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1 Introduction

We are all able to tie a knot in a piece of rope. What exactly do we mean
though when we say that a piece of rope is knotted?
Look at the pictures in figure 1.
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Figure 1:

Let us first stop the knots escaping by joining up the ends of the rope, as
in figure 2. Compare what happens in the three cases.

In the first case we get a simple, or ‘unknotted’ circle, while in the second
case we have a circle with what appears to be a knot in it.

Let us say that the rope is knotted if no possible manipulation of it will
result in the unknotted circle. We do not allow cutting and rejoining.
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Figure 2:

The third example can clearly be undone by a little manipulation to form
the simple circle, so again the rope is unknotted.

We model this notion of a knot mathematically by referring to a closed
curve in R? as a knot, with the special case of the simple circle, lying say as
the unit circle in a plane, known as the trivial knot or unknot. Knot theory
in the mathematical sense is then the study of closed curves in space.

We call two knots equivalent if one can be manipulated, without passing
one strand through another, to become the other knot. I give a more formal
technical description of this below, but essentially anything is allowed which
could be done with a rather stretchable piece of rope. The one manoeuvre
which must be excluded is the analogue of the bachelor’s technique for ig-
noring knots on a piece of cotton — pull it so tight that you can hardly see
it! Using this technique on a curve with no physical thickness would get rid
of any knot.

We would like to know for a start if there are any knots which are not
equivalent to the trivial knot. If so, are there lots of different knots, and
how might we distinguish between them? It is easy to imagine that you have
been given two knots and by a little patient work you manage to manipulate
one to look like the other, e.g. the first and third knots in figure 2. What
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Figure 3: Bachelor’s unknotting
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happens though if you find that even after a lot of trying you can’t make
them look the same — does it follow that the knots are inequivalent, or have
you just not been dextrous enough? There is clearly a problem here, and
something else will be needed, as there is no way that failure to manipulate
can show that it is actually impossible to do so.

It should be realised that the question of how the rope is knotted isn’t
an intrinsic question about the rope alone, but rather a matter of how the
rope is placed in space. Every closed loop of rope looks the same to an ant
inside the rope. Some of the techniques developed for the study of knots have
proved fruitful in other ‘placement problems’; i.e. in studying the different
ways in which one particular geometric object, here a closed curve, may lie
inside a larger one.

Background. The idea of looking at knotted and unknotted closed curves
goes back to Gauss and beyond. Kelvin had some idea of trying to relate
different types of atoms to knotted curves in the ether; this was taken up by a
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Scottish physicist Tait, who set out to enumerate all possible different knots
in the hope of tallying them against different atoms. His lists of knots soon
showed that the task of systematically enumerating all knots was hopelessly
complicated; among other problems there are infinitely many. It is still true
today that no practical framework exists for producing a comprehensive list,
although Thistlethwaite has devised a fairly good means of handling the
simpler knots. Various mathematicians in the 1920s and 1930s developed
methods to show up a number of general properties shared by all knots,
using some very elegant geometrical techniques and exploiting the growing
interplay between algebra and this style of geometry. From this period has
come the Alexander polynomial, and interpretations of it, as well as group
theoretic invariants. Much more recently knot theory and theoretical physics
have again had close contacts.

Definition. A knot is a simple closed curve K C R? or in S® (more about
this later).

Definition. The complement of K is S — K.

We shall only deal with tame knots, e.g. smooth or polygonal curves, and
we assume that K has a solid torus neighbourhood V' with

(V,K) = (S x D* S* x {0}).

This is like insisting on using a piece of rope, although its exact thickness
will not matter.

It is often convenient to deal with S® — intV = extK, the exterior of K,
which is a compact 3-manifold with boundary d(extK) = 0V = torus S! x
St

From the point of view of topological invariants there is not much differ-
ence between S® — K, extK and S® — V.

Definition. Knots Ky and K; are homeomorphic if there exists a homeo-
morphism & : R?* — R? such that h(Kj) = K;.

If h is orientation preserving we can deform K, to K; through a family
of knots K; = hy(Ky). We shall call Ky and K equivalent when they are
related in this way. (The term ambient isotopic is also used.)

Conversely a 1-parameter sliding of a neighbourhood V' of Kj to one of
K, through R? can be extended to such a family h; of homeomorphisms,
and models quite well the physical notion of equivalence by manipulation of
a closed loop of rope.
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We then have the result, by composing with a reflection if necessary, that
two knots Ky and K; are homeomorphic if and only if K is equivalent to
K, or its mirror-image.

Remark. Some knots, for example the trefoil, are not equivalent to their
mirror image, while others such as the figure-eight knot are.

1.1 Knot diagrams and moves

For our subsequent analysis we concentrate on tame knots, i.e. knots equiv-
alent to finite polygonal curves or equally to regular smooth curves.

Diagrams connected by a sequence of Reidemeister’s moves, seen in figure
4, represent equivalent knots.

=
P
|

Figure 4: Reidemeister’s moves

The converse is also true.

Theorem 1.1 (Reidemeister) If two diagrams represent equivalent knots
then one diagram can be converted to the other by a finite sequence of Rei-
demeister moves, along with isotopy (deformation) of the image within the
projection plane.

1.2 Links and linking number

We may enlarge our scope slightly and look, as Gauss did, not just at a single
closed curve but at several at once.
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Definition. A link of r components is a collection L = L; U Ly U ... UL,
of r closed non-intersecting curves.

