extended by the algebraic, left to right ordering and not the functional or right to left

ordering.

This permutation is an invariant of the braid and not just of the diagram which represents it because of the switch

properties, namely 1) S is a bijection and 2) S satisfies the Yang-Baxter equation. These represent particular types

of Reidemeister moves of kind II and III respectively. That is the particular type where the orientations of the strings

are all in one direction.

Conjecture A For a suitable switch (the free switch?) the representation of V Bn is faithful

The reader is reminded that the equivalent statement is true if the switch is a rack switch and V Bn replaced by Bn ,

see for example [FV].

If we want the switch to give an invariant of virtual links then we must be prepared to encounter Reidemeister moves

in which the string orientations are not all in one direction. In order to extend the labelling in this case the switch

must define a birack.

For example if we are given one of the input edges and one of the output edges and the switch defines a birack, then

we can compute the values that should be attached to the two edges remaining. Consider the example below where

the crossing is positive. The elements a and b are known and x and y are to be determined. Then xb = a can

be solved as x = ab−1 and from this it follows that y = bx = bab−1 . This coincides with our previous definition for
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S+
−(a, b).

b

a

x =?

y =?

b

a

ab−1

bab−1

S+
−

(a, b) S+
−(a, b)

The same can be done for every possibility of orientation and ordering in each crossing and we get all eight posibilities

in the following way.

b

a

ab

ba

S+
+

b

a

ab

ba

S−−

b

a

ab−1

bab−1

S+
−

b

a

aba−1

ba
−1

S−+

b

a

a
b

ba

S
+

+

b

a

ab

ba

S
−

−

b

a

ab
a−1

b a−1

S
−

+

b

a

ab
−1

b
ab
−1

S
+

−

The above diagrams now explain the notation for indices and suffixes. For example S+
− means a positive entry (arrow

from left to right) at the top and a negative entry (arrow from right to left) at the bottom of a positive crossing.

The notation S +
− means the same but for a negative crossing. Note that there is no difficulty extending the various

labellings of any virtual crossing however oriented.

We are now ready to define a labelling of the diagram as an attachment of an element of the birack to each semi-arc

(or more prosaically a function from the set of semi-arcs to the birack X ) so that the conditions given above for

each crossing are satisfied.

Using the results proved earlier for biracks we can now show that any labelling of a diagram by a birack can be

extended in a unique way to a labelling of a diagram obtained by one Reidemeister move of type II or III. The

extension after a type II move is a consequence of the bijective properties of the S operators and is illustrated below.

S S S S (id)2

S
+

− S−+ S+
− S

−

+
(id)2

S
−

+ S+
− S−+ S

+

−
(id)2

To extend the labelling after a type III move we need Yang-Baxter type equations for the more general S operators.
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Eight cases are possible with different orientations and two are illustrated below.

Fig A Fig B

Note that any extension of the labelling in Fig A will follow from the original Yang Baxter property. To prove the

rest algebraically we would need to verify identities such as (id×S−+)(S−+ × id)(id×S) = (S× id)(id×S−+)(S−+ × id).
This is possible but we can use geometry to avoid the algebraic calculations.

The following diagram shows how the Reidemeister move of type II can be utilised so that the move of type III has

orientations all in one direction.

There now remains to consider the case of moves involving the virtual moves. Algebraically we replace the S

operators by the twist T , labelling a virtual crossing. For the virtual Reidemeister moves the algebraic analogues

are T (a, b) = (b, a), T 2 = id2 and (id× T )(T × id)(id× T ) = (T × id)(id× T )(T × id). For the mixed Reidemeister
move the algebraic analogue is (id× T )(S × id)(id × T ) = (T × id)(id × S)(T × id). All these equations are easily

verified.

The next theorem sums up the previous discussion.

3.19.1 Theorem Let diagrams D1 and D2 of virtual links be equivalent by a series of Reidemeister moves of

type II and III and those indicated by B and C in figure 1, (a regular homotopy). Then any labelling of D1 by

elements of a birack X defines a unique labelling of D2 using these moves. �

It follows that if labX(D) denotes the set of labellings by X of the virtual diagram D then the moves above induce

a bijection between labX(D1) and labX(D2) provided X is a birack and D1 and D2 are equivalent under these

moves.

In order for a labelling to extend after a Reidemeister move of type I the labelling set will have to be a biquandle.

For the Reidemeister move of type I the various cases are illustrated below with labellings which force the labelling
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set to be a biquandle.

a

b

x
y

S −
+ = (S+

−)
−1

a

b

x
y

S−+

a

b

id

and

a

b

x
y

S +
− = (S−+ )

−1

a

b

x
y

S+
−

a

b

id

So in all the diagrams a = b if and only if x = y . This is equivalent to the operators S+
− and S−+ preserving the

diagonal and this is a defining condition for a biquandle.

These results are summed up in the following theorem.

3.19.2 Theorem With the notation above let the diagrams D1 and D2 represent the same virtual link (so they

are related by a series of moves indicated by A, B and C in figure 1). Let D1 be labelled by elements of a biquandle

X . Then there is a uniquely defined labelling of D2 induced by the series of these moves. In particular labX(D1)

and labX(D2) are in bijective correspondence. �

A similar theorem can be given for labellings by a weak biquandle. However the labelling defined by a sequence of

Reidemeister moves only exists. It may not be unique.

(Note: the labellings by a rack of a classical link can be given a canonical topological definition, see [FR]. We do

not know of such a definition for the labellings of a virtual link.)

From the above we see that the set of labellings of a virtual link by elements of a biquandle is an invariant. Of

particular interest is the set of labellings by the Alexander biquandle. If the semi-arcs are labelled by (2n) generators

then the Alexander biquandle conditions on the n vertices define 2n relations giving a square presentation of a

Z[λ, λ−1, μ, μ−1] module. (Here as elsewhere we assume that the diagram has no free floating circles.) As in the

classical case the minors of the presentation matrix define a sequence of determinants Δ0,Δ1, · · · . But contrary to
the classical case the top determinant is not necessarily zero. We define the zeroth Alexander polynomial of a

virtual link L to be Δ = Δ0 (modulo units), see [BF, SAW]. For a classical link Δ = 0.

We would like to define the fundamental biquandle of a virtual link by proceeding as in the classical case with the

fundamental rack. That is, let the arcs of a representative diagram be the set of generators and the crossings as a

set of relations in some sort of presentation.