When r = 1 we have a knot. In the case r = 2 we can very simply
associate an integer with a link, which is the same for every equivalent link.
This is called the linking number of the two components.

To define the linking number lk(L;, Ly) we must first choose an orientation
of each of the components, which we note on a diagram of the link by drawing
arrows on the curves. Now look at one diagram of the link and consider only
the crossings where L; crosses over L,. Each of these crossings c¢; can be
given a sign ¢; = £1, according to a conventional choice. The sum of these
signs > ¢; is unaltered when the diagram is changed by Reidemeister moves.
For crossings of L; over Ly are not affected by moves I and III, while if there
are any involved in a move of type Il they occur as a pair with opposite sign,
so that the sum is unchanged.

Reidemeister’s theorem holds also for links. We may then set 1k(L;, L) =
> ¢; for any choice of diagram.

Proposition 1.2 [k(Ls, Ly) = k(Ly, Ls).

Proof : To calculate 1k(Ls, L) we must count the crossings of Ly over L; in
some diagram. Start with a diagram in which we count the crossings c; of L
over Ly. If we turn this diagram over and view it from the other side we get
a new diagram of the link in which the crossings ¢; become the crossings of
Ly over Ly. Each crossing, viewed from the other side has the same sign as
it had initially, so the sum needed to calculate 1k(Ls, L;) from this diagram
is identical to the sum calculating 1k(L;, Ly) in the original diagram. a

1.3 Framed links

Framed links are made from pieces of ribbon rather than rope, so that each
component has a preferred annulus neighbourhood. Combinatorially they
can be modelled by diagrams in S? up to R;; and Ry, excluding R;, by
use of the ‘blackboard framing’ convention. The ribbons are determined by
taking parallel curves on the diagram.

Reidemeister moves I1 and 111 on a diagram give rise to isotopic ribbons.
Any apparent twists in a ribbon can be flattened out using Reidemeister I.

Oriented link diagrams D have a writhe w(D) which is the sum of the
signs of all crossings. This is unchanged by moves I'1 and I11.
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For a framed knot the writhe is sometimes called its ‘self-linking number’,
which is independent of the orientation of the diagram. Generally a framing
of a link is determined by a choice of writhe for each component.

1.4 Satellites

A satellite of a framed knot K is determined by choosing a diagram @) in the
standard annulus, and then drawing () on the annular neighbourhood of K
determined by the framing, to give the satellite knot K *x (). We refer to this
construction as decorating K with the pattern @) (see figure 5).

Figure 5: Satellite construction

It is often possible to use satellites with some fixed choice of pattern @)
in comparing two framed knots K and K’. When K and K’ are equivalent
then K * @ and K’ x () are equivalent. If we can find some knot invariant
for which I(K % Q) # I(K' * @) we can conclude that K’ is not equivalent
to K.

The use of satellites is sometimes known as cabling.

I reserve the term ‘cable’ to describe satellites where the pattern @) is
based on some (p, q) torus knot.

The Conway polynomial V(K') is not useful in this context, since

V(K Q) = V(K" Q)

for every choice of @, if V(K) = V(K').

This limitation does not hold in general. In particular the extension of the
Conway polynomial known as the Homfly polynomial will often give useful
extra information when applied to satellites.
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2 Homfly invariants

In 1984 V.F.R.Jones constructed a new invariant of oriented links V(¢) €
Z[t=2], which turned out to have the property that

Wy, — V= (Vt—1/VH)V,

for links Ly and Lg related as in the Conway polynomial relation. This was
quickly extended to a 2-variable invariant Pp(v,z) € Z[v*!, 2!, with the
property that

1)_1PLJr —UPL7 = ZPLO.

The name ‘Homfly polynomial’ has come to be attached to P, being the
initial letters of six of the eight people involved in this further development.
The polynomial P contains both the Conway/Alexander polynomial, and
Jones’ invariant, and can be shown to contain more information in general
than both of these taken together. We have

P(l,z) = V(2)
P(l,s—s 1 = A(s?)
P(s*,s—s1) = V(s
P(s,s—s ') = =1

The skein relation (1) can readily be shown to determine P and V once its
value on the trivial knot is given. It has been usual to take P = 1 on the
trivial knot, although in some recent applications a different normalisation
can be more appropriate.

Given the existence of V' and P we can then make some calculations. For
example, the unlink with two components has

P = ;
V(s®) = —(s+s),
while the Hopf link with linking number +1 has
P = vz+ (vt —ovpiz
V(s*) = s —s—(s+s")s" = —s(1+s%).
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The Hopf link with linking number —1 has
P = —vlz4 (0 =)o
V(s*) = —sH1+s?).

This illustrates the general feature that for the mirror image L of a link L,
(where the signs of all crossings are changed), we have Pr(v, z) = Pr(v™!, —2)
and so V£(s?) = Vi(s72). Tt is thus quite possible to use V' in many cases to
distinguish a knot from its mirror-image, while there will be no difference in
their Conway polynomials. It is worth noting that although there are still
knots which cannot be distinguished from each other by P in spite of being
inequivalent, no non-trivial knot has so far been found for which P = 1, or
even V = 1.