But that is to suppose that we have a good idea of the notion of a free biquandle. Let us use this section as a forum

for discussion.

It is unusual that an algebra would have axioms asserting the existence of fixed points with respect to operations

involving its own elements. We plan to take up the study of this aspect of biquandles in a separate publication.

For now it is worth remarking that a slight change in the axiomatic structure allows an easy definition of the free

biquandle. The idea is this: Suppose that one has an axiom that states the existence of an x such that x = a x
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(x = ax ) for each a. Then we change the statement of the axiom by adding a new operation (unary in this case) to

the algebra, call it Fix(a) such that Fix(a) = a Fix(a) . Existence of the fixed point follows from this property of

the new operation, and we can describe the free biquandle on a set by taking all finite biquandle expressions in the

elememts of the set, modulo these revised axioms for the biquandle.

Let a be an element of a weak biquandle S . Then there exists an x in S satisfying the equation x = ax and a = xa .

Note that if S is a (strong) biquandle the x is uniquely defined by x = aa−1

. In this condition the second equation is

a normal relation involving the elements x and a , but the first equation is an existence statement about x satisfying

the equation x = ax. Consider the simplest instance of this situation. Let BQ = (a|) denote the ”free biquandle”
generated by the single element a. In the usual case of universal algebras the ”free object” on a single generator

is constructed by taking all finite algebraic expressions involving the formalism of the algebra and the generating

element, subject to the natural equivalence relations that ensue for this algebra (this depends on the axioms which

usually are expressed as relations, not as existence statements). But here we are asked to know that there is an x

satisfying the equation above. One solution for x is the infinitary expression

x = aaaa...

since this formally satisfies the equation x = ax. It is not clear to us how to add infinitary expressions in a controlled

way to obtain an adequate definition of a free biquandle.

If we label the semi-arcs of a diagram D by the generators of a free biquandle and impose the relations forced by

the crossings then we have a presentation of the fundamental biquandle, B(L) of the virtual link L defined by

D . The set of labellings of L by X is then

labX(L) = hom(B(L), X)

We do not have a canonical definition of B(L) and in general it is a fairly mysterious object, but we hope to return

to the associated algebra and considerations of free biquandles in a later paper.

Conjecture B The fundamental biquandle B(L) is a complete invariant of virtual links up to mirror image. The

mirror image of a (virtual) link is obtained from the diagram by interchanging positive and negative real crossings

and reversing the orientation of the knot. In opposition to classical knots and links there is a further symmetry

defined by a reflection in a line of the plane. The motive for this conjecture is to mimic the result in the real case

and because our calculations so far bare this out.

3.20. Examples and Calculations

1.-Consider the virtual trefoil as shown in the figure. If we label as indicated then the fundamental biquandle has

a presentation with 3 generators a, b, c and relations c = ab, a = dc, b = cd, d = ba .

a b

c

d

We now consider labellings from the Alexander birack. If we eliminate c = ab = μa and d = ba = λb+ (1− λμ)a we
arrive at the following equations.

(μ− λμ2 − 1)a+ λμb =0

(λ2μ2 − λμ+ 1)a+ (λ− λ2μ− 1)b =0

The determinant of these equations is

Δ = (λ− 1)(λμ− 1)(μ− 1).
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The fundamental quandle (and hence group) is trivial.

2.-Another virtual link with trivial fundamental rack is the closure of the braid given at the end of section 5. The

resulting three component link is pictured below.

In order to make the equations on the labellings work, we need κ = 0 so

Δ = (λμ− 1)(μ− 1).

One could also argue that the link is non-trivial since the component without virtual crossings encircles one of the

virtual crossings of the other two.

3.-The following virtual knot is interesting in having a trivial Jones-polynomial as well as a trivial fundamental rack.

In this case

Δ = (μ− 1)(λ2(μ+ 1)− λ(μ + 1)(μ−1 + 1)− μ).

4.-The Kishino knots K1,K2 and K3 are illustrated below. All are ways of forming the connected sum of two

unknots. K1 and K2 are mirror images and K3 is amphichæral. Both have trivial racks and Jones polynomial. The

Alexander polynomial Δ is zero in all three cases. On the other hand for K1 , Δ1 is 1 + μ− λμ and for K2 , Δ1 is

1 + λ − λμ . Since these are neither units nor associates in the ring, K1,K2 are non-trivial and non amphichæral.

The Alexander polynomial Δ1 of K3 is 1.

K1 K2 K3
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Since the Alexander invariants do not show that K3 is non-trivial new methods are needed. This is done in the next

chapter using the Budapest biquandle. This argument may be paraphrased as follows. The semi-arcs are labelled by

quaternion variables and the crossing changes by the Budapest switch. This defines a module which is shown to be

non-trivial by considering the ideal generated by codimension 2 Study determinants.

The non-triviality has also been detected by the three string parallel, see [KS].

The knot K3 is made up of tangles such as the one illustrated in the tangle figure. We now show that this is

non-trivial by showing that the output, b , may be different from the input, a . All labels are quaternions and the

Budapest switch is used. An easy calculation shows that 3(a− b) = 0 so if we consider the quotient Z3[i, j, k] then

indeed a need not equal b .

a

b

Tangle Figure

4. QUATERNION ALGEBRAS and INVARIANTS of VIRTUAL KNOTS and LINKS

4.21. Introduction

In this chapter we show how invariants of virtual knots can be found using non-commuting rings. In particular

generalised quaternions and 2 × 2 matrices can be used. In the previous section commuting rings were used to

find Alexander type polynomials. The ideas can be transferred by careful consideration of determinants in the

non-commuting case.

It can be shown, see below, that if we consider the seven equations considered earlier then all we need to do is to

find solutions of the equation

A−1B−1AB −B−1AB = BA−1B−1A−A
in which A,B are elements of a suitable algebra say the quaternions or 2×2 matrices. This later case can be divided
into two cases, the elliptic case considered here and the hyperbolic case see [].

Note that the above equation can also be written

[B, (A − 1)(A,B)] = 0

where [X,Y ] = XY − Y X is one type of commutator and (X,Y ) = X−1Y −1XY is another.
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Consider the algebra with the following presentation

F = {A,B | A−1B−1AB −B−1AB = BA−1B−1A−A}.

We will call this the fundamental algebra and the single relation will be called the fundamental relation or equation.