The original Homfly polynomial is invariant under all Reidemeister moves,
but there is a convenient version which is an invariant of a framed oriented
link

In its most adaptable form, Py (v, s), it lies in the ring
A =Zv* s* (57— s, r > 0.

Its defining characteristics are the two local skein relations.

L NG = e ) (
2. K@ = vlg

These relate the invariants of links whose diagrams differ only locally as
shown.

They are enough to allow its recursive calculation from simpler diagrams
in terms of the value for the unknot.

The unframed version for L, invariant under all Reidemeister moves, is
given by v*(P)P; (v, s) where D is a diagram for the framed link.

The local nature of the skein relations between invariants allows us to
make a useful simplification in studying them.

Compare for example three patterns )+ and Q.

(
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The framed Homfly invariants of K * Q4+ and K * )y then satisfy
P(K % Qy) = P(K Q) = (s — s )P(K % Qy).

Since K % (Q_ is the unknot for any K, this relates the invariants of the
Whitehead double K % @), of K and those of its reverse parallel.

More generally, consider the linear space C of A-linear combinations of
diagrams in the annulus (up to Ry, R;rr) and impose the local relations

L N = (5—31)><
2. Kp = v‘lg

Decorating K by an element Y a;Q); of C gives a well-defined Homfly
invariant Y a; P(K * ;) since the skein relations are respected when the
Homfly polynomials of the satellites are compared.

We could summarise our calculation above by saying that in the skein C

we have

and hence
P(K * Q) = P(unknot) + (s — s~ ")vP(reverse parallel).

The space C, called the Homfly skein of the annulus then gives a more
effective parameter space for satellite invariants, as we only need to know the
pattern as an element of C.

For example, any of the twist patterns

QL
.12%

10
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is a linear combination of the reverse parallel and the trivial pattern, so
the Homfly polynomial of any twisted double can be found from the reverse
parallel.

We will return to look at more details of C later. For now, I will look
at a further skein formulation which results in interesting models of certain
algebras.

3 General Homfly skein theory

For a surface F' with some designated input and output boundary points the
(linear) Homfly skein of F' is defined as linear combinations of oriented dia-
grams in F', up to Reidemeister moves II and III, modulo the skein relations

D (s—sl)><,
2. tp:vlg,%):vg.

It is an immediate consequence that

_1—’U

1

where 0 = € A. The coefficient ring A is taken as Z[v*! s*!], with

S— 8~
denominators {r} =s" —s ", r > 1.
We have already met the skein of the annulus, C.
In the skein of R? or S? every diagram D is equivalent to a multiple of

the trivial diagram Q
D= P(D) )

where P(D) is the framed Homfly polynomial of D.

Given a framed knot K there is a linear map Kx* : C — S(R?) induced
by Q — K x Q.

Geometric operations induce linear maps on the corresponding skeins.

The skein of the rectangle with m inputs at the top and m outputs at
the bottom is denoted by H,,. Elements are represented by combinations of
diagrams in the rectangle made up of m arcs joining the input and output
points, and possibly some further closed curves. Such diagrams are known
as m-tangles.

11



Knots and Links 3 2009

A simple example of an m-tangle is an m-braid, while another important
m-tangle is the tangle

3.1 Composition

Putting one m-tangle above another defines an associative product with iden-
tity.

Theorem 3.1 The set of invertible tangles consist of the m-braids, which

form the braid group B,,.

Artin’s braid group B,, has a presentation in terms of elementary braids,
{o:},i=1,...,m — 1 satisfying the braid relations

0;0; = 0,04 ‘Z —j‘ > 1,
0;0i+10; = 04104041,
where
. ANAA A
P
op = )\
¢ i i+

Tangle composition induces a product in the skein H,,. This skein is
spanned by a finite set of m-braids. One such spanning set consists of the m!
‘totally descending’ braids in which the m arcs of the tangle are numbered
from the bottom left, and each crossing is met first as an overcrossing on
going along the arcs in order. These braids are sometimes termed ‘positive
permutation braids’, and they each realise one of the permutations of the
endpoints.

Then H,, forms a finite-dimensional algebra, with presentation on gener-

ators {o;},i =1,...,m — 1 satisfying the braid relations
0,05 = 0505, |Z—j| >1,
0i0i+103 = 0410041,

12
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and the quadratic relations 0? = (s — s™!)o; + 1, which result from the skein
relation
o;—o0; = (s — s YId.

The resulting algebra is also known as the Hecke algebra H,,(z), when
2z =s—s5 1= {1} and the coefficients are extended to A. The Hecke algebra
H,,, can be also seen as the group algebra of Artin’s braid group B,, generated
by the elementary braids o;, i = 1,...,m — 1, modulo the further quadratic
relation o? = zo; + 1.

In the special case z = 0 the Hecke algebra reduces to C[S,,], with o;
becoming the transposition (i 7 + 1).

3.2 Closure

The closure map from H,, to C is the A-linear map induced by considering
the closure T of a tangle 7" in the annulus (see figure 6). The image of this
map is denoted by C,,.

Figure 6: The closure map

4 The skein of the annulus

The skein C is used as a parameter space for the Homfly satellite invariants
of a knot.

It has a product structure induced at the level of diagrams by placing
one annulus outside another. This defines a bilinear product under which
C becomes an algebra. This algebra is clearly commutative (lift the inner
annulus up and stretch it so that the outer one will fit inside it).