The aim is to find all representations of this algebra into quaternion algebras.

Let K be a virtual knot or link. We show that if A,B are two elements of a ring, R , satisfying the fundamental

relation, then there is a left R -module M , dependant on A,B which is an invariant of K . From this module more

tractible invariants such as polynomials can be defined.

As an application, we define two 4-variable polynomials of virtual knots and links. In addition, we give a proof that

invariants defined in this manner extend the Alexander polynomial for classical knots and links.

4.22. The fundamental equation

Given a set X let S be an endomorphism of X2 . In the previous chapter or the paper [FJK], such an S is called

a switch if

1 S is invertible and

2 the set theoretic Yang-Baxter equation (S × id)(id× S)(S × id) = (id× S)(S × id)(id× S) is satisfied.

Given a switch S there is a representation of the braid group Bn into the group of permutations of Xn defined by

σi → (id)i−1 × S × (id)n−i−1

where σi are the standard generators. Denote this representation by ρ = ρ(S, n).

In this paper we will only be interested in the following linear switches. So let R be an associative but not necessarily

commutative ring and let X be a left R -module. Suppose

S =

(
A B
C D

)
where the matrix entries A,B,C,D are elements of R . The 3×3 matrices of the Yang-Baxter equation are

S × id =
⎛
⎝A B 0
C D 0
0 0 1

⎞
⎠ id× S =

⎛
⎝ 1 0 0
0 A B
0 C D

⎞
⎠

The representation ρ is now into n× n matrices with entries from R .

Let us consider methods to find such switches S . It is not difficult to see that the following 7 equations considered

in the last chapter are necessary and sufficient conditions for an invertible S to be a switch,

1 : A = A2 +BAC 2 : [B,A] = BAD
3 : [C,D] = CDA 4 : D = D2 + CDB
5 : [A,C] = DAC 6 : [D,B] = ADB

7 : [C,B] = ADA−DAD
where [X,Y ] = XY − Y X .

If A,A− 1, B are invertible, A,B do not commute and satisfy the fundamental equation

A−1B−1AB −BA−1B−1A = B−1AB −A
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and

C = A−1B−1A(1−A), D = 1−A−1B−1AB

then S will be a switch. We will call this the non-commuting switch. A special case of this is the matrix with

quaternion entries

S =

(
1 + i j
−j 1 + i

)

called the Budapest switch.

If S =

(
A B
C D

)
is a switch then so is S(t) =

(
A tB

t−1C D

)
where t is a commuting variable. We say that S(t) is

S augmented by t .

In [BuF] and [BF] the following results can be found.

4.22.1 Theorem Suppose R is a division ring. Then any switch of the above form is either the Alexander or

the non-commuting switch. �

The representation of the braid group induced by any non-commuting switch looks complicated but is in fact equiva-

lent to the Burau representation. This has been pointed out previously by Dehornoy, see [De]. The following lemma

gives an explicit proof.

4.22.2 Lemma Let S =

(
A B
C D

)
be a non-commuting switch and let S ′ =

(
0 1
Q 1−Q

)
be the Burau switch

where Q = (1−A)(1 −D) . Let M be the n× n matrix

M =

⎛
⎜⎜⎜⎜⎝
1 0 0 · · · 0
A B 0 · · · 0
A BA B2 · · · 0

...
... 0

A BA B2A · · · Bn−1

⎞
⎟⎟⎟⎟⎠

In words: the rows of M , after the first, start with A and then the previous row multiplied on the left by B . Clearly

M is invertible. Then ρ(S, n) =M−1ρ(S′, n)M .

Proof A calculation shows that Mρ(S, n) = ρ(S ′, n)M . In this calculation the fundamental relation is used. For

example Q commutes with B . So to prove that

BiA2 +Bi+1C = QBi + (1−Q)BiA

we need to show that

A2 +BC = Q+ (1−Q)A

which follows from the fundamental relation. �

However, if we extend the representation to the virtual braid group, defined below, then we get a representation

which is not equivalent to the Burau.

The virtual braid group, V Bn [KK], has generators σi, i = 1, . . . , n− 1 and braid group relations

σiσj = σjσi, |i− j| > 1i)

σiσi+1σi = σi+1σiσi+1
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In addition there are generators τi, i = 1, . . . , n− 1 and permutation group relations

τi
2 = 1ii)

τiτj = τjτi, |i− j| > 1

τiτi+1τi = τi+1τiτi+1

together with mixed relations

σiτj = τjσi, |i− j| > 1iii)

σiτi+1τi = τi+1τiσi+1

We can extend the representation ρ(S, n) by sending the generator τi to (id)
i−1×T×(id)n−i−1 where T =

(
0 1
1 0

)
,

that is, Burau with unit variable.

Consider now the element β = σ2σ1τ2σ
−1
1 σ−1

2 τ1 in V B3 . If S =

(
0 B
C 1−BC

)
, the Alexander switch, then

ρ(β) =

⎛
⎝ 1 0 (C−1 −B)(B − 1)
0 1 (C−1 −B)(1 −B)
0 0 1

⎞
⎠

So if B �= 1 this representation can not be equivalent to the Burau representation which has B = 1.

We can now ask the following question: Let K ⊂ Bn be the kernel of the Burau representation. Let K denote the

normal closure of K in V Bn . If β is a virtual braid and ρ(β) = 1 for all switches S , is it true that β lies in K ?

4.23. Quaternion Algebras

It is clear from the previous section that it is important to find solutions to the fundamental equation. The main

result in the next section is a sufficient condition for two generalised quaternions to satisfy the fundamental equation.

Except for 2× 2 matrices, this condition is also necessary.

In this section we describe the necessary algebra. The results which are already in the literature are mainly presented

without proof. For more details see [L] or [MR].

Let F be a field of characteristic not equal to 2. Pick two non-zero elements λ, μ in F . Let ( λ, μ
F
) denote the

algebra of dimension 4 over F with basis {1, i, j, k} and relations i2 = λ, j2 = μ, ij = −ji = k . The multiplication

table is given by

⎛
⎝

i j k

i λ k λj

j −k μ −μi
k −λj μi −λμ

⎞
⎠.

Throughout the paper a general quaternion algebra will be denoted by Q . Elements of Q are called (generalized)

quaternions. The field F is called the underlying field and the elements λ μ the parameters of the algebra. We

will denote quaternions by capital roman letters such as A,B, . . . and (if pure) by bold face lower case, a,b, . . . .

Field elements, (scalars) will be denoted by lower case roman letters such as a, b, . . . and lower case greek letters

such as α, β, . . . .

The classical quaternions are (−1, −1
R

). The algebra of 2× 2 matrices with entries in F is M2(F ) = (−1, 1
F

).

Conjugation, Norm and Trace
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Let A = a0 + a1i+ a2j + a3k be a quaternion where a0, a1, a2, a3 ∈ F . The coordinate a0 is called the scalar part

of A and the 3-vector a = a1i + a2j + a3k is called the pure part of A . Evidently A = a0 + a is the sum of its

scalar and pure parts and is pure if its scalar part is zero and is a scalar if its pure part is zero.

The conjugate of A is A = a0 − a , the norm of A is N(A) = AA and the trace of A is tr(A) = A+A .

Conjugation is an anti-isomorphism of order 2. That is it satisfies

A+B = A+B, AB = B A, aA = aA, A = A.

Also A = A if and only if A is a scalar and A = −A if and only if A is pure.

The norm is a scalar satisfying N(AB) = N(A)N(B). We will denote the set of values of the norm function by N .

It is a multiplicatively closed subset of F and N ∗ = N −{0} is a multiplicative subgroup of F ∗ . An element A has

an inverse if and only if N(A) �= 0 in which case A−1 = N(A)−1A .

The trace of a quaternion is twice its scalar part.

Multiplying Quaternions

Let A,B be two quaternions.There is a bilinear form given by

A · B =
1

2
(AB +BA) =

1

2
(AB +BA) =

1

2
tr(AB).

In terms of coordinates this is

A · B = a0b0 − λa1b1 − μa2b2 + λμa3b3.

Since λ and μ are non-zero this is a non-degenerate form. The corresponding quadratic form is

N(A) = a2
0 − λa2

1 − μa2
2 + λμa2

3.

Let a,b be pure quaternions. Then

ab = −a · b+ a× b

where

a · b = −λa1b1 − μa2b2 + λμa3b3

is the restriction of the bilinear form to the pure quaternions and a× b is the cross product defined symbolically

by

a× b =

∣∣∣∣∣
−μi −λj k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣
The cross product has the usual rules of bilinearity and skew symmetry. The triple cross product expansion

a× (b× c) = (c · a)b− (b · a)c
is easily verified. The scalar triple product is

[a,b, c] = a · (b× c) = λμ

∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣
from which all the usual rules (except volume) can be deduced.

Dependancy Criteria
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In this subsection we will consider conditions for sets of quaternions to be linearly dependant or otherwise. A non-

zero element, A , of Q is called isotropic if N(A) = 0 and anisotropic otherwise. So only non-zero anisotropic

elements have inverses. We note the following theorem.

4.23.1 Theorem The following statements about a quaternion algebra Q are equivalent.

1. Q contains an isotropic element.

2. Q is the sum of two hyperbolic planes.

3. Q is not a division algebra.

4. Q is isomorphic to M2(F ) as an algebra.

Proof See [L] p 58.

We will call a quaternion algebra above hyperbolic. Otherwise it is called anisotropic. The classic quaternions

are anisotropic: 2× 2 matrices are hyperbolic.

4.23.2 Lemma A pair of pure quaternions a,b is linearly dependant if and only if a× b = 0 .

Proof The proof is clear one way using the antisymmetry of the cross product. Conversely suppose a × b = 0 .

Then (a×b)× c = (a · c)b− (b · c)a = 0 . This can be made into a linear dependancy by a suitable choice of c , for

example if a · c �= 0 . �

As a corollary we have the following

4.23.3 Lemma Two quaternions commute if and only their pure parts are linearly dependant. �

Now we look for conditions for the triple of pure quaternions, a,b, a × b , to be linearly dependant. The required

condition is given by the following lemma.

4.23.4 Lemma The pure quaternions a,b,a× b , are linearly dependant if and only if

N(a)N(b) = (a · b)2.
This is equivalent to the equations

N(a× b) = −μ(a2b3 − a3b2)
2 − λ(a1b3 − a3b1)

2 + (a1b2 − a2b1)
2 = 0,

ie a× b is isotropic or zero.

Proof Three 3-dimensional vectors are linearly dependant if and only if the determinant they form by rows is zero.

In the case of pure quaternions this means the scalar triple product is zero

[a,b, c] = a · (b× c) = λμ

∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣ = 0.

Replacing c with a×b and expanding out using the triple cross product formula gives the first equation. Using the

expansion formula

N(a× b) = N(a)N(b) − (a · b)2

gives the second formula. �
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We have the following corollaries.

4.23.5 Lemma If a,b are linearly independant pure quaternions and a × b is anisotropic, then the triple

a,b,a× b , is linearly independant.

4.23.6 Lemma Q is isomorphic to M2(F ) as an algebra if and only if there are linearly independant pure

quaternions a,b such that the triple a,b,a× b , is linearly dependant.

2× 2 matrices

We will interpret all the previous results in terms of 2× 2 matrices, M2(F ) =
(
−1, 1

F

)
. This is the only quaternion

algebra with zero divisors.

The generators of
(
−1, 1

F

)
are, together with the identity, the Pauli matrices

i =

(
0 1
−1 0

)
, j =

(
0 1
1 0

)
, k =

(
1 0
0 −1

)
.

By an abuse of notation we will often confuse the scalar matrix

(
ν 0
0 ν

)
with the corresponding field element ν .

A general matrix can be written uniquely as(
α β
γ δ

)
=
1

2

[
(α+ δ) + (β − γ)i+ (β + γ)j + (α− δ)k]

Conversely

A = a0 + a1i+ a2j + a3k =

(
a0 + a3 a2 + a1

a2 − a1 a0 − a3

)

Conjugation is

A = adjA =

(
δ −β
−γ α

)
=

(
a0 − a3 −a2 − a1

a1 − a2 a0 + a3

)

and norm is

N(A) = detA = αδ − βγ = a2
0 + a2

1 − a2
2 − a2

3

The scalar part of A is a0 = trA/2 = (α+ δ)/2 and the pure part is(
a3 a2 + a1

a2 − a1 −a3

)
=

(
(α− δ)/2 β

γ (δ − α)/2
)

Multiplying Matrices

4.23.7 Lemma Suppose A,B ∈M2(F ) =
(
−1, 1

F

)
. Then AB = AB .