Turaev [17] showed that C is freely generated as an algebra by the elements
A, which are the closures of the m-braids shown, and the elements A? , with

13
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1Q:2 = = Q20

(1
Figure 7: The product Q;Qs

the reverse orientation. The identity element in the algebra is represented
by the empty diagram in the annulus.

So the pattern @), for the Whitehead double is a linear combination of 1
and A; A7 in this notation.

The linear subspace C,, consisting of the closures of m-tangles has a linear
basis of monomials in { A;} with total weight m, where A; has weight i. There
are p(m) of these, where p(m) is the number of partitions of m. Thus Cs is
spanned by A3, A; Ay and Aj.

Although the satellite invariants of a knot K behave additively under
addition of patterns, there is no relation between the invariants with patterns
Q1,Q2 and @Q1Q),. It may then happen that there are p(m) independent
invariants arising from decorations in C,,.

In the interests of relating these to other invariants it is good to work
with a rather different basis for C,,, and indeed for the whole skein C, which
has the advantage of behaving well when the framing of the knot is changed.

For example when an extra twist is added to the framing of a knot K to
form K’ the satellite K" x A2 becomes K * Q with Q = v™2A? + 20724, in
the skein Cy so that P(K' x A?) = v ?P(K x A?) + v 22P(K * Ay).

The two basis elements Q; = A? 4+ sAy and Qo = A3 — s~ 1Ay are much
better for framing changes, in the sense that P(K’' * Q1) = v 2s?P(K * ;)
whileP (K’ * Q3) = v 2s2P(K * Q)

The framing change map is illustrated in figure 8 by its effect on the
2-parallel element (A;)2.

The framing change map is connected to the element in the Hecke algebra
H,, represented by the full twist A2 on m strings. This braid commutes with
all m-braids, and hence represents an element in the centre of the Hecke
algebra H,,.

14
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Figure 8: The framing change map on a 2-parallel

A further important central element of H,, is represented by the tangle

.t
e

Y -
—_—

T(m) —

consisting of an oriented meridian curve around m parallel strings.
Closely related to the elements 70™ are the meridian maps ¢, % : C — C
in the skein of the annulus.

4.1 Meridian maps

The meridian map ¢ : C — C is induced by including a single meridian curve
around a diagram @ in the thickened annulus to give the diagram shown in
figure 9.

p(Q) =

Figure 9: The meridian map

The map @ is given similarly, using the opposite orientation on the merid-
ian curve.

15
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When Q is the closure Q = T of an m-tangle T then ©(Q) is the closure
of T(MT.

The subspace C,, spanned by closed m-tangles is invariant under the
meridian map ¢. The map ¢|C,, has p(m) distinct eigenvalues, one for each
partition of m, with a 1-dimensional space of eigenvectors for each eigenvalue.

While C,, is also invariant under the framing change map, this map has
fewer distinct eigenvalues than ¢ for m > 6. The eigenvectors for ¢ are also
eigenvectors for the framing change map, and indeed the basis given above
for Cy consisted of eigenvectors for (.

Theorem 4.1 (Hadji, Morton) There is a basis for C consisting of eigen-
vectors of ¢, whose eigenvalues are all distinct

In fact we can describe the basis as elements ()5, where A and p run
through the set of all partitions. They satisfy ¢(Qx ) = sx,@Qx, Where

v’l—v

1"

Sap=(s—s") (v_lc')\(SQ) - UCM(S_Z)) + p——
The content polynomial Cy(t) € Z[t*!] of a partition A in this formula is the
integer Laurent polynomial

Ca(t) = > t°@,

TEA

Here x runs through cells in a Young diagram of the partition A, and ¢(z) =
j — i denotes the content of the cell x in position (i, j).

4.2 Partitions

A partition A of m into k parts \y > Ay > ... > X\, > 0 can be repre-
sented combinatorially by a Young diagram with m cells arranged in k rows.
Successive rows have Aj, Ao, ..., A cells starting from a fixed left-hand end.
Transposing a Young diagram determines a conjugate partition \Y.
Besides the content ¢(zx) of a cell x mentioned above some combinatorial
formulae make use of the hook length h(x) of the cell z, counting the number
of cells immediately to its right and below it in the Young diagram.

Theorem 4.2 (Hadji, Morton) The partitions X\, i can be reconstructed
readily from s ,, showing that the eigenvalues sy, for ¢ are all distinct.

16
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Proof :

Write the partitions A and p in Frobenius form as (ay, ..., aglb, ..., by),
having arms of lengths a; > as > ...a; > 0 and legs of lengths b; > by >
.o b > 0.

Then

(8 o Sil)C)\(S2) — Z<82a¢+1 o 872bi71)7

i=1

since the terms in the content polynomial Cy(s?) coming from the cells in

the 7th arm and leg of \ are Z s7r.
r=—b;
Hence (s — s7')C,(s?) determines the Frobenius form of \.
The coefficient of v™! in s, — Z:l_f is (s — s~ 1) C\(s?). This determines

s—

A

Similarly the coefficient of v in sy, — =¥ is (s — s71)C,(s72), which

determines p. a

The basis ()5, is then very natural, and it shows up in many different
ways.

For example the basis vectors are then also eigenvectors for any other
linear endomorphism of C which commutes with ¢. These include % and the
framing change map.

One other example is given by drawing a given knot K as the closure of
a 1-tangle in the annulus.

N

Decorate this with a pattern @) to get a diagram for K *() in the annulus,
Q

Wy

17
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inducing a map Tk : C — C.
Now T commutes with ¢,

(Q Q

) 3

SO TK<Q>\,M> = a(Kv A, M)Q)\uu'

Theorem 4.3 (Morton) The eigenvalues a(K, A\, i) € A are integral in A,
and are the ratio of the Homfly invariants

<K*Q)\,ﬂ>
<()xQrp>

4.3 Branching rules in C.

The basis @, for C also behaves well under the product operation, namely
the product of two basis elements is always a non-negative integer combi-
nation of basis elements. These can be found explicitly by combinatorial
formulae from classical work with partitions.

Besides the identity element in C, which is represented by the empty
diagram, and forms the basis element @), with |[A\| = |u| = 0, the simplest
basis elements are the single oriented core curves A; and Aj. These represent
(1,4 with |A] =1, |pu| = 0 and Q41 respectively.

The branching rules for these can be summarised as

= A1Qxpu = Z Qo+ Z Q-

g PEAT ST

Here AT is the set of partitions given from the the Young diagram of A
by adding one further cell, and A~ is the set of partitions given by removing
a single cell.

18
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5 Symmetric functions and the skein of the
annulus

This section is concerned primarily with the subspace C* of the skein of the
annulus which is spanned by the elements (), with 1 empty, or equally by
the subspaces C,, spanned by the closures of directly oriented m-tangles. We
write Q) := Q4 for the spanning basis elements.

An algebraic model of C* that fits particularly well with these basis ele-
ments {Q),} and also connects with the ideas of quantum group representa-
tions is that of symmetric functions.

5.1 Symmetric functions

We consider polynomials in N commuting variables xy,..., x5 which are
unchanged by permutation of the variables. The most familiar are the ele-
mentary symmetric functions

Em — Z Li1 Ly -« - Lj, -
11<12<...<im
These appear as the coefficients of the polynomial

N
E)=]]QA+zt)=1+eit+ - +eut™ + -

i=1
The complete symmetric functions are the coefficients of
A |

H(t) =11

=1

=1+ht+--+h,t"+---

The generating series for these two sets of functions satisfy the relation
Et)H(-t)=1.

Other familiar symmetric functions are the power sums P, = 7" +-- -+

m
.’,UN.

A classical result says that every symmetric integer polynomial in x1, ..., zy
is an integer polynomial in {e,,} and also in {h,,}. Indeed the polynomial is
independent of the number of variables N if NV is large enough. For example
p2 = €2 — 2ey for N > 1.

There is a considerable body of literature about symmetric functions.
They occur in the representation theory of symmetric groups and the related

19
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representation theory of unitary groups. One substantial reference is the
book of Macdonald [8].

The character of a representation of the unitary group U(N) is the trace
of the representing matrices considered as a function on the representation
of the diagonal matrices (which form a maximal torus in the group). The
trace gives a function on diagonal matrices which is symmetric in the entries.
Characters add under sum of representations, and multiply under tensor
product.

The irreducible representations correspond to certain symmetric functions
called the Schur functions. The Schur functions sy(x) of degree m form a
basis for all degree m symmetric polynomials in x = (z1,...,zy), and they
correspond directly with the partitions A of m. By the general result above
each Schur function can be expressed as a polynomial in the elementary
symmetric functions {e,,}, or the complete symmetric functions {h,,}. The
functions e,, and h,, themselves are Schur functions, corresponding to the
partitions of m into a single column or row respectively.

In the skein of the annulus a choice of elements to represent the complete
symmetric functions {h,,} can be made in such a way that the resulting Schur
polynomial sy represents the basis element @, [7]. The interpretation of C*
as symmetric functions based on this choice of representatives for {h,,} then
leads to a natural role for {Q,} as the Schur functions. It allows the known
formulae for products of Schur functions to tell us how to write a product of
basis elements @), as a sum of basis elements. It also suggests a relation to
the irreducible representations of the unitary groups. It is striking that the
elements representing the power sums also play a significant role in satellite
constructions and have satisfying geometric representatives, [10].

5.2 Construction of the basis elements

The elements h,, and e,, can be constructed readily in terms of the simplest
idempotents of the Hecke algebra H,,.

The element h,, € C,,, which is taken to represent the complete symmetric
function of degree m, is the closure of the element iam € H,, where

Ay, = Z sy
TESH

is one of the two basic quasi-idempotent elements of H,,. Here w, is the
positive permutation braid associated to the permutation © € .S,, with length

20



Knots and Links 5 2009

I[(m), which is the writhe of the braid w,. The scalar «, is given by the
equation G,a, = amany, [7, 2, 9]. Using the other quasi-idempotent

b= Y (—s) ™,
TESH
in a similar way determines the element e,, which represents the elementary
symmetric function. These elements are related by the power series equa-
tion H(t)E(—t) = 1. These two idempotents arise from the 1-dimensional
representations of H,, in which o; — s or o; — s~! respectively.

Aiston’s view of the elements @), is in a more 3-dimensional context of
combinations of diagrams in a solid torus, rather than an annulus. We show
below a diagrammatic view of a linear combination of 3-dimensional braids,
whose endpoints lie on the cells of a Young diagram A, rather than in the
conventional straight line.