The statement is deliberately provocative. It says that multiplying A,B as matrices and as quaternions is the same.

This can be checked directly. �

The above lemma allows quick checking of formulæ so if

A =

(
α1 α2

α3 α4

)
and B =

(
β1 β2

β3 β4

)
then A · B =

1

2
(α1β4 − α2β3 − α3β2 + α4β1)
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If a =

(
α1 α2

α3 −α1

)
and b =

(
β1 β2

β3 −β1

)
are pure then a · b = −α1β1 − (α2β3 + α3β2)/2 and

a× b =

(
(α2β3 − α3β2)/2 α1β2 − α2β1

α3β1 − α1β3 (α3β2 − α2β3)/2

)

4.24. Solving the Fundamental Equation

In this section we give a sufficient condition for two generalised quaternions to satisfy the fundamental equation.

Except for 2× 2 matrices, this condition is also necessary.

Let A = a0 + a and B = b0 + b be quaternions. We will need the following easily checked lemma.

4.24.1 Lemma Conjugation by multiplication is B−1AB = N(B)−1BAB where

BAB = a0(b
2
0 +N(b)) + (b2

0
−N(b))a + 2(a · b)b+ 2b0(a× b).

The two commutators are

[A,B] = AB −BA = 2a× b

and (A,B) = A−1B−1AB = N(A)−1N(B)−1A BAB where

A BAB = a2
0b

2
0 + b20N(a) + a2

0
N(b)−N(a)N(b) + 2(a · b)2

− 2(b0(a · b) + a0N(b))a + 2(a0(a · b) + b0N(a))b+ 2(a0b0 − a · b)a × b
.

�

We will call a quaternion, A , balanced if tr(A) = N(A) �= 0. A quaternion A = a0+a1i+a2j+a3k in a quaternion

algebra with parameters λ, μ is balanced if it lies on the quadric 3-fold

(a0 − 1)2 − λa2
1 − μa2

2 + λμa2
3 = 1, a0 �= 0.

A balanced classical quaternion A lies on the 3-sphere, centre 1 and radius 1. Note that if A is balanced then

N(A− 1) = 1. A pair of invertible non-commuting quaternions, A,B , will be called matching if A is balanced and

A ·B = 0.

4.24.2 Theorem If the quaternion algebra is anisotropic then a necessary and sufficient condition for the non-

commuting, invertible quaternions A,B to be solutions of the fundamental equation is that they are a matching

pair. Otherwise the condition is only sufficient.

Proof The proof formally follows [BuF]. In terms of quaternions the equation is

A BAB −BA BA = N(A)BAB −N(A)N(B)A.
Using the formulæ and notation developed above, the left hand side is

−4a0N(b)a + 4a0(a · b)b− 4(a · b)a× b

whereas the right hand side is

−2(a2
0 +N(a))N(b)a + 2(a2

0
+N(a))(a · b)b+ 2b0(a

2

0
+N(a))a × b

Considering half the difference of the two sides we arrive at

c = (tr(A)−N(A))N(b)a + (N(A)− tr(A))(a · b)b+ (b0(N(A)− tr(A)) + 2A ·B)a× b

So the two sides are equal if c = 0 .

Note that we are assuming A,B do not commute. So a×b �= 0 . If A,B is a matching pair then c = 0 . Conversely

if a,b,a × b are linearly independent then their coefficients will be zero and this implies that A,B is a matching

R.Fenn 75



Invariants of Links The general matching pair

pair. The bilinear form is definite unless the algebra is M2(F ) and so, except for this case, a,b, a×b will be linearly

independent. �

Note: The non-definite case is considered in [BuF2]

4.25. The general matching pair

In this section we will use the results of the previous section to describe the most general matching pair of matrices.

That is A,B are 2× 2 matrices with entries in some field and satisfying

1. tr(A) = det(A) (�= 0)

2. Aadj(B) +Badj(A) = 0

Note that condition 2. can also be written tr(AB−1) = 0

Since B can be multiplied by any non-zero scalar we may assume temporarily that

3. det(B) = 1.

We can conjugate the matrices A,B to simplify matters. Consider the following two cases:

Case 1, A has two distinct eigenvalues and is diagonal.

A =

(
a 0
0 a/(a− 1)

)
and B =

(
b c

(b2 + a− 1)/c(1− a) b/(1− a)
)

where a, b, c are general and c, 1− a must be invertible (ie non zero).

Inverses are given by

A−1 =
1

a

(
1 0
0 a− 1

)
so a must also be invertible and

B−1 = adj(B) =

(
b/(1− a) −c

−(b2 + a− 1)/c(1− a) b

)
.

The 4× 4 matrix S is

(
A B
C D

)
where

C = A−1B−1A−A−1B−1A2 =

(
b c/(1− a)2

(1− a)(b2 + a− 1)/c b/(1− a)
)

and

D = 1−A−1B−1AB =

(
(2− 3a+ ab2 + a2 − 2b2)/(1− a)2 (a− 2)bc/(1− a)2
(a− 2)b(b2 + a− 1)/c(1− a) (2 − 3a+ ab2 + a2 − 2b2)/(1− a)

)
Call this switch E2

Case 2 A has one eigenvalue and is lower triangular

A =

(
2 0
x 2

)
.

Then B has the form,

B =

(
y z

(xyz − 2y2 − 2)/2z (xz − 2y)/2

)
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where x, y, z are general and 2, z must be invertible.

Inverses are given by

A−1 =
1

4

(
2 0
−x 2

)
.

and

B−1 = adj(B) =

(
(xz − 2y)/2 −z

(−xyz + 2y2 + 2)/2z y

)

The 4× 4 matrix S is

(
A B
C D

)
where

C = A−1B−1A−A−1B−1A2 =

(
y + xz z

−(x2z2 + 3xyz + 2y2 + 2)/2z −xz/2− y
)

and

D = 1−A−1B−1AB =

(
xyz/2 xz2/2

−x(2y2 + xyz − 2)/4 −xz(xz + 2y)/4

)
Call this switch E1

If we now multiply B by the scalar t , ie the switch is augmented by t we have two possible switches: one dependant

on four variables a, b, c, t (E2 ) and one dependant on four variables x, y, z, t (E1 ).