This should be regarded as an element of the Homfly skein of D? x I,
with endpoints at the top and bottom on the template A, and with some
implicit choice of parallel for each strand to determine a framing. The white
boxes, following the rows of ), contain the braid combination a; when the
box has length j, while the grey boxes, following the columns, similarly
contain combinations b;. The whole combination will be denoted by e,.
(The notation ey is used in [1] for a closely related element of the Hecke
algebra H|, given by making a specific arrangement of the |A| endpoints in
a straight line.) In either context the element e, can naturally be composed
with itself, and satisfies the relation e3 = ayey for some scalar ay € A;. The
element (), is then defined by

1

Q)\ = _é)\a
(65
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where the closure of ey is an element of the skein C.
In defining @, in this way we have to ensure that the coefficient ring
includes denominators «y. There is an explicit formula

Sh(x) — S_h(x)

_ @2 2
ax = H § s _ g1
TEA

for ay as a product over the cells x of A\. Thus the denominators in ), are
indeed of the form s* — s™*, where the largest value of k is the largest hook
length of any cell. This occurs for the cell in position (1, 1), at the top left
of .

One striking feature of the elements ey, shown in [2], is their ‘internal
stability’, namely that if any tangle T' is inserted in D? x I between the
white and the grey boxes, as shown schematically here, the resulting element
of the skein is just some scalar multiple of e,.

The fact that €3 = ayey for some ay, € A is an immediate consequence of
this, although we need to know also that a;, # 0 in order to construct Q,.

An important case is when 7' is the complete right-hand curl on || strings.
The resulting scalar f\ € A is known as the framing factor for \. When the
invariant P(L;...,Q,,...) is calculated with one component of the link L
decorated by @), and the framing on that component is increased by 1,
keeping the decorations of all other components unchanged, then the value
of the invariant is multiplied by f\. This can be readily seen because the
two invariants to be compared can be calculated from diagrams which differ
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only in having e, with or without the full curl inside it as one part of the
complete diagram. A direct skein theory calculation, as in [2], gives a cell-
based formula
fr=v"PMs™ where ny =2 > e(x),
XEN
twice the sum of the content of the cells.

Besides the full curl, another important central element of the Hecke alge-
bra H,, is the element T(™. The internal stability ensures that placing 7™
inside ey results in a multiple sye,. Then the closure of e, is an eigenvector
of the meridian map with eigenvalue sy, and can therefore be identified with
one of the basis elements @), ,, up to a scalar. This is the argument adopted
by Lukac [7] to identify his element @)y, originally constructed in terms of
Schur functions as a determinant of a matrix with entries drawn from the
elements {h}, with Aiston’s element constructed from the idempotent e.

6 Unitary quantum invariants

Quantum groups give rise to 1-parameter invariants J(K; W) of an oriented
framed knot K depending on a choice of finite dimensional module W over
the quantum group, following constructions of Turaev and others ([17, 19, 2]).
This choice is referred to as colouring K by W, and can be extended for a
link to allow a choice of colour for each component.

Fix a natural number N. When we colour K by a finite dimensional
module W over the quantum group sl(N),, its invariant J(K; W) depends
on one variable s. The invariant J is linear under direct sums of modules and
all the modules over sl(V), are semi-simple, so we can restrict our attention
to the irreducible modules V/\(N). For sl(N), these are indexed by partitions
A with at most N parts, without distinguishing two partitions which differ
in some initial columns with N cells.

To help in our comparison between Homfly satellite invariants and quan-
tum invariants of K we write P(K;Q) for P(K % Q) and more generally
P(L; Q1,Qo, . .., Q) for the Homfly polynomial of a link L when its compo-
nents are decorated by ()1, ..., Qx respectively.

Theorem 6.1 (Comparison theorem) 1. The sl(N), invariant for the

irreducible module V/\(N) 1s the Homfly invariant for the knot decorated
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by Qx with v = s~ suitably normalised as in [6]. Explicitly,
PG Q) |omsn = I (K V)

where k is the writhe of K, and x = s'/N.

2. Fach invariant P(K;Q)|,—s-~ is a linear combination of quantum in-
variants Y- cqoJ (K; W,,).

3. FEach J(K;W) is a linear combination of Homfly invariants
Z de(K; Qj)|v=s*N-
Remark.

e In the special case when N = 2 we can interpret quantum invariants
of K in terms of Kauffman bracket satellite invariants, using the skein
of the annulus based on the Kauffman bracket relations. This sim-
pler skein is a quotient of the algebra C. More generally the sl(IV),
invariants depend only on a quotient of the algebra C for each N.

e The 2-variable invariant P(K’; Q) can be recovered from the specialisa-
tions P(K; Q)|,—s—n~ for sufficiently many N.

e [f the pattern () is a closed braid on m strings then we only need use
partitions A F m, since C,, is spanned by {Qx} -m. Conversely, to

realise J(K; V/\(N)) with A = m we can use closed m-braid patterns.

6.1 Basic constructions of quantum invariants

A quantum group G is an algebra over a formal power series ring Q[[A]],
typically a deformed version of a classical Lie algebra. We write ¢ = e, s =
e"/? when working in sl(N),. A finite dimensional module over G is a linear
space on which G acts.