4.26. Determinants over Quaternion Algebras

In order to define workable invariants we consider in this section a determinental function on the matrices in Mn(Q).
That is n×n matrices with entries in a quaternion algebra Q . For background reading see [As]. In fact the invariants

defined later can also be defined for any solutions of the fundamental equation over a ring with a determinant function

satisfying the rules listed below.

If R is a commutative ring let det :Mn(R)→ R denote the usual determinant. The classic quaternions, H , may be

embedded as a subalgebra of M2(C) and determinants taken in the usual way. Our aim is to generalize this.

Suppose Q has underlying field F and parameters λ, μ . Let F denote the algebraic closure of F . Embed i, j, k in

M2(F ) by

i =

(
0

√−λ
−√−λ 0

)
, j =

(
0

√
μ√

μ 0

)
, k =

(√−λμ 0
0 −√−λμ

)
.

Define d :Mn(Q)→ F as the composition of the embedding Mn(Q) ⊂M2n(F ) with det.

Alternatively the determinant function may be calculated by induction on the size of the matrices. The value

d(A) = N(A) starts the induction. Consider a matrix in Mn(Q). This may be reduced to diagonal form, by

multiplying on the left and the right by elementary matrices having unit determinant, (see below). Suppose this

matrix has diagonal elements d1, . . . , dn . Define the determinant as d = N(d1) · · ·N(dn). So the determinant

function takes values in N . For M2(F ) this subset is the whole of F : for classic quaternions it is the non-negative

reals.

The determinant function satisfies the rules

0. d(M) = 0 if and only if M is singular, moreover d(MN) = d(M)d(N). It follows that d(1) = 1.

1. d is unaltered by a permutation of the rows (columns).
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2. If a row (column) is multiplied on the left (right) by a unit then d is multiplied by d of that unit.

3. d(M) is unaltered by adding a left multiple of a row to another row or a right multiple of a column to another

column.

4. d

(
x u
0 M

)
= N(x)d(M) where u is any row vector and 0 is a zero column vector.

4’. d

(
x 0
v M

)
= N(x)d(M) where v is any column vector and 0 is a zero row vector.

5. d(M∗) = ∂(M) where M∗ =MT denotes the Hermitian conjugate.

6. if the entries in M all commute then d(M) = det2(M).

An elementary matrix of type 1 is a permutation matrix. An elementary matrix of type 2 is the identity matrix

with one diagonal entry replaced by a unit and an elementary matrix of type 3 is a square matrix with zero entries

except for 1’s down the diagonal and one other entry off diagonal.

The properties i. above for i = 1, 2, 3 follow from multiplying M on the right or left by an elementary matrix of

type i .

The matrix S can be written as a product of elementary matrices(
A B
C D

)
=

(
A 0
0 1

)(
1 0
C 1

) (
1 0
0 1−A−1

)(
1 A−1B
0 1

)
.

Note that 1−A−1 is invertible.

Hence d(S) = d(A)d(1−A−1) = d(A− 1) = 1. Therefore the representation of V Bn , induced by such an S , is into

SL(F, 2n).

4.27. Virtual knots and the invariant knot modules

We saw in the last section that given a biquandle we can label the semi-arcs with generators and define a presentation

using the switch on each classical crossing. Given an associative ring R , a 2× 2 matrix S with entries in R and a

virtual link diagram D , we define a presentation of an R -module which depends only on the link class of the diagram
provided S is a switch. This construction also works for classical knots and links but is only the Alexander module

in disguise. The generators are the semi-arcs of D , that is the portion of the diagram bounded by two adjacent

classical crossings. There are 2 relations for each classical crossing.

Suppose the diagram D has n classical crossings. Then there are 2n semi-arcs labelled a, b, . . . . These will be the

generators of the module. Let the edges of a positive real crossing in a diagram be arranged diagonally and called

geographically NW, SW, NE and SE. Assume that initially the crossing is oriented and the edges oriented towards

the crossing from left to right ie west to east. The input edges, oriented towards the crossing, are in the west and

the edges oriented away from the crossing, the output edges, are in the east. Let a and b be the labels of the input

edges with a labelling SW and b labelling NW. For a positive crossing, a will be the label of the undercrossing input

and b the label of the overcrossing input. Suppose now that

S(a, b)T = (c, d)T where S =

(
A B
C D

)
.

Then we label the undercrossing output NE by d and we label the overcrossing output SE by c .
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For a negative crossing the direction of labelling is reversed. So a labels SE, b labels NE, c labels SW and d labels

NW.

Finally for a virtual crossing the labellings carry across the strings. This corresponds to the twist function T (a, b) =

(b, a).

The knot diagram therefore gives rise to a presentation of an R -module with 2n generators and 2n relations. Note

that in all cases B,C are invertible since the identity switch is uninteresting.

4.27.1 Theorem The module defined above for any diagram D is invariant under the Reidemeister moves, and

hence is a knot invariant, if S is a switch. �

4.28. Determinant Invariants

The Determinant Δ0

Given a module with a square presentation the obvious invariant of the module is the determinant, if it can be

defined. This will be the case if the ring is represented by matrices with commuting entries, for example the ring of

generalised quaternions where each quaternion is represented by a 2× 2 matrix with complex entries. In this case

if d denotes the determinant and Mx = 0 is the presentation let Δ0 = d(M). Since the module depends on the

switch S we illustrate this dependency by Δ0 = Δ0(S).

A close look at how the presentation of the module changes under the Reidemeister moves shows that Δ0 is invariant

up to multiplication by d(B) or d(C). Typically d(B) is denoted by the variable t and d(C) is t−1 . If we take the

switch to be E1 (E2 ) defined in section 5 then Δ0 is a polynomial p1 (p2 ) in the four variables x, y, z, t (a, b, c, t).

We can normalise these polynomial so that as a polynomial in t it has a non-zero constant term and only positive

powers of t .

Let us illustrate the previous discussion by calculating invariants for the virtual trefoil as shown in the figure.

a b

c

d

If we label as indicated then the module has a presentation with 4 generators a, b, c, d and relations c = Ab+Ba, a =

Ac+Bd, b = Cc+Dd, d = Cb+Da . Restricting to the E1 case gives the polynomial p1 equal to

64 + 4x3tz3 + 4x3t3z3 + 128t2 − 64xtz − x4t2z4 − 64xt3z + 8x2t2z2 − 4x2z2 + 64t4 − 4x2t4z2

16

For the E2 case we get the polynomial p2 equal to

−

−4 + 16 a− 40 tba3 − 4 t4a4 + 16 t4a3 − 24 t4a2 + 16 t4a− 36 tb3a2 + 72 a2tb+ 4 b2 + 13 a2t4b2

+40 tb3a+ 4 t4b2 − 4 t4 − 24 a2 − 12 b2a+ 13 a2b2 + 16 a3 − 12 t4b2a+ 16 tb− 6 t4b2a3

+t4b2a4 − 56 atb− 16 tb3 + b2a4 − 6 b2a3 + 8 ba4t− 2 b3a4t+ 14 b3a3t− 4 a4 − 8 t2a4 + 32 t2a3

−48 t2a2 + 32 t2a− 8 t2 + a4t2b4 − 2 a4t2b2 − 8 a3t2b4 − 8 t2b2 + 16 t2b4 + 16 t3b− 16 t3b3−
26 a2t2b2 + 12 a3t2b2 + 24 a2t2b4 + 8 a4t3b− 40 a3t3b+ 72 a2t3b+ 24 at2b2 − 32 at2b4

−56 at3b− 2 t3b3a4 + 14 t3b3a3 − 36 t3b3a2 + 40 t3b3a

t2 (a− 1)4
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Note that the fundamental quandle (and hence group) as defined by the Wirtinger presentation is trivial.

The Determinant Δ1

For many knots and links, including the classical, the determinant Δ0 is zero.

For example, as we have seen earlier any switch S with entries in the ring R defines a representation of the virtual

braid group V Bn into the group of invertible n× n matrices with entries in R by sending the standard generator

σi to Si = (id)i−1 × S × (id)n−i−1 and the generator τi to Ti = (id)i−1 × T × (id)n−i−1 . This representation is

denoted by ρ = ρ(S, n). For classical braids this representation is equivalent to the Burau representation and so we

would expect the closure of a classical braid to have Δ0 zero. We now confirm this by looking at the fixed points of

Si both on the left and right.

4.28.1 Lemma Let P = A−1B−1A and Q = B−1(1 −A) . Then

(Pn−1, . . . , P, 1)Si = (Pn−1, . . . , P, 1) (∗)
and

Si(1, Q, . . . , Q
n−1)T = (1, Q, . . . , Qn−1)T (∗∗).

Proof We need only check that

(P, 1)S = (P, 1) and S(1, Q)T = (1, Q)T .

�

Therefore the following lemma gives a necessary condition for the knot or link to be classical.

4.28.2 Theorem For all classical knots and links Δ0 = 0 .

Proof Since Δ0 is an invariant of the module we can assume that the diagram from which it is defined is the closure

of a braid. However from ∗ (or ∗∗) there is a linear relationship amongst the rows (columns), so Δ0 = 0. �

The Kishino knot is illustrated below.

fig: The Kishino Knot

This is one of the ways of forming the connected sum of two unknots. The invariant Δ0 is zero.

It is clear that we need an invariant in this case. Let M be the 2n×2n presentation matrix. Let M1,M2, . . . ,M(2n)2

be the submatrices obtained by deleting a row and a column. Let d1, d2, . . . , d(2n)2 be the determinants. These all

lie in a ring of polynomials with coefficients in a field. Therefore the determinants have an hcf, call it Δ1 , which is

well defined up to multiplication by a unit. Now look at what happens to this construction under a Reidemeister I

move. The hcf, Δ1 , is multiplied or divided by d of a unit.
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A calculation with the Alexander switch shows that for the Kishino knot, Δ1 is 1. But we can show that it is

non-trivial by using the Budapest switch augmented by t . Then Δ1 = 2 + 5t2 + 2t4 see [BuF].

For a classical knot or link the invariant Δ1 is not just the Alexander polynomial in disguised form but is independant

of the deleted rows or columns chosen, up to multiplication by a power of t .

4.28.3 Theorem Let D be a diagram of a classical knot or link and let M be the presentation matrix associated

with D . Consider d(Mij) where Mij is obtained from M by deleting the ith row and the j th column. Then d(Mij)

is independant of i, j up to multiplication by a power of t and is equal to Δ1 .

Proof Assume initially that D is the closure of a braid.

Write

M = (C1 C2 . . . C2n )

in terms of its columns and let

Mij = (C0
1 C0

2 . . . C0
2n )

where each column has its ith component removed and C0
j does not appear in the list. From ∗∗ ,

C0
j = −C0

1Q
(1−j) − · · · − C0

2nQ
2n−j

and C0
j does not appear on the right hand side of the equation.

So by column operations which do not change the value of the determinant we can change any column to C0
j . Now

note that the value of the determinant is unchanged by interchanging two columns. A similar argument works for

the rows.

A general diagram is obtained from D by a sequence of Reidemeister moves. A glance at the change of M under

the Reidemeister moves shows that Δ1 is invariant up to multiplication by a power of t . �

Let us now return to the Kishino knot. This is the closure of the braid

τ2(σ1σ2σ1)τ2(σ1σ2σ1)
−1

Suppose the representation of this as a 3× 3 matrix, using the Budapest switch augmented by t , is M . Then the

representation matrix of the module is M − id . The nine codimension 1 subdeterminants are
p = 2t−2 + 5 + 2t2, (4 times) q = (2 + 2t2)p(t−1), (twice) q(t−1), p2

This not only shows that it is non-trivial but that it cannot be classical.

5. Flat Knots

In this chapter we see how the previous methods can be applied to flat knots. That is virtual knots in which the

classical crossings have no distinction between over and under arcs. Flat knots may be thought of as immersed curves

on a surface modulo cobordism.

It is a consequence of the condition on classical crossings that for flat knots the switch must satisfy S = S−1 or

S2 = 1. This naturally leads to the Weyl algebra, sometimes called the Heisenberg algebra of the harmonic oscillator.

This has generators u, v satisfying the relation uv − vu = 1.

To indicate the sort of theorem this allows, consider the following.
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5.28.1 Theorem Let W be any algebra with invertible elements u, v satisfying uv − vu = 1 . Put A = v−1u−1 ,

B = u , C = uvu−1v−1u−1vuv−1u−1 , D = −u−1v−1 and S =

(
A B
C D

)
. Then the W−module defined in the

usual way is an invariant of flat knots.