Crucially, G has a coproduct A which ensures that the tensor product
V @ W of two modules is also a module. It also has a universal R-matriz (in

a completion of G®G) which determines a well-behaved module isomorphism

This has a diagrammatic view indicating its use in converting coloured
tangles to module homomorphisms.
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W\@ V
Riw| /
VW N
Ve Ww
A braid § on m strings with permutation 7 € S,, and a colouring of the
strings by modules Vi, ..., V,, leads to a module homomorphism

T Vi® - ® Vi = Vi) ® - - ® Viegy

using R#};Vj at each elementary braid crossing. The homomorphism Jg de-
pends only on the braid 3 itself, not its decomposition into crossings, by the
Yang-Baxter relation for the universal R-matrix.

When V; = V for all ¢« we get a module homomorphism Jz : W —
W, where W = V®™  Now any module W decomposes as a direct sum
e W, ® VM(N )), where W, C W is a linear subspace consisting of the highest
weight vectors of type p associated to the module VLSN ). Highest weight
subspaces of each type are preserved by module homomorphisms, and so Jg
determines (and is determined by) the restrictions Jz(u) : W, — W), for each
1, where p runs over partitions with at most N parts.

If a knot (or one component of a link) K is decorated by a pattern T' which
is the closure of an m-braid 3, then its quantum invariant J(K xT; V') can
be found from the endomorphism Jz of W = V®™ in terms of the quantum
invariants of K and the restriction maps Jg(p) : W, — W, by the formula

J(KxT;V) Zcu V(N (1)

with ¢, = trJg(p). This formula follows from lemma I1.4.4 in [18]. We set
¢, = 0 when W has no highest weight vectors of type p.

More generally the methods of Reshetikhin and Turaev allow the quan-
tum groups G = SU(N), to be used to represent oriented tangles whose
components are coloured by G-modules as G-module homomorphisms. One
additional feature is needed, namely the use of the dual module V* defined
by means of the antipode in G, (an antiautomorphism of G which is part
of its structure as a Hopf algebra). When the components of the tangle are
coloured by modules the tangle itself is represented by a homomorphism from
the tensor product of the modules which colour the strings at the bottom to
the tensor product of the modules which colour the strings at the top, pro-
vided that the string orientations are inwards at the bottom and outwards
at the top. The dual module V* comes into play in place of V when an arc
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of the tangle coloured by V' has an output at the bottom or an input at the
top.

For example, the (4, 2)-tangle below, when coloured as shown, is repre-
sented by a homomorphism U @ W* - U ®@ X*® X @ W*.

o

U W+

It is possible to build up the definition so that consistently coloured tangles
are represented by the appropriate composite homomorphisms, starting from
a definition of the homomorphisms for the elementary oriented tangles. Two
cases, depending on the orientation, must be considered for both the local
maximum and the local minimum, and a little care is needed here to ensure
consistency. The final result is a definition of a homomorphism which is
invariant when the coloured tangle is altered by R;; and Ryr;. When applied
to an oriented k-component link diagram L regarded as an oriented (0,0)-
tangle it gives an element J(L;Vy,..., Vi) € A = Q[[A]] for each colouring
of the components of L by G-modules, which is an invariant of the framed
oriented link L.

The construction is simplified in the case of si(2), by the fact that all
modules are isomorphic to their dual, and so orientation of the strings plays
no role.

The quantum group invariants based on sl(3), also admit a combinatorial
simplification due to Kuperberg to allow an easier diagrammatic calculation
of them. At the same time the quantum group itself is straightforward enough
to make it possible to work directly with some of the smaller dimensional
modules,[15, 12].

7 Manifold invariants

Following work of Reshetikhin and Turaev, in response to ideas of Witten,
there are increasingly sophisticated ways to construct invariants of oriented
3-dimensional manifolds based on quantum groups, and correspondingly on
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knot invariants such as the Homfly satellite invariants. The basic principles
come from the original paper of Reshetkhin and Turaev, adapted at various
times to give easier details in special cases, notably the case of the quantum
SU(2) invariants, as for example in [11].

7.1 Surgery presentation

The strategy is to present the manifold M by surgery on a framed link L with
k components. This means that M is given by removing a neighbourhood of
M from S3 to give a manifold with k& torus boundary components and then
reattaching a solid torus to each of the k£ boundary tori in a way determined
by the framing. The resulting manifold M = M (L) depends on the choice of
L. Any other link L' which also determines the same manifold M is related
to L by a sequence of Kirby moves and their inverses.

These can be summarised as operations on framed link diagrams regarded
in some way as a satellite of the unknot Uy with framing 0. Then we can
replace a link L = Uy Q) by U1 %A@, where UL is the unknot with framing
+1 and A;Q is the decoration () with one extra parallel strand.

The strategy for finding invariants of M is then to identify knot invariants
of framed links which are unchanged by the two basic Kirby moves.

7.2 Manifolds with boundary

The whole setting of manifold invariants is extended to include manifolds
with boundary, regarded as cobordisms between two subsets of their bound-
ary components. The wider setting then envisages a standard vector space
for each boundary component, associating a vector space to the incoming
and outgoing boundary, with a linear map between them determined by the
manifold itself, in such a way that pasting together manifolds corresponds to
composition of linear maps. This is sometimes termed a ‘modular functor’
or ‘topological quantum field theory’ (TQFT).