For example consider the flat Kishino knot, defined as an immersed curve on the closed orientable surface of genus

2 and illustrated below.

Using the representation of the Weyl algebra given by

u =

⎛
⎝ 1 1 0
0 1 1
0 0 1

⎞
⎠ v =

⎛
⎝ y 0 0
1 y 0
0 2 y

⎞
⎠

with underlying ring Z3[y] we find

Δ0 = 0, Δ1 = 2 + 2y.

Since Δ1 �= 1, the Kishino flat knot is indeed non-trivial.

References

[Azc] H.Azcan, Spherical representations of link quandles, Ph.D. thesis, Sussex University 1991

[BF] A. Bartholomew and Roger Fenn. Quaternionic Invariants of Virtual Knots and Links, JKTR

[Bir] J.Birman, Braid links and mapping class groups, Annals of Math. Studies #82, Princeton 1975

[Bir2] J.Birman, New Points of View in Knot Theory, to appear in Bull. A.M.S.

[Br] E.Brieskorn, Automorphic sets and singularities, Contemporary maths., 78 (1988) 45-115

[BuF] S. Budden and Roger Fenn. The equation

[b, (a− 1)(a, b)] = 0

and virtual knots and links,

[BuF2] S. Budden and Roger Fenn.Quaternion Algebras and Invariants of Virtual Knots and Links II: The Hyperbolic

Case to appear in JKTR

[BZ] G.Burde and H.Zieschang, Knots, Walter de Gruyter Studies in Maths. #5, 1985

[CS] J. S. Carter, D. Jelsovsky, Seiichi Kamada, Laurel Langford, Masahico Saito. Quandle Cohomology and State-

sum Invariants of Knotted Curves and Surfaces

http://arxiv.org/abs/math.GT/9903135

[CW] J.C.Conway and G.C.Wraith, correspondence, 1959

[Cox] H.S.M.Coxeter, Regular complex polytopes, C.U.P. 1974

[D] P.Dehornoy, Free distributive groupoids, J. Pure and Applied Algebra, 16 (1989) 123-146

[D] P. Dehornoy. Braids and Self-Distributivity. Progress in Mathematics no. 192 Birkhäuser, (2000).

[Dev] D.Devine, Alexander invariants of links and the fundamental rack, M.Phil. thesis, Sussex University 1991

R.Fenn 82



Invariants of Links References

[Dr] V. Drinfeld, On some Unsolved Problems in Quantum Group Theory, Quantum Groups, Lectures Notes in

Maths. 1510, Springer 1-8 (1990)

[ESS] P. Etingof, T. Schedler and A. Soloviev, Set-Theoretic Solutions to the Quantum Yang-Baxter Equations.

Duke Math Journal 100 no. 2 169-209 (1999)

[EGS] P. Etingof, R. Guralnik and A. Soloviev, Indecomposable set-theoretical solutions to the Quantum Yang-

Baxter Equation on a set with prime number of elements. J of Algebra 242 (2001) 709-719

[FR] R.Fenn and C.Rourke, The Braid–Permutation Group, Topology, 18 (1979) 1-15

[FR2] R.Fenn and C.Rourke, On Kirby’s calculus of links, Topology, 18 (1979) 1-15

[FRB1] R.Fenn, C.Rourke and B.Sanderson, An introduction to species and the rack space, Proceedings of the

Topology Conference, Erzurum, 1992

[FBR2] R.Fenn, C.Rourke and B.Sanderson, Trunks and classifying spaces, Applied Categorical Structures,

Volume 3 (1995) pages 321-356

[FR] R.Fenn, C.Rourke, Racks and Links in Codimension Two, Journal of Knot Theory and its Ramifications,

Vol. 1 No.4 (1992) 343–406

[FRR] R.Fenn, R.Rimanyi, C.Rourke Some Remarks on the Braid–Permutation Group to appear in the Pro-

ceedings of the Erzurum Conference, Turkey (1992)

[Hem] J. Hempel, 3–manifolds, Ann. of Math. Studies #86 Princeton 1976

[Hum] J.E.Humphries, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Math. #29, C.U.P.

1990

[[Hum2]] S.P.Humphries, On Weakly Distinguished Bases and Free Generating Sets of Free Groups, Quart. J.

Math. Oxford 920, 36 (1985), 215–219

[Je] T.Jech, A short proof of the irreflexivity conjecture, preprint, Penn. State University

[LYZ] Jiang-Hua Lu, Min Yan, and Yong-Chang Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J.

104 1-18 (2001)

[LYZ2] Jiang-Hua Lu, Min Yan, and Yong-Chang Zhu, Quasi-triangular structures on Hopf algebras, Contemp.

Math. 267, 339-356 (2000)

[Jo] V.Jones, Polynomial invariants of knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111

[J] D.Joyce, A classifying invariant of knots; the knot quandle, J. Pure Appl. Alg., 23 (1982) 37-65 [KK] N. Kamada

and S. Kamada, Abstract Link Diagrams and Virtual Knots,

JKTR 12, 93-109 (2003).

[Ku] G. Kuperberg, What is a Virtual Link? Algebraic and Geometric Topology 587-591 (2003)

[K] L.Kauffman. Virtual Knot Theory, European J. Comb. Vol 20, 663-690, (1999)

[K2] Louis H. Kauffman. Detecting virtual knots. Atti Sem. Mat. Fix. Univ. Modena, Supplemento al Vol. IL,

241-282 (2001).

[K] L.H.Kauffman, Knot-crystals – classical knot theory in modern guise, Knots and Physics, World Sci.

[KR] Louis H. Kauffman and David E. Radford. Bioriented quantum algebras and a generalized Alexander polyno-

mial for virtual links. in ”Diagrammatic Morphisms and Applications (San Fransico, CA 2000), 113-140. contemp.

Math. 318, AMS, Providence, RI (2003).

[Kel] A.Kelly, Groups from link diagrams, Ph.D. thesis, Warwick University, 1991

[Kh] M.Khovanov, New generalisations of braids and links, preprint

[KS] T. Kishino and S. Satoh, A note on classical polynomials, preprint (2001)

[Ko] K.H.Ko, Pseudo-conjugations, Bull. Korean Math. Soc. 25 (1988), No 2, 247–251

[19] R.Kirby, A calculus for framed links in S3 , Invent. Math., 45 (1978) 35-56
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