Associated to the empty boundary component is the 1-dimensional space
of scalars. A closed manifold then produces a linear map from scalars to
scalars, in other words a scalar.

The exterior of a link L, with k torus boundary components thought of as
the incoming boundary, and empty outgoing boundary, fits in to this general
scheme. We could take the skein C (or CT) as the linear space associated to
a torus and use the Homfly satellite invariants of L to provide a linear map
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from the k-fold tensor product of C to the scalars. One difficulty in trying
to extend this to give a TQFT is that there is no immediate candidate for
handling outgoing torus boundaries and hence no scope for gluing manifolds
together along torus boundary components.

All the same, it suggests that what might be needed when attaching a
solid torus to a boundary component would be to find an invariant for a solid
torus, regarded as having empty incoming boundary and a torus as outgoing
boundary. According to the proposed scheme we would need a linear map
from the scalars to the linear space C, which simply means the choice of one
preferred element €2, say, of C. The resulting scalar for the manifold given
by attaching a solid torus to each boundary component of the exterior of
L would then be the evaluation of the satellite invariant of L where each
component is decorated by €2, giving P(L : Q,...,Q) as the invariant of the
manifold M (L).

Although it is not possible to find such a universal element {2 to carry
through this plan it turns out that a restricted version of this idea can be
made to work.

7.3 Evaluation of knot invariants

The comparison between sl(NN), invariants and Homfly satellite invariants
uses the evaluation of the Homfly invariants by putting v = s=. This is the
ring homomorphism sy : A — Z[s*!, (s"—s7") 7] with sy (v) = sV, sy (s) =
S.

For the trivial knot U write

0(Q) = P(U;Q) € A.
Now §(Q1Q2) = 6(Q1)0(Q2). There is a nice formula
—18c(x) _ ,US—C(J:)

v
6(Qx) = H sh(z) _ g—h(x)

TEA

Since sy (5(Qy)) = J(U:; Vi) is the ‘quantum dimension’ of the module
V)\(N) it is common to call §(Q) the quantum dimension of @ € C.

From the formula it follows that sy(6(Qy)) = 0 if A\ has more than N
rows. It is then also true that sy(P(L;...,Qx,...)) = 0 if A has more than
N rows.
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To find the sy evaluation of a Homfly satellite invariant we then only
need to know its value for decorations with at most N rows. This can be
simplified further, as decorations by A and )\ give the same sy evaluation
when A and X differ by a number of columns with exactly N cells in each.

For example in calculating the s, evaluation (to get the Jones polynomial)
we only need to use decorations with one row.

For the sy evaluation of a satellite invariant with decoration ) we can
arrange that @ is replaced by a polynomial in e,...,ex_;. Write Q in C*
as a polynomial in {e,,} and then set e,, = 0,m > N and ey = 1 to give an
element with the same sy evaluation as Q).

In the case N = 2 this means that we just need polynomials in e; = Ay,
in other words linear combinations of parallels.

7.4 Level invariants for manifolds

Following Witten, Reshetikhin and Turaev we can use quantum group invari-
ants to get a sequence of manifold invariants, along the general lines proposed
above.
Choose N > 2 and a further positive integer [, termed the level.
Write
Qvi= >, 8(QNQx,

Ae(N-1,1)

where (N — 1,1) is the finite set of partitions with at most N — 1 rows and
at most [ columns.
Take s € C to satisfy s2(+V) =1,

Theorem 7.1 The evaluation sy(P(L; Qny,...,0Qny)) € C is an invariant
of the manifold M (L), up to a normalising factor depending on the linking
numbers of L.

In this form the result is shown by Aiston [1] with some refinements by
Lukac [7]; a brief account can also be found in [13], where the more natural
use of dual modules in places makes for a slightly easier argument. In this
context, having chosen N, the Young diagram of the partition A\* dual to A
is the complement of the diagram of A in an N x \; rectangle.

The amended definition for Qy; is

Qng = Z Q).

Ae(N-1,1)
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Since sy (0(Qxr+)) = sy(d(Q2)), the result above is unaltered.
The main technical fact needed about €y, is that the product

SQNJ = 5(S)QN,1

for any S € C*, modulo elements of an ideal which contribute 0 to the sy
evaluation when s?(V+) = 1.

Proof :

To show Kirby move invariance, when we change L = Uy * () to Uy *
A;Q, decorate the components of the diagram () in the annulus by Qy; to
determine S € C*.

We need to compare P(Up; S) and P(Uyy; SQn). Now P(Up; S) = 4(95)
and

P(Uﬂ; SQN,l) = P<Ui1§ 5(S)QN,1) = 5<S)P<Ui1§ QN,l)v

after evaluation.
The factors cy = P(Uyq; €y, ) are dealt with by the normalisation.
O

When evaluating invariants under sy with the additional restriction that
s2+N) = 1 it is possible to replace C* as the decorating space by the finite
dimensional space spanned by {Q,}, A € (N —1,1) in a straightforward way,
since the space can be interpreted as a Verlinde algebra, given by factoring
out a suitable ideal from C*.

In fact the space can be interpreted as the ring of polynomials in e, ..., ey_1
modulo the ideal generated by the polynomials hj 1, ..., hy_1 written as
polynomials in the elementary symmetric functions with ey = 1,¢e,, =0, m >

N.
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